
norges teknisk-naturvitenskapelige
universitet

A fast tensor-product solver for incompressible
fluid flow in partially deformed three-dimensional

domains: Parallel implementation
by

Arne Morten Kvarving, Einar M. Rønquist*

preprint
numerics no. 10/2010

norwegian university of
science and technology

trondheim, norway

This report has URL
http://www.math.ntnu.no/preprint/numerics/2010/N10-2010.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.





A fast tensor-product solver for
incompressible fluid flow in partially
deformed three-dimensional domains:

Parallel implementation

Arne Morten Kvarving, Einar M. Rønquist*

October 7, 2010

We describe a parallel implementation of the tensor-product solver derived in
[5, 29]. A combined distributed/shared memory model is chosen, since the flexi-
bility allows us to map the algorithm better to the available resources. Since the
approach requires special attention to load balancing, we also propose a scheme
that resolves the challenges involved. Speedup results from test problems, as
well as from real simulations, are presented and discussed. While the speedups
are not perfect, we show that the new algorithms are more than competitive
with a standard 3D approach parallelized using domain decomposition.

Keywords: tensor-product solver, shared memory, distributed memory, Bénard-Marangoni

1 Introduction

Parallelization strategies for finite element codes are usually based on the domain decom-
position paradigm [12, 30]. This way of extracting parallelism has many attractive features,
such as the availability of very efficient solvers, relatively easy implementation and access
to load balanced codes. In principle, all that is required is a sufficient number of elements
compared to the number of processors, as well as a good division of these elements between
the processors. This gives a coarse grained division of the workload which maps very well
to a distributed memory model where separate processes communicate through message
passing.
In this document we study parallelization strategies for another class of algorithms, which

allows for alternative approaches. These algorithms are only applicable to a certain class of
problems, namely problems in geometries of the “cylindrical” kind which can be viewed as
an extrusion of some general 2D cross-section [5, 10, 29]; see Figure 1 for an example. Our
motivation for considering this particular class of geometries is that we want to use the code
to simulate surface-tension-driven Bénard-Marangoni convection in confined containers
[7, 8, 9, 16, 17, 22, 28]. This class of algorithms decompose the elliptic 3D problems into a
set of completely decoupled 2D problems. The decoupling into several subproblems offers
a new parallelization strategy; instead of having all processors participate in the solution
of one large problem, we can now divide them into groups which work independently
of each other. In other words, the parallelization strategy is to a large extent given by

1



the algorithm. The division of the processors into groups means that we have to face
additional challenges when it comes to load balancing, since the different groups may have
varying solution times. Nonetheless, these algorithms are interesting since from experience
[5, 29] they reduce the number of floating point operations needed by close to an order
in magnitude and are very conservative with respect to memory usage. When applicable,
they should reduce the amount of computing resources needed significantly.
In terms of spatial discretization, the focus in this work is on spectral elements. We

remark this does not reflect a limitation of the algorithms considered. The algorithms
can be used with any spatial discretization, such as low-order finite elements or finite
differences. None of the following discussion relies directly on the use of spectral elements,
thus the parallelization derived is also applicable with these kinds of spatial discretizations.
For instance, earlier work has been reported where a Fourier expansion in the extrusion
direction is combined with an element method [11, 23, 25]. Our approach can certainly be
applied in this case.
The outline of the paper is as follows. In Section 2 the description of the (model)

problem considered is given. In Section 3 we briefly discuss the discretization leading to
the linear systems of equations we have to solve. In Section 4 we give a brief overview of
the tensor-product solvers considered, before moving on to discuss the parallelization in
Section 5. Speedup results are then given in Section 6. Finally, in Section 7, we summarize
our findings and present our conclusions.

x1

x2

(a) cross-section

x1

x2

x3

(b) 3D geometry

Figure 1: An example of the class of geometries we consider. Here, the cross-section is a
hexagon which is extruded in the third direction to form a full 3D container.

2 Problem definition

As a model problem, we consider the unsteady Stokes equations in some (extruded) domain
Ω;

∂u

∂t
−∇2u +∇p = f in Ω,

∇ · u = 0 in Ω,
(1)

where u is the velocity, p is the pressure and f represents a given body force. We as-
sume that appropriate initial and boundary conditions for the velocity are specified. For
simplicity, we here assume that

u = 0 on ∂Ω.

The governing equations for incompressible fluid flows are the Navier-Stokes equations.
However, since the convection operator is typically handled using explicit time integrators

2



(following a semi-implicit approach), this does not give rise to additional elliptic systems.
Thus, the Stokes equations serve us well, since we here consider the solution of the ellip-
tic systems of equations derived from an implicit-in-time method in combination with a
velocity-pressure splitting scheme.

3 Discretization

We use high order spectral elements [20] to discretize in space, specifically the PN/PN−2

method [21]. The domain Ω is decomposed into K spectral elements, each with poly-
nomial degree N . These elements are layered in the extrusion direction, thus K can be
expressed in the form K = K · L, where K is the number of spectral elements in each
layer, and L is the total number of layers. We refer to a specific element using two indices:
kji , i = 1, · · · ,K, j = 1, · · · ,L. Here i is the element number within each layer and j the
layer. These elements give rise to a number of planes, one per degree of freedom in the
extrusion direction. The number of such planes depends on the boundary conditions con-
sidered, as well as N , the polynomial order of the elements. For the homogenous Dirichlet
boundary conditions considered here, each velocity component will have N1 = LN − 1
planes. Likewise, for the pressure we have N2 = L (N − 1) planes; this would be the same
no matter which boundary conditions are enforced on the velocity.
In the following, certain operations will take place across the entire span of the extru-

sion direction. We thus introduce a set of “super-elements”, Ei =
{
kji

}L
j=1

, i = 1, · · · ,K.
Each super-element Ei consists of the composition of L spectral elements in the extrusion
direction, i.e., we have K such super-elements.
The system of semi-discrete equations corresponding to (1) (discrete in space and con-

tinuous in time) can be expressed as

B
du

dt
+ Au−DT p = Bf

Du = 0.
(2)

