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We give a systematic method for discretising Hamiltonian partial differential
equations (PDEs) with constant symplectic structure, while preserving their
total energy exactly. The same method, applied to PDEs with dissipative
constant structure, also preserves the correct monotonic decrease of energy.

1



BIT Numerical Mathematics (2006)46:000-000 c© Springer 2006.
DOI:10.1007/s10543-000-0000-x

PRESERVING ENERGY RESP. DISSIPATION IN
NUMERICAL PDEs, USING THE “AVERAGE

VECTOR FIELD” METHOD ∗

E. CELLEDONI1, V. GRIMM2, R.I. MCLACHLAN3, D.I. MCLAREN4,

D.R.J. O’NEALE5, B. OWREN6, G.R.W. QUISPEL7

1 Department of Mathematical Sciences, NTNU
7491 Trondheim, Norway. email: elenac@math.ntnu.no

2 Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Martensstr. 3, D–91058 Erlangen, Germany. email: grimm@am.uni-erlangen.de

3 Institute of Fundamental Sciences, Massey University, Private Bag 11-222
Palmerston North, New Zealand 5301. email: r.mclachlan@massey.ac.nz

4 Department of Mathematics and Statistics, La Trobe University,
Victoria 3086, Australia. email: D.McLaren@latrobe.edu.au

5 Department of Mathematics and Statistics, La Trobe University,
Victoria 3086, Australia. email: D.O’Neale@latrobe.edu.au

6 Department of Mathematical Sciences, NTNU
7491 Trondheim, Norway. email: Brynjulf.Owren@math.ntnu.no

7 Department of Mathematics and Statistics, La Trobe University,

Victoria 3086, Australia. email: R.Quispel@latrobe.edu.au

Abstract.

We give a systematic method for discretising Hamiltonian partial differential equa-
tions (PDEs) with constant symplectic structure, while preserving their energy exactly.
The same method, applied to PDEs with constant dissipative structure, also preserves
the correct monotonic decrease of energy. The method is illustrated by many examples.
In the Hamiltonian case these include: the sine-Gordon, Korteweg-de Vries, nonlinear
Schrödinger, (linear) time-dependent Schrödinger, and Maxwell equations. In the dis-
sipative case the examples are: the Allen-Cahn, Cahn-Hilliard, Ginzburg-Landau, and
Heat equations.

AMS subject classification (2000): 65L12, 65M06, 65N22, 65P10

Key words: Average vector field method, Hamiltonian PDEs, dissipative PDEs, time
integration

1 Introduction

“The opening line of Anna Karenina, ‘All happy families resemble one another,
but each unhappy family is unhappy in its own way’, is a useful metaphor for the
relationship between computational ordinary differential equations (ODEs) and
computational partial differential equations (PDEs). ODEs are a happy family
– perhaps they do not resemble each other, but, at the very least, we can treat

∗Received **. Revised **. Communicated by **.
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them by a relatively small compendium of computational techniques... PDEs
are a huge and motley collection of problems, each unhappy in its own way”
(Quote from A. Iserles’ book [8]).

Whereas there is much truth in the above quote, in this paper we set out to
convince the reader that, as far as conservation or dissipation of energy is con-
cerned, many PDEs form part of one big happy family (cf. also [9]) that, after a
very straightforward and uniform semi-discretisation, may actually be solved by
a single unique geometric integration method – the so-called average vector field
method – while preserving the correct conservation, respectively, dissipation of
energy. The concept of ‘energy’ has far-reaching importance throughout the
physical sciences [4]. Therefore a single procedure, as presented here, that cor-
rectly conserves, resp. dissipates, energy for linear as well as nonlinear, low-order
as well as high-order, PDEs would seem to be worth while.

We consider evolutionary PDEs with independent variables (x, t) ∈ Rd × R,
functions u belonging to a Banach space B with values1 u(x, t) ∈ Rm, and PDEs
of the form

(1.1) u̇ = D δH
δu

,

where D is a constant linear differential operator, the dot denotes ∂
∂t , and

(1.2) H[u] =
∫

Ω
H(x;u(n)) dx

where Ω is a subset of Rd × R, and dx = dx1dx2 . . . dxd. δH
δu is the variational

derivative of H in the sense that

(1.3)
d

dε
H[u + εv]

∣∣
ε=0

=
∫

Ω

δH
δu

v dx,

for all u, v ∈ B (cf. [16]). For example, if d = m = 1,

(1.4) H[u] =
∫

Ω
H(x;u, ux, uxx, . . . ) dx,

then

(1.5)
δH
δu

=
∂H

∂u
− ∂x

(
∂H

∂ux

)
+ ∂2

x

(
∂H

∂uxx

)
− · · · ,

when the boundary terms are zero.
Similarly, for general d and m, we obtain

(1.6)
δH
δul

=
∂H

∂ul
−

d∑

k=1

∂

∂xk

(
∂H

∂ul,k

)
+ . . . , l = 1, . . . ,m.

