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The characterizations of B-series of symplectic and energy preserving integra-
tors are well-known. The graded Lie algebra of B-series of modi�ed vector �elds
include the Hamiltonian and energy preserving cases as Lie subalgebras, these
spaces are relatively well understood. However, two other important classes are
the integrators which are conjugate to Hamiltonian and energy preserving meth-
ods respectively. The modi�ed vector �elds of such methods do not form linear
subspaces and the notion of a grading must be reconsidered. We suggest to study
these spaces as �ltrations, and viewing each element of the �ltraton as a vector
bundle whose typical �ber replaces the graded homogeneous components. In par-
ticular, we shall study properties of these �bers, a particular result is that, in the
energy preserving case, the �ber of degree n is a direct sum of the nth graded com-
ponent of the Hamiltonian and energy preserving space. We also give formulas for
the dimension of each �ber, thereby providing insight into the range of integrators
which are conjugate to symplectic or energy preserving.

1 Introduction

In recent years the conservation of geometric properties in numerical integrators has attracted
a lot of interest. Examples of such geometric properties are symplecticity, preservation of
�rst integrals, and volume preservation. For Runge-Kutta methods some early and important
results were: They conserve all linear invariants and there exists a subclass of methods which
conserves quadratic invariants and symplecticity. No Runge-Kutta method conserves volume
for every divergence free vector �eld. More recently, much attention has been given to a more
general class of integrators which include the Runge-Kutta methods as a subclass. These are
in general the schemes which can be expanded in a B-series, see e.g. [6]. Several families of
integration methods belong to this class, usually denoted B-series methods, but one should
keep in mind that not every B-series corresponds to a scheme of a known format. In particular,
the exact solution of the ODE system can be expanded in a B-series. In the sequel we shall
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mostly consider properties of B-series without paying particular attention to whether each
series corresponds to a computable integration scheme. This approach was taken for instance
in [3, 4, 5] where results similar to those mentioned above for Runge-Kutta methods were
proved in more generality. An important result was that for canonical Hamiltonian problems
there exists a large class of B-series schemes which preserve the Hamiltonian. Later, it was
observed by Quispel and McLaren [8] that the Average Vector Field (AVF) method is energy
preserving for Hamiltonian problems. This scheme is de�ned as

yn+1 = yn + h

∫ 1

0
f((1− ξ)yn + ξyn+1) dξ

when applied to autonomous ODEs y′ = f(y). Note that the integral in the AVF method is
calculated on the interval [0, 1] for a real variable ξ. For many known Hamiltonian problems,
this integral can be computed exactly a priori.
Insisting on the preservation of geometric structure in numerical integrators may sometimes

cause the resulting schemes to be somewhat computational expensive or may alternatively
exclude integrators that we know from experience have good long term properties. It may
therefore be advantageous to relax on the preservation requirement by allowing for conjugacy.
For an integrator represented as a map φh, one may take any consistent integrator χh and
construct the conjugate scheme φ̄h = χh ◦ φh ◦ χ−1

h . Applying this new scheme over N time
steps results in the approximation φ̄n

h = χh ◦ φn
h ◦ χ−1

h showing that the long term behaviour
of two conjugate methods does not depend on the number of time steps taken. It is of interest
to understand the structure and richness of integrators which are conjugate to symplectic or
energy preserving, and this will be discussed in what remains of this paper.

2 Preliminaries

The methods we consider are maps that may be formally expanded in a Taylor series. The
integrator is a map φh so that a step is the iteration yn+1 = φh(yn), where we have suppressed
the dependence of the ODE vector �eld f(y) in the notation. The sequence {yn} approximates
the exact solution yn≈y(xn) at a discrete set of values {xn}. For a system of ODEs written
in autonomous form, y′ = f(y), we consider integrators having the expansion

φh(y) = y + hf(y) + h2 a( )
1

f ′f(y) + h3 a( )
2

f ′′(f, f)(y) + · · · .

As indicated, the terms of this in�nite series are indexed by the set T of rooted trees, we write

φh(y) = y +
∑
t∈T

h|t|

σ(t)
a(t)F (t)(y), (1)

where |t| is the number of vertices in t. Each rooted tree is written recursively as either
the one-node tree ∈ T , or in terms of its subtrees, t = [t1, . . . , tm] ∈ T where each ti ∈ T .
Alternatively t = [tr1

1 , . . . , t
rp
p ] indicating that the subtree ti occurs ri times. With this notation,

we can de�ne the other functions appearing in (1). The symmetry coe�cient σ(t) can be
de�ned recursively as

