
norges teknisk-naturvitenskapelige
universitet

Preserving multiple first integrals by discrete
gradients

by

Morten Dahlby Brynjulf Owren Takaharu Yaguchi

preprint
numerics no. 11/2010

norwegian university of
science and technology

trondheim, norway

This report has URL
http://www.math.ntnu.no/preprint/numerics/2010/N11-2010.pdf

Address: Department of Mathematical Sciences, Norwegian University of Science and
Technology, N-7491 Trondheim, Norway.



Preserving multiple first integrals by
discrete gradients

Morten Dahlby Brynjulf Owren Takaharu Yaguchi

November 2, 2010

We consider systems of ordinary differential equations with known first in-
tegrals. The notion of a discrete tangent space is introduced as the orthogonal
complement of an arbitrary set of discrete gradients. Integrators which exactly
conserve all the first integrals simultaneously are then defined. Two approaches
are presented, one based on projection and one based on local coordinates,
both allowing for integrators of arbitrary order of convergence. The methods
are tested on the Kepler problem.

1 Introduction

A system of ordinary differential equations which preserves a first integral H(y) can be
written in the form

ẏ = f(y) = S(y)∇H(y), y ∈ Rm, (1.1)

where S(y) is an antisymmetric matrix. An approximate numerical solution, yn ≈ y(tn), n ≥
1, is said to be integral preserving if H(yn) = H(y0), n ≥ 1. There are several ways to
obtain integral preserving numerical methods, and one of the most prevalent approaches in
the literature is that of discrete gradients, first systematically treated by Gonzalez [2] and
McLachlan et al. [5]. The idea is to introduce a discrete approximation to the gradient,
letting ∇H : Rm × Rm → Rm be a continuous map satisfying

H(u)−H(v) = ∇H(v, u)>(u− v),

∇H(u, u) = ∇H(u).

The existence of such discrete gradients is well established in the literature, see for instance
the monograph by Hairer et al. [3]. Their construction is not unique, we give here two
different examples. The Averaged Vector Field (AVF) gradient is defined as

∇AVFH(v, u) =

∫ 1

0
∇H(ξu+ (1− ξ)v) dξ. (1.2)

The coordinate increment method [4] is defined in terms of the coordinates of the vectors
v and u, the ith component of ∇H(v, u) is then given as

(∇CIH(v, u))i

=
H(u1, . . . , ui, vi+1, . . . , vm)−H(u1, . . . , ui−1, vi, . . . , vm)

ui − vi
. (1.3)

1



An important difference between these two discrete gradients is that (1.2) is symmetric
∇AVFH(v, u) = ∇AVFH(u, v), while (1.3) is not. However, note that a symmetric version
of the coordinate increment discrete gradient can be constructed by

∇SCIH(v, u) =
1

2

(
∇CIH(v, u) +∇CIH(u, v)

)
. (1.4)

Once a discrete gradient has been found, one immediately obtains an integral preserving
method by simply letting

yn+1 − yn
h

= S(yn, yn+1)∇H(yn, yn+1).

Here h is the time step, and S(yn, yn+1) is some approximation to the matrix S in, one
would normally require that S(y) = S(y, y). We remark that discrete gradient methods
are implicit.
In this note we consider the case where there are more than one first integral and

the objective is to preserve any number of such invariants simultaneously. Some earlier
attempts to achieve this include the papers [5, 7] in which the antisymmetric matrix S(y) is
replaced by an antisymmetric tensor taking discrete gradients of all integrals to be preserved
as input. A formula for this antisymmetric tensor is given. Another approach is an
integrator for a class of separable Hamiltonian systems ([6] and references therein), where
the integrator which preserves all integrals is designed based on separation of variables.
We shall instead present an approach which does not rely on finding such a tensor nor a
structure of the equation, the method only assumes knowledge of the first integrals to be
preserved as well as the ODE vector field itself. The algorithm we develop makes use of
discrete gradients for each of the first integrals. We prove that the methods have pth order
of convergence, regardless of the underlying choice of discrete gradient.
In Section 3 we solve the Kepler problem using the methods developed in this paper.

We show that preserving multiple invariants gives a qualitatively better solution than just
preserving one.