Here, A is the discrete viscous operator (vector Laplacian), B the mass matrix, D and DT

represent the discrete divergence and gradient operator, respectively, while u and p are
the unknown, nodal velocity and pressure values, respectively. Note that we use the same
notation for the velocity, pressure and source in (1) and (2). In the following the symbols
refer to the discrete quantities.
For clarity of presentation we here consider a first order temporal discretization. We

employ a velocity-pressure splitting scheme, specifically an incremental pressure-correction
scheme [3, 13, 14, 15, 26, 27]. This is done to avoid a costly coupled solution strategy, as
well as the nested iterations associated with a Uzawa decoupling [6, 31]. These splitting
schemes are closely coupled to the temporal discretization; in particular, they are based on
backward differencing. This means that for a first order realization, we use the backward
Euler method and our fully discrete problem reads

1

∆t
B
(
ûn+1 − un

)
+ Aûn+1 −DT pn = Bfn+1,

1

∆t

(
un+1 − ûn+1

)
−DT

(
pn+1 − pn

)
= 0,

Dun+1 = 0,

(3)

3



resulting in decoupled problems for the velocity and the pressure

Hûn+1 =
1

∆t
Bun + DT pn + Bfn+1, (4)

DB−1DT︸ ︷︷ ︸
=E

∆pn+1 = E∆pn+1 = − 1

∆t
Dûn+1. (5)

Here ∆t is the time step, superscript n refers to the quantity evaluated at time tn = n∆t,
H = A + 1

∆tB is the discrete Helmholtz operator, E is the consistent Poisson operator
and ∆pn+1 = pn+1 − pn. After we have solved these equations, the nodal values for the
pressure and velocity are updated through

un+1 = ûn+1 + ∆tB−1DT∆pn+1,

pn+1 = pn + ∆pn+1.
(6)

4 Tensor-product algorithms

The key observation behind the new algorithms is the fact that the extruded geometries
lead to tensor-product forms for the elliptic operators (Helmholtz and consistent Poisson).
Specifically, we have

H = B1D ⊗A2D + A1D ⊗B2D +
1

∆t
B1D ⊗B2D.

Here the superscripts 1D and 2D refer to the one-dimensional and the two-dimensional
operators, respectively, i.e., all the geometry deformations are contained in the operators
with the 2D superscript. Likewise, the consistent pressure operator can be expressed as

E = B1D
∗ ⊗E2D + E1D ⊗B2D

∗ ,

where

B∗ = BupB
−1BT

up

is a special pressure operator constructed from the rectangular matrix Bup and the velocity
mass matrix B. The Bup operator is similar to the discrete divergence operator D in the
sense of being constructed from both the velocity and pressure basis functions. However,
they differ in the sense that D involves differentation while Bup does not. Hence, the pres-
sure operator B∗ is analogous to the consistent Poisson operator E = DB−1DT without
differentation in the gradient and divergence operators.

4



Algorithm 1 Fast tensor-product solver for the Helmholtz system

(A + αB)u = g

in partially deformed three-dimensional geometries.
Initialization Solve the generalized eigenvalue problem of dimension N1

A1DQ = B1DQΛ

scaled such that

B1D = Q−TQ−1

A1D = Q−TΛQ−1.

Then

1) Compute
g̃ = QT g.

2) Solve (
A2D + (λj + α)B2D

)
ũj = g̃j ∀ j = 1, · · · ,N1.

3) Finally compute the solution as
u = ũQ.

The idea is now to consider appropriate eigenvalue problems, much like in standard FDM
methods [18]. This allows us to decouple the solution of the 3D problem into the solution of
a set of independent 2D problems. The details can be found in [5, 29]. The two algorithms
result in the two solution strategies given in Algorithm 1 and Algorithm 2. Note that these
algorithms are written for data stored in a particular layout. The data is indexed using
two indices; one global number within each cross-section, and then a separate index to
indicate which plane in the extrusion direction. Thus the vectors involved are not vectors
in the traditional sense, they are entities stored in this mixed global-local layout. This
means that the first and last step of the algorithms can be performed as one matrix-matrix
product per super-element Ei, i = 1, · · · ,K.

At each time level, we first solve (4) using Algorithm 1 for each component to obtain
ûn+1. We then solve (5) using Algorithm 2 to obtain ∆pn+1. Finally we update the velocity
and pressure according to (6). We now move on to discuss how to parallelize Algorithms
1-2.

5 Parallelization

The algorithms dictate some constraints on our parallelization, in the sense that we have
to deal with the fact that we have several independent 2D problems to solve. This in
contrast to a standard 3D approach where the challenge is how to make many computing
elements collaborate in the solution of a single problem. However, the algorithms also leave
substantial freedom, in the sense that we are completely free to parallelize the 2D problems
as we see fit. In this section we discuss different options we have in an attempt to find
the optimal parallelization strategy. In the following we assume a machine architecture
where a mixed programming model is possible. This is the normal case these days, since

5



CPUs in general consist of multiple cores integrated in one chip, on supercomputers as well
as clusters alike. While programming such machines exclusively using message passing is
certainly possible, taking advantage of the convenience shared memory programming offers
often lessens the load on the programmer and allows for a parallel code that is much closer
to its serial equivalent. Additionally, for our problem we are not memory bound, and thus
only need to optimize for performance.
We now proceed by discussing the three steps in Algorithms 1 and 2 to find the optimal

parallelization strategy under these assumptions. First we need to define some nomencla-
ture. We use the Message Passing Interface (MPI) library [1] when programming using a
distributed memory programming model. We refer to the separate MPI processes as nodes.
Likewise, we use the OpenMP [2] standard for programming using a shared memory pro-
gramming model, and refer to the individual processing cores utilized here as a thread.
Finally, an individual 2D problem in Step 2 of Algorithm 1-2, is simply referred to as a
subproblem.