σ( ) = 1, σ([tr1
1 , . . . , t

rp
p ]) = r1! · · · rp!σ(t1)r1 · · ·σ(tp)rp



The elementary di�erential F (t) is similarly de�ned as

F ( ) = f, F ([t1, . . . , tm]) = f (m)(F (t1), . . . , F (tm)), (2)

and a(t) is a coe�cient particular to the map φh.
It is long known [6] that one may also formally represent any integrator map by means of

a vector �eld f̃h(y), depending on the step size h. Letting u(t) be the exact solution to the
initial value problem u′ = f̃h(u), u(x0) = u0, one has u(xn) = yn for every n. The modi�ed

vector �eld f̃h(y) has the expansion

hf̃h(y) = hf(y) + h2f2(y) + · · ·

and by doing the formal calculations one is able to express the terms fj(y) by means of the
same elementary di�erentials that appear in (1), that is,

hf̃h =
∑
t∈T

h|t|

σ(t)
b(t)F (t), (3)

where the coe�cients b(t) have been derived from a(t) in (1). For more details on such
expansions and the relationship between the coe�cients a(t) and b(t), see e.g. [1, 6]. In the
rest of the paper we shall always work with the representation (3) rather than (1) for the
methods we consider.
The Lie-Jacobi bracket between two smooth vector �elds X(y) and Y (y) is again a vector

�eld, we write Z = [[X, Y ]]. Using coordinates y = (y1, . . . , yr), we may express X(y) and
Y (y) as vectors with components Xi(y), Y i(y), it is useful to reinterprete each vector �eld as
a �rst order di�erential operator (derivation) X :=

∑
i X

i(y) ∂
∂yi

and Y :=
∑

i Y
i(y) ∂

∂yi
. The

the Lie bracket between X and Y is simply the commutator

Z = [[X, Y ]] = XY − Y X, Zi = [[X, Y ]]i =
r∑

j=1

(
Xj ∂Y i

∂yj
− Y j ∂X i

∂yj

)
. (4)

Let u and v be two rooted trees and F (u) and F (v) the corresponding elementary di�erentials,
considered as vector �elds. Combining (2) and (4) one �nds that [[F (u), F (v)]] is a linear
combination of vector �elds F (ti) where |ti| = |u| + |v| for each i. In the rest of this paper,
the particular ODE vector �eld f from which the elementary di�erentials are induced will not
be of importance. We shall therefore simplify the notation and de�ne the real vector space T
consisting of �nite linear combinations of the elements of T . The step size h can be set to 1,
since the powers of h are already encoded as the number of vertices in the tree t. Then we
replace the series in (3) by ∑

t∈T

b(t)
σ(t)

t (5)

and we may think of b as a linear form on T , thus b ∈ T ∗. One may further split the space T
into a direct sum of subspaces

T =
⊕
q>0

T q

where T q is the subspace of T with basis {t ∈ T : |t| = q}. The Lie-Jacobi bracket (4) can
be realized directly on T . For u, v ∈ T , one de�nes [[u, v]] ∈ T by adding together all trees
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obtained by grafting u on each vertex of v and then subtracting all trees obtained by grafting
v on each vertex of u, for example

[[ , ]] = + + − − 2

This grafting procedure certainly respects the grading introduced above, in the sense that if
u ∈ T q, v ∈ T r, then [[u, v]] ∈ T q+r, this makes T into a graded Lie algebra.
Another structure we shall make frequent use of is the Butcher product. It is a non-

commutative product ◦ : T×T → T de�ned between two trees as follows: If u = [u1, . . . , um] ∈
T q and v ∈ T r then u ◦ v = [u1, . . . , um, v] ∈ T q+r. An example is

◦ = .

The product can be used to impose an equivalence relation on the rooted trees. A key obser-
vation is that for any two rooted trees u and v, v ◦ u is obtained from u ◦ v by shifting the
position of the root to a neighbor vertex. Using the same example as above one may consider

◦ = versus ◦ =

the second tree is obtained by shifting the root of the �rst tree one position up along the
rightmost branch. Conversely, any two trees which di�er just by such a root shift can be
factored u′ ◦ v′ and v′ ◦ u′ so that we may de�ne equivalence classes of trees known as free
trees. Such a class consists of some rooted tree τ as well as any other rooted tree obtained
from τ by shifting the root to some other vertex of τ . Free trees may therefore be associated
to unrooted trees. The two related trees above belong to an equivalence class (free tree) with
�ve elements

3 { , , , , }

For two rooted trees u and v belonging to the same free tree, we de�ne the symmetric function
κ(u, v) to be the number of root shiftes needed to obtain v from u. The bicentered unrooted
trees are precisely the free trees which can be factorized as u◦u for some u ∈ T . We call these
trees super�uous free trees. Any free tree which is not super�uous will be called nonsuper�uous

in the sequel. An example of a super�uous free tree is where we can cut an edge to yield
two copies of . We shall denote the set of free trees by FT and the subset of nonsuper�uous
free trees we call FT and we use boldface letters for members of these sets.