1Although it is generally real-valued, the function u may also be complex-valued, for ex-
ample, the nonlinear Schrödinger equation.
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We consider Hamiltonian systems of the form (1.1), where D is a constant
skew symmetric operator (cf. [16]) and H the energy (Hamiltonian). In this
case, we prefer to designate the differential operator in (1.1) with S instead of
D. The PDE preserves the energy because S is skew-adjoint with respect to the
L2 inner product, i.e.

(1.7)
∫

Ω
uSu dx = 0, ∀u ∈ B.

The system (1.1) has I : B → R as an integral if İ =
∫
Ω

δI
δuS

δH
δu dx = 0.

Integrals C with D δC
δu = 0 are called Casimirs.

Besides PDEs of type (1.1) where D is skew-adjoint, we also consider PDEs of
type (1.1) where D is a constant negative (semi)definite operator with respect
to the L2 inner product, i.e.

(1.8)
∫

Ω
uDu dx ≤ 0, ∀u ∈ B.

In this case, we prefer to designate the differential operator D with N and the
function H is a Lyapunov function, since then the system (1.1), i.e.

(1.9) u̇ = N δH
δu

,

has H as a Lyapunov function, i.e. Ḣ =
∫
Ω

δH
δu N

δH
δu dx ≤ 0. We will refer

to systems (1.1) with a skew-adjoint S and an energy H as conservative and to
systems (1.1) with a negative (semi)definite operator N and a Lyapunov function
H as dissipative.

Conservative PDEs (1.1) can be semi-discretised in “skew-gradient” form

(1.10) u̇ = S∇H(u), ST = −S,

when D = S is skew-adjoint. u ∈ Rk, and here, and in the following, we will
always denote the discretisations with bars. H is chosen in such a way that H∆x
is an approximation to H.

Lemma 1.1. Let

(1.11) H[u] =
∫

Ω
H(x;u(n))dx,

and let H∆x be any consistent (finite difference) approximation to H (where
∆x := ∆x1∆x2 . . .∆xd). Then the discrete analogue of the variational derivative
δH
δu

is given by ∇H. The proof is given in the appendix.

It is worth noting that the above lemma also applies directly when the approx-
imation to H is obtained by a spectral discretization, since such an approxima-
tion can be viewed as a finite difference approximation where the finite difference
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stencil has the same number of entries as the number of grid points on which it
is defined.

The operator ∇ is the standard gradient, which replaces the variational deriva-
tive because we are now working in a finite (although large) number of dimen-
sions (cf. e.g. (1.6)).

When dealing with (semi-)discrete systems we use the notation uj,n where the
index j corresponds to increments in space and n to increments in time. That is,
the point uj,n is the discrete equivalent of u(a + j∆x, t0 + n∆t) where x ∈ [a, b]
and where t0 is the initial time. In most of the equations we present, one of
the indices is held constant, in which case, for simplicity, we drop it from the
notation. For example, we use uj to refer to the values of u at different points
in space and at a fixed time level.

Theorem 1.2. Let S (resp. N ) be any consistent constant skew (resp.
negative-definite) matrix approximation to S (resp. N ). Let H∆x be any con-
sistent (finite difference) approximation to H. Finally, let

(1.12) f(u) := S∇H(u) (resp. f(u) := N∇H(u)),

and let un be the solution of the average vector field (AVF) method

(1.13)
un+1 − un

∆t
=

∫ 1

0
f((1− ξ)un + ξun+1) dξ,

applied to equation (1.12). Then the semidiscrete energy H is preserved exactly
(resp. dissipated monotonically):

H(un+1) = H(un) (resp H(un+1) ≤ H(un)).

H is preserved since

(1.14) Ḣ =
(
∇H

)T S∇H = 0.

Discretisations of this type can be given for pseudospectral, finite-element, Galerkin
and finite-difference methods (cf. [12, 13]); for simplicity’s sake, we will concen-
trate on finite-difference methods, though we include one example of a pseu-
dospectral method for good measure.

The AVF method was recently [17] shown to preserve the energy H exactly for
any vector field f of the form f(u) = S∇H(u), where H is an arbitrary function,
and S is any constant skew matrix 2. The AVF method is related to discrete
gradient methods (cf. [11]).