2 Preserving multiple invariants

Suppose that an ODE system (1.1) possesses q ≥ 1 independent first integrals,H1(y), . . . ,Hq(y).
These invariants foliate Rm into (m− q)-dimensional submanifolds (leaves)

M = Mc = {y ∈ Rm : H1(y) = c1, H2(y) = c2, . . . ,Hq(y) = cq}.

The tangent space TyM of M at y is the orthogonal complement to

span{∇H1(y), . . . ,∇Hq(y)}.

For simplicity we write only M for Mc for the rest of this paper.

Definition 2.1. Let ∇ be a fixed discrete gradient operator and let H1, . . . ,Hq be indepen-
dent first integrals. The discrete tangent space at (u, v) ∈ Rm × Rm is

T(v,u)M = {η ∈ Rm : 〈∇Hj(v, u), η〉 = 0, 1 ≤ j ≤ q}.

A vector η = η(v,u) ∈ T(v,u)M is called a discrete tangent vector.

Note that this definition causes T(y,y)M = TyM .

2



Lemma 2.2. Any integrator satisfying

yn+1 − yn = η(yn,yn+1) ∈ T(yn,yn+1)M

preserves all integrals, in the sense that Hi(y
n+1) = Hi(y

n), 1 ≤ i ≤ q.

Proof. For any i we compute

Hi(y
n+1)−Hi(y

n) = ∇Hi(y
n, yn+1)>(yn+1 − yn)

= ∇Hi(y
n, yn+1)>η(yn,yn+1)

= 0.

In practice there are at least two ways of ensuring that the condition of Lemma 2.2 is
satisfied. One is to use projection another one is local coordinates.

2.1 Projection

We consider (1.1) with the first integrals H1(y), . . . ,Hq(y). We propose the projection
scheme

un+1 = φh(yn), yn+1 = yn + P(yn, yn+1)(un+1 − yn) (2.1)

where φh is an arbitrary integrator of order p

y(t+ h)− un+1 = y(t+ h)− φh(y(t)) = O(hp+1),

and P(yn, yn+1) is a smooth projection operator onto the discrete tangent space T(yn,yn+1)M .
An alternative method is

yn+1 = yn + hP(yn, yn+1)ψh(yn, yn+1) (2.2)

where ψh is an integrator which can be written on the form

yn+1 = yn + hψh(yn, yn+1).

This method is itself assumed to be of order p, that is

y(t+ h)− y(t)− hψh(y(t), y(t+ h)) = O(hp+1). (2.3)

Example 2.3. Using Runge-Kutta as the underlying scheme φh we can construct examples
of (2.1). The unprojected solution is given as

un+1 = yn + h
s∑
i=1

biki,

where k1, . . . , ks are the solutions to the (possibly implicit) equations

ki = f

yn + h

s∑
j=1

aijkj

 .

3



Even if the Runge-Kutta scheme is explicit the scheme (2.1) will be implicit since yn+1

appears in the projection operator

yn+1 = yn + hP(yn, yn+1)

(
s∑
i=1

biki

)
.

The difference between (2.1) and (2.2) is subtle, but to illustrate that they are in fact
distinct we consider the implicit midpoint method as the underlying scheme and we get for
the two methods

yn+1 = yn + hP(yn, yn+1)f

(
yn + un+1

2

)
,

yn+1 = yn + hP(yn, yn+1)f

(
yn + yn+1

2

)
,

where in the former method un+1 is computed by solving

un+1 = yn + hf

(
yn + un+1

2

)
.

Theorem 2.4. The schemes (2.1) and (2.2) are of order p, that is

y(t+ h)− y(t)− P(y(t), y(t+ h))(un+1 − y(t)) = O(hp+1),

un+1 = φh(y(t)),
(2.4)

and
y(t+ h)− y(t)− hP(y(t), y(t+ h))ψh(y(t), y(t+ h)) = O(hp+1). (2.5)

Proof. We use the shorthand notation P for P(y(t), y(t+h)) in this proof. To prove (2.4),
we compute

y(t+ h)− y(t)− P(un+1 − y(t))

= y(t+ h)− y(t)− (I − (I − P))(un+1 − y(t))

= y(t+ h)− y(t)− (un+1 − y(t)) + (I − P)(un+1 − y(t)).