2.1 B-series of symplectic integrators

The B-series corresponding to symplectic methods are those whose modi�ed equation is Hamil-
tonian, this is a linear subspace of T , in fact even a graded Lie subalgebra, we denote it by TΩ

and its graded components T n
Ω ⊆ T n. It is well known that a B-series with coe�cients b(t) as

in (5) represents a Hamiltonian vector �eld if and only if the coe�cients satisfy

b(u ◦ v) + b(v ◦ u) = 0, ∀u, v ∈ T.

These equations only impose conditions between coe�cients of rooted trees belonging to the
same free tree, we get one independent condition for every root shift so in total there are q−1



conditions for a free tree with q members. For super�uous trees, the factorization t = u ◦ u
implies b(t) = 0 and inductively, any other tree t′ in the same equivalence class must have
b(t′) = 0. For every non-super�uous free tree, t ∈ FT the q − 1 conditions on the q members
lead to precisely one basis element, this can be taken to be

τ =
∑
u∼t

(−1)κ(t,u)

σ(u)
u, t ∈ π−1(t), t ∈ FT .

The representative t ∈ π−1(t) is arbitrary here.

2.2 B-series of energy preserving integrators

Similarly, we may consider methods φh which preserve the Hamiltonian, i.e. H(y) = H(φh(y))
for all y in phase space. Assuming that φh has a modi�ed vector �eld, we shall say that this
belongs to the space TH . This space is also a graded linear subspace of T , with graded
components T n

H ⊂ T n. The conditions for a B-series like (5) to be energy preserving were

derived in [3, 4], the conditions involving elements in T n are indexed by FT
n+1

. A condition

corresponding to t ∈ FT
n+1

is derived as follows: Denote by st the subset of π−1(t) consisting
of trees of the form [t′], i.e. those obtained by placing the root at a leaf. Let [t] be some
designated member of π−1(t). The condition corresponding to t is

∑
[t′]∈st

(−1)κ([t],[t′])

σ(t′)
b(t′) = 0

It is possible to �nd a basis for T n
H whose elements consist of linear combinations of at most

two trees, these trees where given in [8], and in [2] it was proved to be a spanning set and a
way of selecting a basis from this was indicated. The members of this spanning set are of the
form t + (−1)mt̂ where t and t̂ are given as [2]

t =

�
�

�
�
�

@@
@@

@@
@@

t1

..
.

tm

and t̂ =

�
�

�
�
�

@@
@@

@@
@@

tm

..
.

t1

.

Here the symbols ti are forests. The tree t is depicted by taking a pair consisting of the root
and some leaf and pull them apart tightly so that the path between these two vertices form
the "backbone" of the tree. On each node of this path zero or more trees are attached. To
obtain t̂ one simply reverts the tree as shown in the �gure.

3 Conjugate spaces

We proceed to consider B-series relevant for integrators which can be formally written as

φ̄h = χh ◦ φh ◦ χ−1
h

See the theses by Leone [7] and Scully [9] for order conditions for such methods. Note also
that conjugate methods have been studied in the context of e�ective order [1] and as methods
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with processing. In more precise terms, we shall be interested in the modi�ed vector �elds of
such methods and their formal series (5). In what follows, the map φh will typically be either
symplectic or energy preserving, and the conjugation map χh can in principle be any map.
We shall now represent the modi�ed vector �elds of the two maps χh, φh as u and v, writing

u =
∑
t∈T

u(t)
σ(t)

t, v = +
∑
|t|>1

v(t)
σ(t)

t,

so that the map φ̄h with modi�ed �eld represented by w obeys

exp(w) = exp(u) exp(v) exp(−u)

from which we derive

w = exp(u)v exp(−u) = exp(adu)v = v + [[u,v]] +
1
2
[[u, [[u,v]]]] + · · ·

Our interest lies in the characterization of all possible series w of the above form, given that
the series u and v are allowed to range over certain subsets or subspaces of the space T . Such
series do not form linear spaces, but some of their properties, as for instance their dimensions,
can be understood by using two new linear spaces that we shall call T neH and T neΩ . We now let
U and V be graded subspaces of T such that

U =
⊕
n>0

Un, V =
⊕
n>0

V n, Un = T n ∩ U, V n = T n ∩ V

We study elements of T which are conjugations of elements of V by elements in U , following
[2] we must then consider the set

M = {w = exp(adu)v, u ∈ U,v ∈ V }

where

w = exp(adu)v = v + [[u,v]] +
1
2

[[u, [[u,v]]]] + · · · (6)

M is not a graded linear subspace of T so we can not work with graded components as before.
Instead we de�ne a �ltration through the quotient