Algorithm 2 Fast tensor-product solver for the pressure system

E∆p = g

in partially deformed three-dimensional geometries.
Initialization Solve the generalized eigenvalue problem of dimension N2

E1DQ = B1D
∗ QΛ

scaled such that

B1D
∗ = Q−TQ−1

E1D = Q−TΛQ−1.

Then

1) Compute
g̃ = QT g.

2) Solve (
E2D + λjB

2D
∗
)
p̃j = g̃j ∀ j = 1, · · · ,N2.

3) Finally compute the solution as
p = p̃Q.

6



5.1 Operating with the eigenmatrix

x1

x2

x3

n1 n2

Figure 2: An example of a decomposition suitable for Step 1. Each node is assigned a
set of super-elements, i.e., a domain decomposition is applied across the set of
super-elements.

x2

x3

x1

t3

t1

t2

t4

Figure 3: An example of how we would map threads to super-elements for Step 1. Each
node is responsible for a certain number of super-elements, in this case 4 super-
elements. The node utilizes the available threads, in this case 4, to do the
operator evaluations completely in parallel. While the number of threads and
super-elements match in this illustration, each thread would most likely handle
several super-elements in a realistic problem.

The first step in the algorithms is to perform an operator evaluation in the x3-direction,
i.e., to perform a matrix-matrix product within each super-element. The size of the super-
elemental operators depends on the grid considered. If the grid consists of many layers of
elements in the x3-direction (L >> 1), these may grow large. In this case, these evaluations
would have to be done using parallel matrix-matrix multiplications. On modern hardware,
parallel matrix-matrix products should not be necessary for decompositions with less than
O(1000) grid points in the extrusion direction. These are quite large problems; for instance
this corresponds to O(109) grid points for a uniform grid. In the following we consider
grids where we either have a single layer of spectral elements in the x3-direction (L = 1)
or ten layers of spectral elements (L = 10). In these cases the evaluations are quite small

7



which means parallelization within each matrix-matrix product would be totally dominated
by the overhead associated with communication. However, the evaluation of the super-
elemental operators can be performed in parallel, since they are completely independent
of each other. As far as the optimal data distribution is concerned, this means that each
node should hold a certain number of super-elements; see Figure 2. This corresponds to
an “extruded” 2D domain decomposition. A realistic division would be to assign a certain
number of super-elements per node. This decomposition maps very well to a combined
programming model. We use threads to do the operator evaluations in the x3-direction
completely decoupled, i.e., we map super-elements to threads; see Figure 3. Ideally, each
node should be responsible for exactly as many super-elements as it has threads available.
In practice, we need each thread to be responsible for several super-elements to maintain
high parallel efficiency, due to the overhead of thread dispatchment.
Since this decomposition basically corresponds to a classical domain decomposition, it

also works well outside the elliptic solvers. This is a important, since a typical fluid flow
code will entail several other steps (such as explicit treatment of the convection opera-
tor). The decomposition should result in load balanced codes for these operations as well,
without any data reshuffling being necessary. We now move on to discuss the second step.

5.2 Solving the subproblems

We here assume the same domain decomposition as used in the first step. Since it is of
interest to avoid any data shuffling if possible, we first investigate our options under the
assumption that no data reshuffling is to be performed.
The available computing resources map nicely to the problem. While each node has data

which belong to all the subproblems, this is not a problem. The nodes map a thread to each
subproblem, and the individual subproblems are solved by a team of threads consisting
of one thread from each node; see Figure 4. This necessitates keeping track of which MPI
messages goes to which thread on which node. Fortunately MPI has built-in support for
tagging messages, so a simple numbering scheme based on subproblem number and edge
number can be devised. Since each thread only participates in one subproblem, they would
then know which messages are meant for them. This requires a thread safe implementation
of the MPI libraries, which most vendors do supply on modern platforms.

n7, tj

n8, tj

n2, tjn1, tj
j = 3

j = 2

j = 1

n3, tj

n10, tj

n4, tj

n9, tj

n11, tj

n12, tj
n5, tj n6, tj

Figure 4: An example of a domain decomposition if we use combined MPI/OpenMP without
performing any data reshuffling. Each node (here, 12 nodes) has spawned one
thread per subproblem (here, j = 3 threads) and the threads corresponding to a
single subproblem communicate through message passing.

8



In theory, this looks very nice, and would work very well in a perfect computing environ-
ment. Unfortunately, experience shows that it does not work well in practice. We run into
problems due to the inherent syncronization mechanisms for threads. Since threads use
shared memory, and hence shared resources, mutual exclusion locks are utilized to protect
these shared resources; see Figure 5. In particular, we need to use a thread safe MPI library,
which means that it uses a lock around its MPI_Send() command, in order to protect its
send buffers and internal state. In computations where the actual compute nodes run on
a shared memory computer, the MPI_Send() command is basically just a very fast local
copy operation. The time spent inside the critical section is so brief that even if another
caller has to wait the whole execution time, it incurs only a slight penalty (the computation
time is much larger). However, this turns out to be catastrophic once we have to hit the
network to send data between nodes. Since the code inside the critical section now takes
a significant time to execute, any thread which wants to enter the code section while a
transfer is in progress, have to wait for the entire transfer to finish before they can obtain
the lock. This leads to a classical resource hammering problem. Even with a moderate
number of threads, each thread now spends a significant amount of time simply waiting to
obtain the lock, time that should be spent computing. This problem actually grows worse
with both larger problem sizes (more iterations → more data exchanges → more waiting)
and for more computing resources (more threads → more threads “fighting” to obtain the
same lock).
In conlusion this strategy only yields good results if we restrict ourself to a single shared

memory machine. In that case, using a combined programming model does not offer
anything compared to a pure shared memory model. Since the motivation for considering
a combined model is to allow us to use more computing resources than what can be offered
on a single shared memory machine, we have no other choice than to allow for a data
shuffling after Step 1 is performed.