If D is a constant negative-definite operator, then the dissipative PDE (1.1)
can be discretized in the form

(1.15) u̇ = N∇H(u),
2The relationship of (1.13) to Runge-Kutta methods was explored in [3].
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where N is a negative (semi)definite matrix and H is a discretisation as above.
That is, H is a Lyapunov-function for the semi-discretized system, since

(1.16) Ḣ =
(
∇H

)T N∇H ≤ 0.

The AVF method (1.13) again preserves this structure, i.e. we have

(1.17) H(un+1) ≤ H(un),

and H is a Lyapunov function for the discrete system. Taking the scalar product
of (1.13) with

∫ 1
0 ∇H((1− ξ)un + ξun+1) dξ on both sides of the equation yields

(1.18)
1

∆t

∫ 1

0
(un+1 − un) · ∇H((1− ξ)un + ξun+1) dξ ≤ 0,

i.e.

(1.19)
1

∆t

∫ 1

0

d

dξ
H((1− ξ)un + ξun+1) dξ ≤ 0,

and therefore

(1.20)
1

∆t
(H(un+1)−H(un)) ≤ 0.

Our purpose is to show that the procedure described above, namely

1. Discretize the energy functional H using any (consistent) approximation
H∆x

2. Discretize D by a constant skew-symmetric (resp. negative (semi)definite)
matrix

3. Apply the AVF method

can be generally applied and leads, in a systematic way, to energy-preserving
methods for conservative PDEs and energy-dissipating methods for dissipative
PDEs. We shall demonstrate the procedure by going through several well-known
nonlinear and linear PDEs step by step. In particular we give examples of how
to discretise nonlinear conservative PDEs (in subsection 2.1), linear conservative
PDEs (in subsection 2.2), nonlinear dissipative PDEs (in subsection 3.1), and
linear dissipative PDEs (in subsection 3.2).

2 Conservative PDEs

2.1 Nonlinear conservative PDEs

Example 2.1. Sine-Gordon equation:
Continuous:

(2.1)
∂2ϕ

∂t2
=

∂2ϕ

∂x2
− α sinϕ.
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The Sine-Gordon equation is of type (1.1) with

(2.2) H =
∫ [

1
2
π2 +

1
2

(
∂ϕ

∂x

)2

+ α (1− cos ϕ)

]
dx,

where u :=
(

ϕ
π

)
and

(2.3) S =
(

0 1
−1 0

)
.

(Note that it follows that π = ∂ϕ
∂t .)

Boundary conditions: periodic, u(−20, t) = u(20, t).
Semi-discrete: finite differences3

(2.4) Hfd =
∑

j

[
1
2
π2

j +
1

2(∆x)2
(ϕj+1 − ϕj)2 + α (1− cos ϕj)

]
.

(2.5) S =
(

0 id
−id 0

)
.

The resulting system of ordinary differential equations is

(2.6)
[

ϕ̇
π̇

]
= S∇Hfd =

[
π

1
∆x2 Lϕ− α sinϕ

]
,

where L is the circulant matrix

L =





−2 1 1

1
. . . . . .
. . . . . . 1

1 1 −2




.

We have used the bold variables ϕ and π for the finite dimensional vectors
[ϕ1, ϕ2, . . . , ϕN ]", et cetera, which replace the functions π and ϕ in the (semi-)
discrete case. Where necessary, we will write ϕn, et cetera to denote the vector
ϕ at time t0 + n∆t.

The integral in the AVF method can be calculated exactly to give4

1
∆t

[
ϕn+1 −ϕn

πn+1 − πn

]
=(2.7)

[
(πn+1 + πn)/2

L(ϕn+1 + ϕn)/2− α(cos ϕn+1 − cos ϕn)/(ϕn+1 −ϕn)

]
.

3Summations of the form
P

j mean
PN−1

j=0 unless stated otherwise.
4For numerical computations, care must be taken to avoid problems when the difference

ϕn+1 −ϕn in the denominator of (2.7) becomes small. We used the sum-to-product identity
cos a− cos b = −2 sin((a+ b)/2) sin((a− b)/2) to give a more numerically amenable expression.
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Semi-discrete: spectral discretization
Instead of using finite differences for the discretization of the spatial derivative

in (2.2), one may use a spectral discretization. This can be thought of as replac-
ing ϕ with its Fourier series, truncated after N terms, where N is the number of
spatial intervals, and differentiating the Fourier series. This can be calculated,
using the discrete Fourier transform5 (DFT), as F−1

N dNFNϕ where FN is the
matrix of DFT coefficients with entries given by [FN ]n,k = ωnk

N , ωN = e−i2π/N

Additionally, [F−1
N ]n,k = 1

N ω−nk
N and dN is a diagonal matrix whose (non-zero)

entries are the scaled wave-numbers6 [dN ]k,k = i2πk/l, k = −N
2 + 1, . . . , N

2 , (for
N even), where l = b− a is the extent of the spatial domain; that is l/N = ∆x.
(For more details on properties of the DFT and its application to spectral meth-
ods see [2] and [18].)