Since φh is of order p, we have

y(t+ h)− y(t)− (un+1 − y(t)) = y(t+ h)− un+1 = O(hp+1). (2.6)

Therefore if we have

(I − P )(un+1 − y(t)) = O(hp+1),

the proof is completed. This estimate is obtained in the following way. Because the image
of I − P(y(t), y(t+ h)) is spanned by{

∇H1(y(t), y(t+ h)), . . . ,∇Hq(y(t), y(t+ h))
}
,

it is enough to show

∇Hi(y(t), y(t+ h)) · (un+1 − y(t)) = O(hp+1).

4



From (2.6) we obtain

un+1 − y(t) = y(t+ h)− y(t) +O(hp+1),

and hence

∇Hi(y(t), y(t+ h)) · (un+1 − y(t))

= ∇Hi(y(t), y(t+ h)) · (y(t+ h)− y(t) +O(hp+1))

= Hi(y(t+ h))−Hi(y(t)) +O(hp+1)

= O(hp+1).

The last equality is from the conservation property of the original equation.
The proof of (2.5) is almost identical and therefore omitted.

Computing the projector. A simple and straightforward way of obtaining the projector
P(yn, yn+1) is as follows: Define the (q×m)-matrix Y = Y (yn, yn+1) whose columns are the
discrete gradients ∇Hi(y

n, yn+1) for i = 1, . . . , q. Compute a reduced QR-decomposition
QR = Y where Q ∈ Rm×q and R ∈ Rq×q. Then define the projection matrix as
P(yn, yn+1) = I −QQ>.

2.2 Local coordinates

Inspired by [1], we consider local coordinates on a chart containing y0 by defining a map
η 7→ y = χ(η). The map is defined implicitly by

χ(η) = y : y − y0 = T (y)η, (2.7)

where T (y) is a smoothm×(m−q)-matrix whose columns form a basis for the left nullspace
(orthogonal column complement) of the matrix Y (y) = [∇H1(y

0, y), . . . ,∇Hq(y
0, y)].

Lemma 2.5. Suppose that ∇H1(y
0), . . . ,∇Hq(y

0) are linearly independent for all y0 ∈M .
Suppose also that for all y0 ∈ M , ∇H1(y

0, y), . . . ,∇Hq(y
0, y) are C∞ with respect to y.

Then the following statements hold.

1. (2.7) defines a one-to-one map ωy0 in a neighborhood Ny0 ⊂ M . ωy0 and ω−1
y0

are
C∞.

2. The collection of the pairs {(Ny0 , ωy0) | y0 ∈M} forms an atlas of M .

Proof. 1. From the continuity of the discrete gradients, we deduce that for all y0 ∈M ,
there exists a neighborhood Ñy0 in Rm of y0 in which ∇H1(y

0, y), . . . ,∇Hq(y
0, y) are

linearly independent. For y ∈ Ñy0 , T (y) admits the QR decomposition T (y) = QR
and η is obtained by η = (R>R)−1Q>(y − y0) = (T>T )−1T>(y − y0). This is a C∞

function. Conversely, the Jacobian matrix of the function η(y) at y = y0 is

∂η

∂y
(y0) = (T>T )−1T>

and hence

rank
∂η

∂y
(y0) = rank(T>T )−1T> = m− q.

Thus ω is defined in a neighborhood N̄y0 of y0 by the implicit function theorem and
is C∞. The proof is completed by letting Ny0 = N̄y0 ∩ Ñy0 ∩M .

5



2. This is immediately obtained from the first statement.

Consider now the curve η(t) and let y(t) = χ(η(t)). We differentiate the curve to obtain
from (2.7)

ẏ(t) = T ′y(t)(ẏ(t))η(t) + T (y(t))η̇(t).

From this we compute

η̇ = −T>(χ ◦ η)T ′χ◦η(f(χ ◦ η))η + T>(χ ◦ η)f(χ ◦ η) (2.8)

where the original ODE is ẏ = f(y). The method we propose takes one step as follows

1. Let η0 = 0.

2. Take a step with any pth order method applied the ODE (2.8) using y0 = yn in (2.7).
The result is η1.

3. Compute yn+1 = χ(η1).

We immediately obtain the next theorem from Lemma 2.5, because the solution curve lies
in M and a pth order method is applied in a chart of M .