Critical section

Figure 5: Illustration of a critical section. The incoming arrows represents the threads.
All the threads are running concurrently, until they need to enter the critical
section. Since only one thread can be inside the critical section at any time, the
thread which wants to enter need to wait until it obtains the key to the mutual
exclusion lock, and hence its turn to enter the code section. Once it has obtained
the key and sent its message, it can start computing again. If a thread spend
considerable time inside this critical section, in the worst case, the other threads
all complete their computations in the same amount of time and end up waiting
in the queue. In effect, the critical section almost leads to a serialization of the
entire code where hardly any computations overlap since the threads spend all
their time waiting in the queue.

9



An alternative approach is to use an all-to-all type communication to reorganize data
in a more suitable manner. We collect all the data corresponding to a number of whole
subproblems on each node. These subproblems can then be solved completely decoupled
without any communcation. The available threads can be utilized in two ways. We can
map each subproblem to a thread. This means that all the subproblems available on a node
are solved without any syncronization between the threads being necessary; see Figure 6.
If the number of subproblems per node is equal to the number of available threads, this
seems to be the best choice. An alternative is to have all threads available on a node
participate in the solution of each subproblem. This means we would utilize the threads
to do operator evaluations in parallel, i.e., we apply a 2D domain decomposition method
across the threads available to a node; see Figure 7.

ni

t1

t2
t3

t5
t4

Figure 6: An example of a problem division if we use a combined MPI/OpenMP approach
with data reshuffling. Nodes are handling a number of whole subproblems. The
nodes then map a whole subproblem to a single thread.

In the applications we consider, the number of threads can easily be larger than the
number of subproblems per node, which makes it tempting to consider the second flavor
of this strategy, namely utilizing the threads to do operator evaluations in parallel. How-
ever, this does not work well in practice. We do substantially more fork/joins using this
approach, and the performance gained by doing the computations in parallel is completely
dominated by the overhead of thread dispatchment. Even for a relatively large problem
with K = 768 spectral elements of high polynomial order the speedup is mediocre. If each
cross-section consisted of thousands of elements, which it would typically do if we used
other types of spatial discretizations, such as low-order finite elements, this might work
well, but there are no guarantees. In general, we depend on the amount of work available
to each thread being sufficiently large, large enough that the overhead of thread dispatch-
ment is insignificant compared to the computation time. Using our spectral element grids,
however, we only have a moderate amount of work per thread, and we hence settle for the
first strategy, where each thread solves a subproblem completely on its own. This brings
an upper limit on the amount of threads there is a gain from allocating on each node, in
particular we cannot utilize more threads than we have subproblems available.

10



j = 1, . . . , 16

n1

n2

n3

n4

n5

n5, tj,

Figure 7: An alternative example of a problem division if we use a combined MPI/OpenMP
approach with data reshuffling. Nodes are handling a number of whole subprob-
lems and threads are used to do operator evaluations in parallel.

0 0.05 0.1 0.15 0.2
200

300

400

500

600

700

800

t

ite
ra

tio
ns

 

 

node 1

node 2

(a) 2 nodes

0 0.05 0.1 0.15 0.2
100

200

300

400

500

600

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3

(b) 3 nodes

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4

(c) 4 nodes

0 0.05 0.1 0.15 0.2
0

100

200

300

400

500

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4
node 5
node 6

(d) 6 nodes

Figure 8: We here integrate a Bénard-Marangoni problem from t = 0 to t = 0.2 using
∆t = 0.005. The plots show the sum of the iteration counts for the pressure
subproblems on the individual nodes for a few selected cases. The distribution
strategy used is a naive (approximately) even number of subproblems per node.

Load balancing

If the subproblems are solved by direct methods, we know that each solution process
would require the same amount of time, since each subproblem involves exactly the same
number of degrees of freedom. However, when used in combination with iterative methods,
the proposed parallelization approach is not automatically load-balanced. The number of

11



iterations needed to solve the individual subproblems will vary (the eigenvalues in Step 2 are
different), and thus also the solution time. A naive, even distribution of the subproblems
among the nodes may not scale very well. Consider Figure 8 which shows the workload
on the individual nodes in terms of iterations. It is quite evident that the workload on
the low-numbered nodes are much higher than on the high-numbered ones, in particular
the first node always has a much higher load. In order to explain this, we consider Figure
9(a) which shows how the iterations counts for the subproblems are distributed. They
are strongly dominated by a few subproblems, and these are associated with the first few
eigenvalues (note that the histogram is sorted); typically there is a factor 8-10 between
the first subproblem (most iterations) and the last subproblem (least iterations). This
explains the poor load balancing. The low rank nodes are handling the most expensive
subproblems, while the high rank nodes are left with the less expensive subproblems.
Figure 9(b) shows a sorted distribution of iterations for a Helmholtz solve. While the

number of iterations for each solve varies here as well, there is a much more even distri-
bution. This makes it harder to devise a strategy for evening the workload. In fact, it
may even be impossible as we are restricted by only being able to hand full subproblems
to the nodes. Since the pressure solve seems to give us larger possibilities for evening the
workload, and is definitely the one most plagued by the load balancing issue, we limit our
attention to the pressure operator for now.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

subproblem

ite
ra

tio
ns

(a) consistent Poisson operator

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

subproblem

ite
ra

tio
ns

(b) Helmholtz operator

Figure 9: Plot showing the distribution of iterations for the different subproblems when
inverting the a) consistent Poisson operator and b) Helmholtz operator. The
results are strongly dominated by a few subproblems in a), while this effect is
much less pronounced in b).