(2.8) Hsp =
∑

j

[
1
2
π2

j +
1
2

[
F−1

N dNFNϕ
]2
j

+ α(1− cos ϕj)
]

,

(2.9) S =
(

0 id
−id 0

)
.

The resulting system of ODEs is then given by

(2.10)
[

ϕ̇
π̇

]
= S∇Hsp =

[
π

−(F−1
N DNFN )"(F−1

N dNFNϕ)− α sinϕ

]
,

where [DN ]n,k = θk. Again, the integral in the AVF method can be calculated
exactly to give

ϕn+1 −ϕn

∆t
= (πn+1 + πn)/2,(2.11)

πn+1 − πn

∆t
= −(F−1

N DNFN )"(F−1
N dNFN )(ϕn+1 + ϕn)/2

− α(cos ϕn+1 − cos ϕn)/(ϕn+1 −ϕn).(2.12)

Initial conditions and numerical data for both discretizations:
Spatial domain, number N of spatial intervals, and time-step size ∆t used

were 7

x ∈ [−20, 20], N = 200, ∆t = 0.01, parameter: α = 1.

5In practice, one uses the fast Fourier transform algorithm to calculate the DFTs in
O(N log N) operations.

6Care must be taken with the ordering of the wave numbers since different computer pack-
ages use different effective orderings of the DFT/IDFT matrices in their algorithms. Addi-
tionally, one must ensure that all modes of the Fourier spectrum are treated symmetrically —
for N even, this requires replacing the k = N

2 entry with zero. For the FFT/IFFT algorithms

in Matlab the vector of wave numbers is [0, . . . , N
2 − 1, 0, −N

2 + 1, . . . ,−1].
7Here and below, if x ∈ [a, b], then ∆x = b−a

N , and xj = a + j∆x, j = 0, 1, . . . , N .
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Figure 2.1: Sine-Gordon equation with finite differences semi-discretization: Energy
error (left) and global error (right) vs time, for AVF and implicit midpoint integrators.
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Figure 2.2: Sine-Gordon equation with spectral semi-discretization: Energy error (left)
and global error (right) vs time, for AVF and implicit midpoint integrators.

Initial conditions:

(2.13)
ϕ(x, 0) = 0,

π(x, 0) =
8

cosh(2x)
.






Right-moving kink
and left-moving
anti-kink solution.

Numerical comparisons of the AVF method with the well known (symplectic)
implicit midpoint integrator8 are given in figure 2.1 for the finite differences
discretization, and in figure 2.2 for the spectral discretization.

Example 2.2. Korteweg-de Vries equation:
Continuous:

(2.14)
∂u

∂t
= −6u

∂u

∂x
− ∂3u

∂x3
,

8Recall that the implicit midpoint integrator is given by
un+1−un

∆t = f
“

un+un+1
2

”
.
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Figure 2.3: Korteweg-de Vries equation: Energy error (left) and global error (right) vs
time, for AVF and implicit midpoint integrators.

(2.15) H =
∫ [

1
2

(ux)2 − u3

]
dx,

(2.16) S =
∂

∂x
.

Boundary conditions: periodic, u(−20, t) = u(20, t).
Semi-discrete:

(2.17) H =
∑

j

[
1

2(∆x)2
(uj+1 − uj)

2 − u3
j

]
,

(2.18) S =
1

2∆x





0 −1 1
1 0 −1

. . . . . . . . .
1 0 −1

−1 1 0




.

Initial conditions and numerical data:

x ∈ [−20, 20], N = 400, ∆t = 0.001.

Initial condition: u(x, 0) = 6 sech2(x) (for two solitons).

Example 2.3. Nonlinear Schrödinger equation:
Continuous:

(2.19)
∂

∂t

(
u
u∗

)
=

(
0 i
−i 0

) (
δH
δu
δH
δu∗

)
,
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Figure 2.4: Nonlinear Schrödinger equation: Energy error (left) and global error (right)
vs time, for AVF and implicit midpoint integrators.

where u∗ denotes the complex conjugate of u.

(2.20) H =
∫ [

−
∣∣∣∣
∂u

∂x

∣∣∣∣
2

+
γ

2
|u|4

]
dx,

(2.21) S =
(

0 i
−i 0

)
.