Gn = T /
⊕
k>n

T k

We let Pn : T → Gn be the canonical projection and we consider the manifolds Mn = PnM
and their dimensions. We introduce the spaces Bn ⊆ Gn through

Bn =

w = Pn exp(adu)v, u ∈
⊕

k≤n−2

Uk, v ∈
⊕

k≤n−1

V k


In fact, due to the grading on T , we could have written Mn in a similar way, just replacing
the lower index bound in each direct sum by n − 1 and n respectively. From this point, we
assume • ∈ V , and we consider only series v =

∑
vk, vk ∈ V k, such that v1 = •. De�ne



the projection π : Mn → Bn obtained simply by removing the n− 1-component of u and the
n-component of v. Precisely, if

w = Pn exp(adu)v, u =
n−1∑
k=1

uk, v = +
n∑

k=2

vk,

then

πw = Pn exp(adū)v̄, ū =
n−2∑
k=1

uk, v̄ = +
n−1∑
k=2

vk.

The triple (Mn,Bn, π) forms a vector bundle with total spaceMn, base space Bn and projec-
tion π. The typical �ber is Fn = π−1(x), and by construction this space is obtained simply
by considering all terms of (6) which depend only on the n − 1-component of u and the
n-component of v,

Fn = V n + [[Un−1, ]].

Using the natural identi�cation of Gn with T 1 ⊕ · · · ⊕ Tn it is easy to see that dimBn ≥
dimMn−1, thus,

dimMn = dimBn + dim Fn ≥ dimMn−1 + dim Fn,

such that a lower bound for the dimension of Mn can be obtained by summing up the dimen-
sions of each F k for k = 1, . . . , n.
One may say that the �bers F k play a similar role for the conjugate spaces as do the graded

components T n
Ω and T n

H for the Hamiltonian and energy preserving vector �elds respectively.
In our application we choose V to be either of TΩ or TH . The spaces we use to conjugate with
can in principle be T in both cases, but we �nd it reasonable to choose U to be a complement
of TΩ in the Hamiltonian case and a complement of TH in the energy preserving case. We
denote such complements T ′

Ω, T ′
H respectively. The corresponding manifoldM is characterized

in terms of the bundles (Mn,Bn, π) and the �bers Fn are denoted T neΩ , T neH respectively. In
fact, in these two cases it is possible to prove that

dimBn = dimMn−1

and the dimension of Mn is obtained by summing the dimensions of the �bers F k for k from
1 to n, see [2].

4 Main results

The results presented here are mostly taken from [2] and are presented without proofs. The
reader may keep in mind that there are three important properties of the map ad : t 7→ [[ , t]]
underlying many of the results used to characterize the conjugate �bers T neΩ and T neH . The �rst

is that ad is injective on T n, n > 1. The second is that ad−1(T n+1
Ω ) ⊆ T n

Ω (and similarly
with TΩ replaced by TH). The third an explicitly given decomposition of ad (τ) into the sum
of two elements of TΩ and TH .

Theorem 1 The dimension of T neH is

dim T neH = dim T n
H + dim T n−1 − dim T n−1

H .
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Theorem 2 For n > 2,
T n

H̃
= T n

Ω ⊕ T n
H

Theorem 3 TeΩ ⊂ T eH .

Theorem 4

(i) From the four naturally-de�ned subspaces of B-series, namely T n
Ω , T n

H , T neΩ , and T neH ,

precisely one new subspace can be constructed using the natural subspace operations of

intersection and sum. This is T neΩ ∩T n
H , the energy-preserving conjugate-to-Hamiltonian

B-series.

(ii) T neΩ ∩ T n
H is isomorphic to T n−1′

Ω , and an isomorphism is given by the map

T n−1′
Ω → T neΩ ∩ T n

H , t 7→ [[t, ]]−X[t] (7)

(iii) Its dimension is

dim T neΩ ∩ T n
H = dim T n−1 − dim T n−1

Ω

(iv) There are B-series that are energy-preserving and conjugate-to-Hamiltonian, but are not

the (reparameterized) �ow of the original di�erential equation.

Theorem 5 The (Hasse) order diagram under inclusion for the linear spaces T n, T n
H , T n

Ω ,

T neH , and T neΩ ∩ T n
H for n > 2 is

T n

@@
T neH

@@
T neΩ

@@

T n
Ω

��

T n
H

@@ ��
T n

H ∩ T neΩ
@@ ��

0

and their dimensions up to order 10 are as given in Table 1. For n = 1 all these spaces are equal

to span( ), while for n = 2 we have T 2 = span([ ]) and T 2
H = T 2

Ω = T 2eH = T 2eΩ = T 2eΩ ∩ T 2eH = 0.
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