To remedy the load balancing problems, we need a distribution strategy which considers
the number of iterations in each subproblem, rather than just the number of subproblems.
Since we do not have the iteration counts for the current time level available, we resort
to the statistics from the previous time level. In general, the statistics are fairly simi-
lar between time levels after startup effects have settled. We first sort the subproblems
according to the iteration statistics. This sorted list is then used to assign subproblems
to each node, in a manner which attempts to keep the number of iterations per node as
close to the mean as possible; see Algorithm 3. With this approach, a node tends to get
more and more subproblems the higher its rank is. This would be bad for memory bound
problems; however, it grants us exactly the properties of the iteration distribution we seek
- approximately even iteration counts among the nodes. The obtained results using this
strategy are given in Figure 10. The load balance is now much better. The distribution

12



is close to the optimal distribution for small number of nodes as well as larger number of
nodes. In the case with 6 nodes, we see that the number of available subproblems per node
is too small for us to be able to even the load.

Algorithm 3 Distribute p planes among N nodes in vectors s and c based on iteration
statistics in I.
find M , the mean number of iterations per node based on the previous time level’s
iteration statistics.
sort I, based on iteration count, store order in C.
front = 0
back = p− 1
for i = 0 to N − 1 do

while iters+ I(front) < M and front < back do
s(i) = s(i) + 1
c(s(i)) = C(front)
iters = iters+ I(front)
front = front+ 1

end while
while iters < M and front < back do
s(i) = s(i) + 1
c(s(i)) = C(back)
iters = iters+ I(back)
back = back − 1

end while
end for

Algorithm 3 also seems to behave well for the Helmholtz problems. However, we again
run into load balancing problems if we use many nodes, as the number of subproblems
available per node is too small for us to balance the load through the proposed distribution
strategy. For the velocity solves we have one level of parallelism we have not yet exploited,
namely that we can solve all three components concurrently. Usually this property is
ignored in most parallel codes based on domain decomposition, since each solve should
be well load balanced in the first place. Here, however, we can exploit this fact to our
benefit. By solving for all three velocity components concurrently, we get approximately
three times the number of subproblems. This gives our load balancing algorithm a better
chance of evening the workload between the nodes. Figure 11 shows results which proves
that we indeed obtain better balancing by solving for all three velocity solves concurrently,
in particular for the larger node sizes.

5.3 Operating with the transpose of the eigenmatrix

The final step in the algorithm is another operator evaluation in the x3-direction (in a data
layout sense). Assuming that the data shuffling done prior to solving the subproblems in
Step 2 is reversed, this can be performed exactly as in Step 1.

13



0 0.05 0.1 0.15 0.2
300

400

500

600

700

800

t

ite
ra

tio
ns

 

 

node 1
node 2

(a) 2 nodes

0 0.05 0.1 0.15 0.2
200

250

300

350

400

450

500

550

600

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3

(b) 3 nodes

0 0.05 0.1 0.15 0.2
100

150

200

250

300

350

400

450

500

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4

(c) 4 nodes

0 0.05 0.1 0.15 0.2
50

100

150

200

250

300

350

400

450

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4
node 5
node 6

(d) 6 nodes

Figure 10: Sum of the iteration counts as a function of time for the pressure subproblems
on the individual nodes for a few selected cases. We here integrate a Bénard-
Marangoni problem from t = 0 to t = 0.2 using ∆t = 0.005. The distribution
strategy used is Algorithm 3.

5.4 Why use a combined programming model?

A natural question to ask is why we have chosen to complicate the implementation by
using a combined programming model, rather than a more traditional distributed memory
model. This is easy to explain in retrospect. The reason is simply that the algorithm
maps much better to a combined programming model. The ability to run several solution
processes concurrently on each node is imperative for us in order to utilize the parallel
nature of the algorithm. If we were using a pure distributed memory model, we would
have problems using the proposed parallelization strategies, both with and without data
shuffling, due to the fact that each node can only participate in the solution of a single
subproblem at any time. If we were to activate as much computing resources as we do
using the combined model, we would have to use nodes which would be dorment during
the first and third step in the algorithms. This is very bad from an efficiency point of
view. One could argue that we could decompose the grid across more nodes in the first
step, with each node holding a single super-element in the limit. While the idea is sound,
such an approach is not something we would recommend for several reasons. Primarily,
it makes intra-node communication a dominant factor during other operations such as
direct stiffness summation. This would also make things unnecessarily complicated at the
implementation level. Preferably some pattern should be present to ease the organization
of the grid operations. The flexibility in the shared memory model, however, is perfect for
our needs, since the threads can also easily be utilized during the first and third step of the

14



algorithm, without any change to the problem partitioning being necessary. Additionally,
since each 2D subproblem is solved completely within a single node with our final approach,
we avoid the intricacies associated with using MPI for fine-grained parallelism, which lessens
the implementation effort substantially.