Boundary conditions: periodic, u(−20, t) = u(20, t).
Semi-discrete:

(2.22) H =
∑

j

[
− 1

(∆x)2
|uj+1 − uj |2 +

γ

2
|uj |4

]
,

(2.23) S = i

(
0 id
−id 0

)
.

Initial conditions and numerical data:

x ∈ [−20, 20], N = 200, ∆t = 0.05, parameter: γ = 1.

Initial conditions:

(2.24)
{
(u(x, 0) = exp

(
−(x− 1)2/2

)
,

)u(x, 0) = exp
(
−x2/2

)
.

Example 2.4. Nonlinear Wave Equation:
Continuous:
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Figure 2.5: Nonlinear Schrödinger equation: Total probability error vs time, for AVF
and implicit midpoint integrators.

The 2D wave equation

(2.25)
∂2ϕ

∂t2
= ∆ϕ− ∂V (ϕ)

∂ϕ
, ϕ = ϕ(x, y, t), (x, y) ∈ [−1, 1]× [−1, 1], t ≥ 0,

is a Hamiltonian PDE with Hamiltonian function

(2.26) H =
∫ 1

−1

∫ 1

−1

[
1
2
(π2 + ϕ2

x + ϕ2
y) + V (ϕ)

]
dx dy,

and the operator S is the canonical 2× 2 symplectic matrix.
Boundary conditions: periodic.
Semi-discrete:
We discretise the Hamiltonian in space with a tensor product Lagrange quadra-

ture formula based on p + 1 Gauss-Lobatto-Legendre (GLL) quadrature nodes
in each space direction. We obtain
(2.27)

H =
1
2

p∑

j1=0

p∑

j2=0

wj1wj2



π2
j1,j2 +

(
p∑

k=0

dj1,kϕk,j2

)2

+

(
p∑

m=0

dj2,mϕj1,m

)2

+
1
2
ϕ4

j1,j2



 ,

where dj1,k = dlk(x)
dx

∣∣∣
x=xj1

, and lk(x) is the k-th Lagrange basis function based

on the GLL quadrature nodes x0, . . . , xp, and with w0, . . . , wp the corresponding
quadrature weights. The numerical approximation is

(2.28) ϕp(x, y, t) =
p∑

k=0

p∑

m=0

ϕk,m(t)lk(x)lm(y),

and has the property ϕp(xj1 , yj2 , t) = ϕj1,j2(t), so that the data can be stored
in the (p + 1)× (p + 1) matrix with entries ϕj1,j2 .

Initial conditions and numerical data:

(x, y) ∈ [−1, 1]2, V (ϕ) =
ϕ4

4
.
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Figure 2.6: Snapshots of the solution of the 2D wave equation at different times. AVF
method with step-size ∆t = 0.6250. Space discretization with 6 Gauss Lobatto nodes
in each space direction. Numerical solution interpolated on a equidistant grid of 21
nodes in each space direction.

Initial condition: ϕ(x, y, 0) = sech(10x)sech(10y), π(x, y, 0) = 0.

In figure 2.6 we show some snapshots of the solution. The energy error is
shown in figure 2.7.

2.2 Linear conservative PDEs

Example 2.5. (Linear) Time-dependent Schrödinger Equation:
Continuous:

(2.29)
∂u

∂t
= i

∂2u

∂x2
− iV (x)u.

This equation is bi-Hamiltonian, i.e. it has 2 independent symplectic struc-
tures. The first Hamiltonian formulation has

(2.30) H1 =
∫ π

−π

[
−

∣∣∣∣
∂u

∂x

∣∣∣∣
2

− V (x) |u|2
]

dx

and

(2.31) S1 =
(

0 i
−i 0

)
.
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Figure 2.7: The 2D wave equation (2.25). MATLAB routine ode15s with absolute and
relative tolerance 10−14 (dashed line), and AVF method with step size ∆t = 10/(25)
(solid line). Energy error versus time. Time interval [0, 10]. Space discretization with
6 Gauss Lobatto nodes in each space direction.

The second Hamiltonian formulation has

(2.32) H2 =
∫ π

−π
|u|2 dx

and

(2.33) S2 =
(

0 ∂2
x − V (x)

−∂2
x + V (x) 0

)
.

Boundary conditions: periodic, u(−π, t) = u(π, t).
Semi-discrete:

(2.34) H1 =
∑

j

[
− 1

(∆x)2
|uj+1 − uj |2 − V (xj)|uj |2

]
,

(2.35) S1 = i

(
0 id
−id 0

)
.

The second semi-discretization is

(2.36) H2 =
∑

j

|uj |2,

(2.37) S2 = i

(
0 A
−A 0

)
,
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Figure 2.8: Linear Schrödinger equation: Error in energy H1∆x vs time, AVF method

where

(2.38) A =





−2− V 1 0 . . . 1
1 −2− V 1 0

0
. . . . . . . . .