Theorem 2.6. Under the assumptions of Lemma 2.5, the above scheme is of order p.

The main difficulty in this approach is the computation of the derivative map T ′y(ζ)
for arbitrary values of y ∈ Rm and ζ ∈ Rm. This is needed explicitly in the integration
algorithm, but may also be a useful tool in computing the coordinate map (2.7). We may
define T (y) as the last m − q columns of the m ×m-matrix Q(y) defined through a QR-
decomposition where Y (y) = Q(y)R(y) and where we have used the shorthand notation

Y (y) = [∇H1(y
n, y), . . . ,∇Hq(y

n, y)]

We realise the QR-decomposition by means of the Householder method, applying a
sequence of q elementary orthogonal transformations to the matrix Y (y) as described in
most elementary text books in numerical linear algebra, see e.g [8]. Each transformation
is of the form

Qk = I − 2vkv
>
k , vk ∈ Rm, v>k vk = 1,

and its aim is to eliminate all elements under the diagonal in the kth column of the matrix
to which it is applied.
In order to explain how we compute the derivative Q′y(ζ) =: DQ(y, ζ), we first review

the Householder method.

Y (1) := Y
for k = 1 : q,

wk = ΠkY
(k)
k − ‖ΠkY

(k)
k ‖ek

vk = wk
‖wk‖

for r = k : q,
Y

(k+1)
r = (I − 2 vkv

>
k )Y

(k)
r

end
end

where the following conventions have been used:

6



• ‖ · ‖ is the Euclidean norm.

• Y (k+1) = QkY
(k), Y (k)

r is column r of Y (k).

• The projector Πk puts zeros in the first k − 1 components and leaves the rest of the
components unchanged when applied to a vector in Rm.

• ek is the kth canonical unit vector in Rm.

The vectors vk computed in the algorithm contain all information needed to reconstruct
the factor Q, whereas R := Y (q+1). For simplicity, and to avoid the loss of regularity in
Q(y) viewed as a matrix valued function of y, we have here ignored the sign convention
which is usually applied in the definition of wk [8]. The idea is now to differentiate the
variables in the algorithm with respect to y, writing for any object, say X(y), its derivative
as DX = DX(y, ζ) = d

dε

∣∣
ε=0

X(y + εζ) for any y, ζ ∈ Rm. The dependence on y, ζ will
usually be suppressed in the notation when no confusion is at risk. Notice thatD commutes
with Πk for any k. The following recursion formulae are easily derived

Dwk = ΠkDY
(k)
k − (ΠkY

(k)
k )>ΠkDY

(k)
k

‖ΠkY
(k)
k ‖

ek,

Dvk =

(
Dwk −

w>k Dwk
‖wk‖2

wk

)
‖wk‖−1,

DY (k+1)
r = DY (k)

r − 2
(
v>k Y

(k)
r Dvk +Dv>k Y

(k)
r vk + v>k DY

(k)
r vk

)
.

The initial DY (1) = DY (1)(y, ζ) should be computed by differentiating the q discrete
gradients ∇H1(p, y), . . . ,∇Hq(p, y) with respect to y. When the discrete gradients are
given by the AVF formula, we may derive the following expressions for the rth column of
DY (1)

DY (1)
r (y, ζ) = D∇Hr(y, ζ) =

(∫ 1

0
ξ∇2Hr(ξy + (1− ξ)p)dξ

)
· ζ

where ∇2Hr is the Hessian of the integral Hr. The expression for the coordinate increment
cases are given in the appendix.
In the present application we only make use of the Q-part of the QR-decomposition, thus

we need only store v1, . . . , vq and Dv1, . . . , Dvq for subsequent use. We may summarize
the extended algorithm for computing these quantities as follows, using a Matlab inspired
indexing notation where the submatrix Ya:b,c:d of Y means

Ya:b,c:d =

Ya,c · · · Ya,d
...

. . .
...

Yb,c · · · Yb,d

 .