0 0.05 0.1 0.15 0.2
900

950

1000

1050

1100

1150

t

ite
ra

tio
ns

 

 

node 1
node 2

(a) 2 nodes

0 0.05 0.1 0.15 0.2
900

950

1000

1050

1100

1150

t

ite
ra

tio
ns

 

 

node 1
node 2

(b) 2 nodes

0 0.05 0.1 0.15 0.2
600

650

700

750

800

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3

(c) 3 nodes

0 0.05 0.1 0.15 0.2
600

650

700

750

800

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3

(d) 3 nodes

0 0.05 0.1 0.15 0.2
450

500

550

600

650

700

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4

(e) 4 nodes

0 0.05 0.1 0.15 0.2
450

500

550

600

650

700

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4

(f) 4 nodes

0 0.05 0.1 0.15 0.2
250

300

350

400

450

500

550

600

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4
node 5
node 6

(g) 6 nodes

0 0.05 0.1 0.15 0.2
250

300

350

400

450

500

550

600

t

ite
ra

tio
ns

 

 

node 1
node 2
node 3
node 4
node 5
node 6

(h) 6 nodes

Figure 11: The left column shows the sum of the iteration counts per node when we perform
the velocity solve as three sequential solves, while the right column shows the
results when we perform all three velocity solves concurrently. Performing the
three solves concurrently substantially improves the load balancing.

15



6 Speedup results

We first consider results for a Bénard-Marangoni computation using up to 16 processors.
This is a coupled thermal-fluid problem, where flow (convection cells) in a fluid is induced
by temperature differences. The fluid is governed by the incompressible Navier-Stokes
equations, while the temperature is governed by a convection-diffusion equation. We refer
the reader to [4] for the details. The calculations are performed in a circular cylinder with
a global aspect ratio of

Γ =

√
A

d
= 8.27,

where A is the cross-sectional area and d the height of the container. The cylinder is
divided in K = 48 spectral elements organized in a single layer (K = 48, L = 1). The
polynomial degree within each element is N = 16. This means that we have, depending on
the boundary conditions, N1 = 15 or N1 = 16 subproblems in the velocity and temperature
solves and N2 = 15 in each pressure solve. We integrate this system from t = 0 to t = 0.2
in steps of ∆t = 1

200 . At each time level, the solution of this problem consists of four
applications of the Helmholtz solver (three for the velocity solves, which are performed
concurrently, as well as one for the temperature update, which is performed separately).
Additionally, we have one application of the consistent Poisson solver. We also have to
integrate a total of 8 scalar convection problems per time level; this is done using explicit
time integration [19]. Since the parallelization within the convection problems are based on
the domain decomposition as derived while discussing the first step of the elliptic solvers,
including these would give better speedup results. We have excluded them from the timing
results, since we are mainly interested in the properties of the elliptic solvers (Algorithms
1-2). The speedup results are given in Table 1.

Figure 12: The resulting temperature field on the top of the domain in a Bénard-Marangoni
simulation. The container is a circular cylinder with global aspect ratio Γ =
8.27, while the Ma = 105, Ra = 48, P r = 890. The flow pattern consists of 7
cells.

16



Table 1: CPU time τ for solving a Bénard-Marangoni problem tabulated as a function of
q, the number of MPI nodes used. We use K = 48 elements organized in a single
layer (K = 48,L = 1), where each element is of order N = 16. The system is
integrated from t = 0 to t = 0.2 using time steps of ∆t = 0.005. The first ten
time steps are left out of the timings to allow the iteration statistics we base the
distribution of problems on to settle. The computations are performed on a IBM
Power5 PPC computer.

q τq [s] τ1
τq

ηq τq,4 (4 threads) τq ,4
τq

ηq,4

1 762 1.00 - 197 3.9 0.98
2 392 1.94 0.97 123 3.2 0.77
3 264 2.88 0.96 106 2.5 0.60
4 203 3.75 0.94 99 2.1 0.50
6 142 5.4 0.90 - -
12 105 7.3 0.61 - -

There are two things which are evident from these results. Our efforts to distribute
the subproblems evenly among the nodes based on iteration counts is quite successful.
Even with 4 nodes, the achieved speedup is still within 6% of being perfect. However, the
speedup from utilizing more threads is diminishing for the larger node sizes. This had to
be expected, since the number of subproblems per node rapidly approach the number of
threads per node. With only a single subproblem per thread, we have no freedom in how
these solves are performed. Hence the obtained speedup reflects iteration counts, in the
sense that the solution time on each node is dictated by its largest assigned subproblem
(in terms of iterations). Unfortunately, this is something we cannot remedy using this
parallelization strategy. Following this reasoning, the speedup using 12 nodes is not as
bad as it might look. The pressure problems represent the obstacle for increased speedup.
We can use iteration counts for the pressure problem as a rough estimate of the maximum
achievable speedup. On average, the largest pressure subproblem accounts for about 12%
of the total number of iterations used for solving the full pressure problem. This gives an
upper bound for the speedup at approximately 1/0.12 ∼ 8.333.

In conclusion, it seems like utilizing more than 8-10 processors for this problem is just
a waste of CPU hours. Nonetheless, if we assume we gain a factor 10 from utilizing the
tensor-product solvers compared to a standard 3D solver (in a serial context), we would
have to utilize 80 processors with a standard domain decomposition method to be on par
performance wise. With K = 48 elements, this would be challenging since this leaves less
than one spectral element per node.
To get an idea how well this scales for larger problem sizes, we also consider the speedup

for the two solvers using a second grid. The geometry is again the same circular cylinder,
however we now divide it in K = 480 elements. These are organized in L = 10 layers
of elements in the x3-direction, with each layer consisting of K = 48 elements. Each
spectral element has a polynomial degree of N = 10. This means that each 2D subproblem
consists of 48 elements, just as in the earlier tests, but that we now have approximately
90 subproblems to divide between the nodes. Since we have more subproblems, we can
use more nodes. To get an idea of how well the new algorithms compare to a standard 3D
implementation, we also give idealized solution times for a traditional solver. This solver
inverts the global 3D operator using an iterative solver with an overlapping Schwarz type
preconditioner; see [5, 24] for details. Since the speedup in a real implementation will not be

17



perfect, using idealized speedup serves as a conservative point of comparison. The results
for a Laplace problem are given in Table 2, while the results for the consistent Poisson
operator are given in Table 4. The speedup results are, as expected, not perfect here
either. However, it seems that even when compared to idealized speedup, we fare very well
compared to the 3D reference solver. For instance, for the pressure solve, we would have
to utilize approximately 1100 processors in the 3D reference solver to obtain the solution
in the same wall clock time as we have here obtained with the tensor-product solver using
48 processors. And we would again run into the problem of having 480 elements to divide
among those 1100 processors, making a standard domain decomposition hard to utilize.