...
0 . . . 1
1 0 . . . 1 −2− V




.

Both discretizations result in the same semi-discrete system and the AVF method
(which in the linear case coincides with the midpoint rule) therefore preserves
both H1 and H2, as well as the two symplectic structures.

Initial conditions and numerical data:

x ∈ [−π, π], N = 50, ∆t = 0.1, V (x) = 1− cos(x).

Initial conditions:

(2.39) (u(x, 0) = e−( x
2 )2 , )u(x, 0) = 0.

Example 2.6. Maxwell’s Equations (1d): We first look at the one-dimensional
Maxwell equation

Continuous:

(2.40)
∂

∂t

[
E
B

]
=

[
0 c ∂

∂x
c ∂

∂x 0

] [
δH
δE
δH
δB

]
,

(2.41) H(E,B) =
∫ 1

0
c
1
2

(
E2 + B2

)
dx,
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and

(2.42) S =
[

0 ∂
∂x

∂
∂x 0

]
.

S is skew-adjoint on {(E,B) ∈ C1 : E(0) = E(1) = 0} (and therefore on the
Sobolev space H1

0 ).
Boundary conditions:

(2.43)
{

E(0, t) = E(1, t) = 0,
∂B
∂x (0, t) = ∂B

∂x (1, t) = 0.

Semi-discrete:
We now obtainH by discretizingH in a simple way by applying the trapezoidal

rule to the integral (2.41) at the points xj = 1
N j and dividing by ∆x, that is

(2.44)

H(E1, · · ·EN−1, B0, · · · , BN ) =
N−1∑

j=1

(
c
1
2
E2

j

)
+ c

1
4
B2

0 +
N−1∑

j=1

(
c
1
2
B2

j

)
+ c

1
4
B2

N ,

where we have already used that E(x0, t) = E(xN , t) = 0. The differential
operator S is discretized with central differences yielding

(2.45) S =
[

0N−1,N−1 G
−GT 0N+1,N+1

]
,

where the (N − 1)× (N + 1) matrix G is given by

(2.46) G =
1

2∆x





−2 0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0 2




.

Initial conditions and numerical data:
Note that the Neumann boundary conditions are satisfied at least to order 1

in space, despite the fact that we only intended to somehow approximate the
energy H. The numerical experiments confirm that the discrete energy H∆x is
preserved to machine precision. Figure 2.9 shows the error of the AVF method
for the Maxwell equation with N = 100, ∆t = 0.001, c = 1, and initial value

E(x, 0) = e−100(x− 1
2 )

2

, B(x, 0) = e−100(x− 1
2 )

2

.

Example 2.7. Maxwell’s Equations (3D):
Continuous:
We consider Maxwell’s equations in CGS units for the electromagnetic field in

a vacuum

(2.47)
∂

∂t

[
B
E

]
=

[
0 −c∇×

c∇× 0

] [
B
E

]
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Figure 2.9: One-dimensional Maxwell equation: energy error vs time, AVF integrator.

with the operator

(2.48) ∇× :=





0 − ∂
∂z

∂
∂y

∂
∂z 0 − ∂

∂x

− ∂
∂y

∂
∂x 0




.

This equation has two Hamiltonian formulations of type (1.1). The first Hamil-
tonian formulation has the helicity Hamiltonian

(2.49) H1 =
∫

Q

(
c
1
2
BT (∇×B) + c

1
2
ET (∇× E)

)
dxdydz

(cf. [1]) and the operator

(2.50) S1 =
[

0 −I3

I3 0

]
,

where I3 designates the 3× 3 unit matrix. The second Hamiltonian formulation
has the Hamiltonian

(2.51) H2 =
∫

Q

(
c
1
2
BT B + c

1
2
ET E

)
dxdydz

(cf. [7]) and the operator

(2.52) S2 =
[

0 −∇×
∇× 0

]
.

Boundary condition: periodic on the unit cube Q.
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Semi-discrete:
On a regular grid with lexicographical ordering in every component of E (resp.

B) and concatenating the discretized components gives one discrete vector Eh

(resp. Bh), the operator ∇× is represented by a matrix A. The discretisation
in the first case is given by

(2.53) H1 = c
1
2
ET

h AEh + c
1
2
BT

h ABh

and the obvious discretisation of S1. For the quadratic Hamiltonian,

(2.54) H2 = c
1
2
ET

h Eh + c
1
2
BT

h Bh

and

(2.55) S2 =
[

0 −A
A 0

]
.