Given Y and DY as m× q-matrices
for k = 1 : q

w = Yk:m,k − ‖Yk:m,k‖e1

Dw = DYk:m,k −
Y >k:m,kDYk:m,k

‖Yk:m,k‖
e1

ṽk = w/‖w‖
Dṽk = (Dw − w>Dw

‖w‖2 w)‖w‖−1

7



DYk:m,k+1:q = DYk:m,k+1:q − 2ṽkṽ
>
k DYk:m,k+1:q − 2Dṽkṽ

>
k Yk:m,k+1:q

−2ṽkDṽ
>
k Yk:m,k+1:q

Yk:m,k+1:q = Yk:m,k+1:q − 2ṽkṽ
>
k Yk:m,k+1:q

end

The first k−1 entries of the vectors vk, Dvk are zeros, and the remaining m−k+ 1 entries
are contained in ṽk, Dṽk on exit. The complexity of this algorithm is O(mq2 + q3).
One should also note that we always multiply Q (DQ resp) by vectors η̄ ∈ Rm whose first

q columns are zero, this may be taken advantage of in the implementation. The procedure
for computing Qη̄ by means of v1, . . . , vk is described in [8, Algorithm 10.3], the cost is
O(mq). We may extend this algorithm so that it computes also DQω̄ given Dv1, . . . , Dvq.
Defining the m×m-matrix Pk = Qk · · ·Qq, k = 1, . . . , q, we get the downwards recursion

Pk−1 = Qk−1Pk, Pq = Qq, P1 = Q = Q1 · · ·Qq,

and differentiation yields

DPk−1 = DQk−1Pk +Qk−1DPk

= −2(Dvk−1 v
>
k−1 + vk−1Dv

>
k−1)Pk + (I − 2vk−1v

>
k−1)DPk.

The following algorithm results for computing φ = DQω̄

ψ = ω̄, φ = 0
for k = q : −1 : 1

φ = φ− 2(v>k ψDvk +Dv>k ψ vk + v>k φ vk)
ψ = ψ − 2v>k ψ vk

end

The complexity of this algorithm is O(mq).

3 Numerical integration of the Kepler problem

The Kepler two-body problem describes the motion of two bodies which attract each other.
By placing the first body in the origin, the position (y1, y2) and the velocity (y3, y4) of the
other body are given by the following four-dimensional ODE

ẏ1 = y3,

ẏ2 = y4,

ẏ3 = − y1

(y21 + y22)3/2
,

ẏ4 = − y2

(y21 + y22)3/2
.

(3.1)

This system preserves the Hamiltonian

H1(y) =
1

2

(
y23 + y24

)
− 1√

y21 + y22
,

the angular momentum

H2(y) = y1y4 − y2y3,

8



and the Runge-Lenz-Pauli vector

H3(y) = y2y
2
3 − y1y3y4 −

y2√
y21 + y22

,

H4(y) = y1y
2
4 − y2y3y4 −

y1√
y21 + y22

.

Since q = m = 4 the invariants will be dependent. By constructing a scheme that
preserves, say, the first three invariants one gets a scheme which exactly preserves all four.
We want to compare schemes that preserve none, one, two, and all of the invariants above.
We use the projection method (2.1) with the standard fourth order explicit Runge-Kutta
method as the underlying scheme. The discrete gradients are calculated using (1.4). The
schemes that preserve one of H1, H3 are denoted as RK4Proj1 and RK4Proj3, respectively.
The scheme that preserves bothH1 andH3 is called RK4Proj13. The original Runge-Kutta
scheme preserves neither and is denoted RK4. The RK4Proj123 scheme is omitted from
the plot since it produces exactly the ellipsis of the Kepler problem.
The resulting plots from these methods in Figure 3.1 and 3.2 are arranged according to

the table

RK4 RK4Proj1
RK4Proj3 RK4Proj13

Table 3.1: The location of the schemes in the plots of Figure 3.1 and 3.2.

The initial values are taken from section I.2.3 of [3]

y01 = 1− e, y02 = 0, y03 = 0, y04 =

√
1 + e

1− e,

where the eccentricity is e = 0.6 and the exact solution has period 2π. The time step is
h = 0.2 and we integrate for 50000 steps.
Figure 3.1 shows the numerical solutions and Figure 3.2 shows the preservation error.