Table 2: CPU time τ for the solving a Laplace problem tabulated as a function of q, the
number of MPI nodes used. We use K = 480 elements organized in ten layers
(K = 48,L = 10), where each element has polynomial order N = 10. To get
more realistic results we solve the same problem 10 times. This for two reasons;
primarily we have to do at least two solves to obtain realistic iteration statistics.
Secondly, we choose to do 10 solves to smooth out potential data noise. For the 3D
reference solver, only the single processor case corresponds to a real calculation.
For the other number of nodes (q > 1), we give the time we would get if we had
perfect speedup.

q τ [s] τ1
τq

ηq τq,4[s] (4 threads) τq
τq,4

ηq,4 τ3d[s]
τ3d
τ

1 59.8 1.0 1.00 14.6 4.0 1.00 502 8.4
3 20.2 2.9 0.97 5.53 3.7 0.90 167 8.3
4 16.4 3.6 0.90 4.20 3.9 0.89 126 7.7
6 10.2 5.9 0.98 3.21 3.2 0.78 84 8.2
12 5.44 11.0 0.92 1.85 3.0 0.67 42 7.7

Finally we report the speedup obtained in a real simulation. We again consider the
same cylinder as earlier, except that we here reduce the order of the elements to N = 13.
We integrate the system of equations from t = 0 to t = 30 using time steps of size
∆t = 1

200 . Both approaches use a total of 12 processors. In the 3D reference solver, these
are naturally divided into 12 nodes. For the tensor-product approach, we use 4 nodes, each
with 3 threads. This means that there is not much room for load balancing the tensor-
product algorithm, in particular since the total number of processing cores equals the total
number of subproblems. Hence we would expect a lower gain from using the new algorithm.
The temperature field on the top of the domain at the end of the calculation is depicted
in Figure 12. The speedup results are given in Table 3. Even for this moderately small
problem, we have a speedup close to 6 compared to a traditional solver and a traditional
domain decomposition parallelization.

Table 3: CPU time and speedup for a full Bénard-Marangoni simulation. The container
is a circular cylinder with global aspect ratio Γ = 8.27. The nondimensional
numbers used here are Marangoni number Ma = 105, Rayleigh number Ra = 48,
Prandtl number Pr = 890.

3D reference solver tensor-product speedup
13h42m 2h22m 5.8

18



Table 4: CPU time τ for the doing the pressure update in a Bénard-Marangoni problem
tabulated as a function of q, the number of MPI nodes used. We use K = 480
elements organized in ten layers (K = 48,L = 10), where each element has poly-
nomial order N = 10. To get more realistic results we solve the same problem 10
times. This for two reasons; firstly we have to do at least two solves to obtain
realistic iteration statistics. Secondly, we choose to do 10 solves to smooth out
potential data noise. For the 3D solve, only the single processor corresponds to
a real calculation. For the other number of nodes (q > 1), we give the time we
would get if we had perfect speedup.

q τ [s] τ1
τq

ηq τq,4[s] (4 threads) τq
τq,4

ηq,4 τ3d[s]
τ3d
τ

1 102 1.0 1.00 24.9 4.0 1.00 3514 34
3 35.5 2.9 0.97 9.40 3.8 0.90 1171 33
4 30.1 3.4 0.85 9.20 3.3 0.69 879 29
6 19.5 5.2 0.87 5.64 3.5 0.75 586 30
12 10.4 9.8 0.82 3.17 3.3 0.67 292 28

Figure 13: The resulting temperature field on the top of the domain in a Bénard-Marangoni
simulation. The container is a hexagonal cylinder with a global aspect ratio Γ =
30.0. The nondimensional numbers used here are Marangoni numberMa = 105,
Rayleigh number Ra = 48, Prandtl number Pr = 890. The flow pattern consists
of 91 cells.

7 Summary and conclusions

We have designed and implemented a parallel realization of the tensor-product solvers for
partially deformed geometries suitable for fluid flow problems described in [5, 29]. The
new code has been compared to a standard 3D approach under idealized conditions and
been shown to solve these problems using substantially less computational resources. In
fact, the results show that even if we consider computing resources cheap, traditional tools

19



would still not be able to extract the same performance in terms of wall clock time. That is,
even if we use more processors for the same problem, this cannot be expected to alleviate
the gains obtained by using the new algorithm instead of more traditional tools.
In this work we have considered applications using up to 48 processors. Today this is

considered to be relatively few processors, since modern supercomputers typically consists
of thousands of processing cores. However, this is not due to a limitation of the proposed
scheme, but rather just reflects the particular applications we have had in mind. The
suggested parallelization scheme should scale well to many more processors, as long as the
problem size grows accordingly. Even if the problem considered is of a size that requires
the employment of parallel matrix-matrix multiplications in the pre- and post-transform
steps (Step 1 and Step 3), this would not require a major change in strategy. The proposed
scheme can simply be applied within each “layer” of nodes, and thus the changes to the
implementation would be minimal.
In [4] we present Bénard-Marangoni results obtained using the new solver, including

simulations of larger systems than what have been reported in the literature earlier. An
example of such a simulation is given in Figure 13. The system was integrated for ap-
proximately 72h (3 days) using 12 processors (4 nodes, each with 3 threads). Assuming we
gained a factor 10 in speedup from using the tensor product algorithm, obtaining the result
would have taken approximately 720h, or 30 days, using the same amount of computing
resources with traditional tools. This serves as an example that these algorithms can be
extremely useful when they can be utilized.