Both discretisations result in the same semi-discrete system

(2.56)
[

Ḃh

Ėh

]
=

[
0 −A
A 0

] [
Bh

Eh

]

and the average vector field method preserves both H1 and H2.
Initial conditions and numerical data:
Preservation of H1 and H2 is numerically confirmed by an experiment with

random initial data on a regular grid with 30 points in every direction and
constant c = 1. The result of the AVF method with ∆t = 0.01 can be seen in
Figure 2.10.

3 Dissipative PDEs

3.1 Nonlinear dissipative PDEs

Example 3.1. Allen - Cahn equation:
Continuous:

(3.1)
∂u

∂t
= duxx + u− u3,

(3.2) H =
∫ [

1
2
d (ux)2 − 1

2
u2 +

1
4
u4

]
dx,

(3.3) N = −1.

Boundary conditions: Neumann, ux(0, t) = 0, ux(1, t) = 0.
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Figure 2.10: Three-dimensional Maxwell equation: plots of energies H1∆x (dash-dot)
and H2∆x (dash) vs time.
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Figure 3.1: Allen-Cahn equation: Global error (left) and energy (right) vs time, AVF
integrator.

Semi-discrete:

(3.4) H =
N∑

j=0

[
d

2(∆x)2
(uj+1 − uj)

2 − 1
2
u2

j +
1
4
u4

j

]
,

(3.5) N = −id.

Initial conditions and numerical data:

x ∈ [0, 1], N = 100, ∆t = 0.001, parameter: d = 0.001.

Initial condition: u(x, 0) = cos(πx).
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Figure 3.2: Cahn-Hilliard equation: Global error (left) and energy (right) vs time, AVF
integrator.

Example 3.2. Cahn-Hilliard equation:
Continuous:

(3.6)
∂u

∂t
=

∂2

∂x2

(
pu + ru3 + quxx

)
,

(3.7) H =
∫ [

1
2
pu2 +

1
4
ru4 − 1

2
q (ux)2

]
dx,

(3.8) N = ∂2
x.

Boundary condition: periodic, u(0, t) = u(1, t).
Semi-discrete:

(3.9) H =
∑

j

[
1
2
pu2

j +
1
4
ru4

j −
1
2

q

(∆x)2
(uj+1 − uj)

2
]

,

(3.10) N =
1

(∆x)2





−2 1 1
1 −2 1

. . . . . . . . .
1 −2 1

1 1 −2




.

Initial conditions and numerical data:

x ∈ [0, 1], N = 50, ∆t = 1/1200, parameters: p = −1, q = −0.001, r = 1.

Initial condition:

u(x, 0) = 0.1 sin(2πx) + 0.01 cos(4πx) + 0.06 sin(4πx) + 0.02 cos(10πx).
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Example 3.3. Ginzburg-Landau equation:
Continuous:
A Ginzburg-Landau equation arising in a model of traffic flow is given by

(3.11)
∂u

∂t
=

(
∂x − ε∂2

x

) [
6u + ∂2

xu− u3
]

and is a slight modification of the model considered in [14] and [15]. The equation
can be written as

(3.12)
∂u

∂t
= N δH

δu
,

with

(3.13) N = ∂x − ε∂2
x

and

(3.14) H =
∫ [

3u2 − 1
2

(
∂u

∂x

)2

− 1
4
u4

]
dx.

Boundary condition: u(±5, t) = 0 and uxx(±5, t) = 0.
Semi-discrete:

(3.15) H =
N−1∑

j=1

[
3u2

j −
1
2

(
uj+1 − uj

∆x

)2

− 1
4
u4

j

]
, uN = 0.

and

(3.16) N = A− εB,

where

(3.17) A =
1

2∆x





0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0





is a discretisation of ∂x, and

(3.18) B =
1

(∆x)2





−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




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Figure 3.3: Ginzburg-Landau equation: Plots of the energy function H∆x computed
with the AVF method (left) and Matlab’s ode45 (right). Note that ode45 does not
exhibit the correct monotonic decrease in energy.

is a discretisation of ∂2
x. The average vector field method preserves the decay of

function H in contrast to some standard integrators.
Initial conditions and numerical data:

x ∈ [−5, 5], N = 100, ∆t = 0.001, parameter: ε = −10−6.

Initial condition: u(x, 0) = e−100(x− 1
2 )

2

.
In Figure 3.3, we compare the AVF method with Matlab’s ode45, the latter

not preserving the monotonic decay of H.

3.2 Linear dissipative PDEs

Example 3.4. Heat equation:
Continuous:
The heat equation

(3.19)
∂u

∂t
= uxx,

is a dissipative PDE and can be written in the form (1.1), i.e.