We see that all the schemes preserve the invariants they were constructed to preserve. Also,
RK4Proj123 did indeed preserve all the four invariants, however this is not shown in the
plots. RK4 spirals inwards until it eventually blows up. RK4Proj1 has a counterclockwise
precession effect. The Runge-Lenz-Pauli vector has to do with the orientation of the ellipse
and RK4Proj3 does therefore not exhibit this effect, it will however converge to a small
circle around the origin. The solution of RK4Proj13 shows an improvement compared to
RK4Proj1 and RK4Proj3.
This example illustrates that there are cases where the preservation of one or more in-

variants are important to get a numerical solution with good long term properties. Not
surprisingly, one observes a gradual improvement in the quality of the solution as the num-
ber of preserved first integrals increases. The extra computational effort needed to preserve
multiple integrals compared to one is almost negligible, in this example the computation
took less than 10% longer.
In Figure 3.3 we plot the global error of the four schemes (RK2Proj123, RK4Proj123,

RK5Proj123, and RK7Proj123) that preserve the four invariants. The underlying schemes
are four RK-schemes of order 2, 4, 5, and 7. We see that the schemes attain the order of
the underlying scheme, which is what we expected from Theorem 2.4.

9



2 1 0 1
1

0.5

0

0.5

1

y1

y
2

2 1 0 1
1

0.5

0

0.5

1

y1

y
2

2 1 0 1
1

0.5

0

0.5

1

y1

y
2

2 1 0 1
1

0.5

0

0.5

1

y1

y
2

Figure 3.1: The numerical solution (thin line) of the Kepler problem (3.1) using the schemes
of Table 3.1 with h = 0.2. The first 500 steps are shown. The exact solution
(thick line) is an ellipse with eccentricity e = 0.6.

10



0 2000 4000 6000 8000 10000
10 20

10 15

10 10

10 5

100

t

|H
i(

t)
−

H
i(

0
)|

H1

0 2000 4000 6000 8000 10000
10 20

10 15

10 10

10 5

100

t

|H
i(

t)
−

H
i(

0
)|

H3

0 2000 4000 6000 8000 10000
10 20

10 15

10 10

10 5

100

t

|H
i(

t)
−

H
i(

0
)|

H3
H1

0 2000 4000 6000 8000 10000
10 20

10 15

10 10

10 5

100

t

|H
i(

t)
−

H
i(

0
)|

Figure 3.2: The error in the first integrals for the solutions of the four schemes of Table
3.1. There is one line for each of the four invariants. 50000 steps are shown.

11



10 3 10 2 10 1
10 15

10 10

10 5

100

e
rr

o
r

h

p = 7p = 5

p = 4

p = 2

Figure 3.3: The global error of the four schemes RK2Proj123, RK4Proj123, RK5Proj123,
and RK7Proj123. The dotted lines are reference lines of exact order.

12



Conclusion and further work. We have presented a new methodology for preserving mul-
tiple first integrals in systems of ordinary differential equations, using discrete gradients
as the underlying tool. By using the notion of a discrete tangent space, two methodolo-
gies for designing numerical schemes are easily derived, projection and local coordinates.
The resulting algorithms are relatively inexpensive compared to well-known algorithms
preserving precisely one first integral. Although the present paper considers only systems
of ordinary differential equations, the approach taken may be easily adapted to partial
differential equations to be considered in future work.

References

[1] E. Celledoni and B. Owren. A class of intrinsic schemes for orthogonal integration.
SIAM J. Numer. Anal., 40(6):2069–2084 (electronic) (2003), 2002.

[2] O. Gonzalez. Time integration and discrete Hamiltonian systems. J. Nonlinear Sci.,
6(5):449–467, 1996.

[3] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition,
2006. Structure-preserving algorithms for ordinary differential equations.

[4] T. Itoh and K. Abe. Hamiltonian-conserving discrete canonical equations based on
variational difference quotients. J. Comput. Phys., 76(1):85–102, 1988.

[5] R. I. McLachlan, G. R. W. Quispel, and N. Robidoux. Geometric integration us-
ing discrete gradients. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.,
357(1754):1021–1045, 1999.

[6] Y. Minesaki and Y. Nakamura. New numerical integrator for the Stäckel system con-
serving the same number of constants of motion as the degree of freedom. J. Phys. A,
39(30):9453–9476, 2006.

[7] G.R.W. Quispel and H. Capel. Solving ODE’s numerically while preserving all first
integrals, 1999. Preprint.

[8] L. N. Trefethen and D. Bau. Numerical linear algebra. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1997.

13