8 Acknowledgement

The work has been supported by the Norwegian University of Science and Technology and
the Research Council of Norway under contract 159553/I30. The support is gratefully
acknowledged.

References

[1] The MPI specification. http://www.mpi-forum.org.

[2] The OpenMP specification. http://openmp.org.

[3] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Nonlinear programming. Standford University
Press, 1958.

[4] H. Bénard. Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par
convection en régime permanent. Annales de Chimie et de Physique, 23:62–144, 1901.

[5] T. Bjøntegaard, Y. Maday, and E. M. Rønquist. Fast tensor-product solvers: Partially de-
formed three-dimensional domains. J. Sci. Comput., 39:28–48, 2009.

[6] T. Bjøntegaard and E.M. Rønquist. Simulation of three-dimensional Bénard-Marangoni flows
including deformed surfaces. Communications in Computational Physics, 5(2–4):273–295,
2009.

[7] M. J. Block. Surface tension as the cause of Bénard cells and surface deformation in a liquid
film. Nature, 178:650–651, 1956.

[8] M.S. Carvalho and L.E. Scriven. Three-dimensional stability analysis of free surface flows:
application to forward deformable roll coating. J. Comput. Phys., 151:534–562, 1999.

[9] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comput, 22, 1968.

20



[10] D. Chu, R. Henderson, and G. E. Karniadakis. Parallel spectral-element-Fourier simulation of
turbulent flow over riblet-mounted surfaces. Theoretical and Computational Fluid Dynamics,
3:65–112, 1992.

[11] D. Chu, R. Henderson, and G. E. Karniadakis. Parallel spectral-element-Fourier simulation of
turbulent flow over riblet-mounted surfaces. Theoretical and Computational Fluid Dynamics,
3(4):219–229, 1992.

[12] M. Dryja and O. B. Widlund. Towards a unified theory of domain decomposition algorithms
for elliptic problems. In Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Wid-
lund, editors, Third International Symposium on Domain Decomposition Methods for Partial
Differential Equations, pages 3–21. SIAM, Philadelphia, PA, 1990.

[13] P.F. Fischer. An overlapping Schwarz method for spectral element solution of the incompress-
ible Navier-Stokes equations. J. Comput. Phys., 133:84–101, 1997.

[14] K. Goda. A multistep technique with implicit difference schemes for calculating two- or three-
dimensional cavity flows. J. Comput. Phys., 30, 1979.

[15] R. Henderson. Nonlinear dynamics and pattern formation in turbulent wake transition. J.
Fluid Mech., 353:65–112, 1997.

[16] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-Order Splitting Methods for the
Incompressible Navier-Stokes Equations. J. Comput. Phys., 97:414–443, 1991.

[17] E. L. Koschmieder. Bénard Cells and Taylor Vortices. Cambridge University Press, 1993.

[18] E. L. Koschmieder and M. I. Biggerstaff. Onset of surface–tension–driven Bénard convection.
J. Fluid Mech., 167:49–64, 1986.

[19] A. M. Kvaring, T. Bjøntegaard, and E. M. Rønquist. On pattern selection in three-dimensional
Bénard-Marangoni flows. Submitted to Communications in Computational Physics, 2010.

[20] A. M. Kvarving, T. Bjøntegaard, and E. M. Rønquist. A fast tensor-product solver for incom-
pressible fluid flow in partially deformed three-dimensional domains. In preparation, 2010.

[21] R. E. Lynch, J. R. Rice, and D. H. Thomas. Direct solution of partial difference equations by
tensor product methods. Numer. Math., 6:185–199, 1964.

[22] Y. Maday, D. Meiron, A. T. Patera, and E. M. Rønquist. Analysis of iterative methods for
the steady and unsteady Stokes problem: Application to spectral element discretizations. J.
Sci. Comput., 14:310–337, 1993.

[23] Y. Maday and A. T. Patera. Spectral element methods for the incompressible Navier-Stokes
equations. In State-of-the-art surveys on computational mechanics (A90-47176 21-64). New
York, American Society of Mechanical Engineers, pages 71–143, 1989.

[24] Y. Maday, A. T. Patera, and E. M. Rønquist. An Operator-Integration-Factor Splitting
Method for Time-Dependent Problems: Application to Incompressible Fluid Flow. J. Sci.
Comput., 5(4), 1990.

[25] Y. Maday, A. T. Patera, and E. M. Rønquist. The PN ×PN−2 method for the approximation
of the Stokes problem. Technical Report 92009, Department of Mechanical Engineering,
Massachusetts Institute of Technology, 1992.

[26] M. Medale and P. Cerisier. Numerical simulation of Bénard-Marangoni convection in small
aspect ratio containers. Numerical Heat Transfer, Part A, 42:55–72, 2002.

[27] S. A. Orszag, M. Israeli, and M. O. Deville. Boundary Conditions for Incompressible Flows.
Journal of Scientific Computing, 1(1):75–111, 1986.

[28] R. Temam. Sur l’approximation de la solution des équations de Navier-Stokes par la méthode
des par fractionnaires ii. Arch. Ration. Metch. Anal, 33:377–385, 1969.

[29] A. Thess and S.A. Orszag. Surface-tension-driven Bénard convection at infinite Prandtl num-
ber. J. Fluid Mech., 283:201–230, 1995.

21



[30] A. Toselli and O. B. Widlund. Domain Decomposition Methods - Algorithms and Theory,
volume 34 of Springer Series in Computational Mathematics. Springer, 2004.

[31] J. van Kan. A second-order accurate pressure-correction scheme for viscous incompressible
flow. J. Sci. Stat. Comput., 3, 1986.

22