(3.20)
∂u

∂t
= N1

δH1

δu
,

∂u

∂t
= N2

δH2

δu
,

with the Lyapunov functions H1(u) =
∫ 1
0

1
2u2

x dx and H2(u) =
∫ 1
0

1
2u2 dx and

the operators N1 = −1 and N2 = ∂2
x, respectively.

Boundary conditions: u(0, t) = u(1, t) = 0.
Semi-discrete:

(3.21) H1 =
1

2(∆x)2



u2
1 +

N−1∑

j=2

(uj − uj−1)2 + u2
N−1




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Figure 3.4: Heat equation: plots of Lyapunov functions H1∆x (left) and H2∆x (right)
vs time, AVF integrator.

and

(3.22) H2 =
N−1∑

j=1

1
2
(uj)2,

as well as

(3.23) N 2 =
1

(∆x)2





−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2





and the obvious discretisation of N1. With these choices, both discretisations
yield identical semi-discrete equations of motion and therefore H1 and H2 are
simultaneously Lyapunov functions of the semi-discrete system and therefore,
the AVF integrator preserves both Lyapunov functions.

Initial conditions and numerical data:

(3.24) x ∈ [0, 1], N = 50, ∆t = 0.0025.

Initial condition: u(x, 0) = x(1− x).
This system is numerically illustrated in Figure 3.4, where the monotonic

decrease of the Lyapunov functions for the heat equation in (3.21) and (3.22) is
shown.

4 Concluding Remarks

The concept of energy, i.e. its preservation or dissipation, has far reaching
consequences in the physical sciences. Therefore many methods to preserve en-
ergy, and several to preserve the correct dissipation of energy (e.g. [6, 11]), have
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been proposed for ordinary differential equations. Surprisingly, when partial
differential equations are considered, a unified way to discuss the preservation
or correct dissipation of energy is missing and similar ideas are often developed
from scratch (e.g. [5, 10]). In this paper, we have presented a systematic and uni-
fied way to discretise partial differential equations and to preserve their correct
energy preservation, or dissipation, by the average vector-field method.

For the equations treated in this paper, one can replace the average vector-field
method by any energy-preserving B-series method, while retaining the advanta-
geous properties of energy preservation or dissipation. More generally, geometric
integrators for Hamiltonian or non-Hamiltonian PDEs with non-constant matrix
D can be constructed using discrete gradient methods, cf. [11].
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5 APPENDIX

PROOF OF LEMMA 1.1
We denote the consistent discretisation of

(5.1) H[u] =
∫

Ω
H(x;u(n)) dx

by

(5.2) H′[u] =
∑

Ω

anH(xn;u(n+k))∆x.

Here H′ = H∆x, and u(n+k) denotes the set

{
u1(n + k1,1), . . . , u1(n + k1,p);u2(n + k2,1), . . . , u2(n + k2,p);(5.3)

. . . ; um(n + km,1), . . . , um(n + km,p)
}
,

where n and the ki,j are discrete vectors in Zd, and Ω is some discrete approxi-
mation to Ω.

The discrete analogue of the variational derivative
δH
δu

is then defined by

d

dε
H′(u + εv)

∣∣
ε=0

=:
∑

Ω

(
δH′

δu

)

n

· vn ∆x(5.4)

=

(
v · δH′

δu

)
∆x.



ENERGY CONSERVING PDES 25

We now calculate the l.h.s. of eq.(5.4):

d

dε
H′(u + εv)

∣∣
ε=0

(5.5)

=
d

dε

∑

Ω

anH(xn;u1(n + k1,1) + εv1(n + k1,1),

. . . , um(n + km,p) + εvm(n + km,p))
∣∣
ε=0

=
∑

Ω

[
an−k1,1H2(xn−k1,1 ;u1(n), . . . , um(n + km,p − k1,1)) . . .

+an−km,pHmp+1(xn−km,p ;u1(n + k1,1 − km,p), . . . , um(n))
]
· vn∆x

=
∑

Ω

[ ∂

∂un

∑

q,r

S−kq,rH(xn, u1(n + k1,1), . . . , um(n + km,p))
]
· vn∆x

where Sa denotes the shift over the multi-index a.
It follows that

(5.6)
d

dε
H′(u + εv)

∣∣
ε=0

= (v · ∇H′).

Since eqs (5.4) and (5.6) must hold for all vectors v, we have

(5.7)
δH′

δu
∆x ≡ ∇H′

,

and hence

(5.8)
δH′

δu
≡ ∇H.

!
While the proof above is for a scalar function u, the case where u is vector-

valued follows in a similar fashion.


