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On pattern selection in three-dimensional
Bénard-Marangoni flows

Arne Morten Kvarving, Tormod Bjøntegaard, Einar M. Rønquist

October 7, 2010

In this paper we study Bénard-Marangoni convection in confined containers
where a thin fluid layer is heated from below. We consider containers with
circular, square and hexagonal cross-sections. For Marangoni numbers close to
the critical Marangoni number, the flow patterns are dominated by the appear-
ance of the well-known hexagonal convection cells. The main purpose of this
computational study is to demonstrate the importance of the initial conditions
on the pattern selection. In a series of numerical experiments, the coupled fluid-
thermal system is started with a zero initial condition for the velocity and a
random initial condition for the temperature. We demonstrate that the system
can end up in more than one state. For example, the final state of the system
may be dominated by a steady convection pattern with a fixed number of cells,
however, the same system may occasionally end up in a steady pattern involv-
ing a slightly different number of cells, or it may end up in a state where most
of the cells are stationary, while one or more cells end up in an oscillatory state.
For larger aspect ratio containers, we are also able to reproduce dislocations in
the convection pattern, which have also been observed experimentally. It has
been conjectured that such imperfections (e.g., a localized star-like pattern)
are due to small irregularities in the experimental setup (e.g., the geometry of
the container). However, we show, through controlled numerical experiments,
that such phenomena may appear under otherwise ideal conditions. By repeat-
ing the numerical experiments for the same non-dimensional numbers, using
a different random initial condition for the temperature in each case, we are
able to get an indication of how rare such events are. Next, we study the effect
of symmetrizing the initial conditions. Finally, we study the effect of selected
geometry deformations on the resulting convection patterns.

Keywords: Bénard-Marangoni, spectral elements, pattern formation

1 Introduction

We consider Bénard-Marangoni convection in confined containers where a thin fluid layer is
heated from below. This problem has previously been studied extensively, both experimen-
tally as well as computationally. An intriguing feature of this problem is the formation of
hexagonal convection cells from random initial conditions; see [2, 22, 17]. It has been found
that this formation can originate from two different effects; it can be caused by buoyancy
effects due to the fact that the density is a function of the temperature, or it can be due
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to variations in the surface tension, i.e., thermocapillary forces. Both effects can also be
present at the same time. In fact, the concurrent presence of the two effects was a source of
confusion for years. Bénard himself had an incorrect interpretation of which effect was the
dominant one in his original experiments [2], which lead to Rayleigh’s subsequent stability
analysis also being done under the assumption of buoyancy-driven convection [34]. It took
several decades before this misunderstanding was cleared up; see [7, 32, 39].
The benchmark experiments in later years have been those of Koschmieder and Prahl

[24]. In his monograph [22], Koschmieder gives a comprehensive overview of the problem,
both from a theoretical and experimental point of view.
Ramon et al [33] investigated the pattern formation predicted for small aspect ratio

containers. They obtained results that confirmed the predictions made by Rosenblat et al
[35] based on linear stability theory.
Yu et al [43] studied the pattern formation computationally using a least-squares finite-

element-based method. Their focus was on reproducing the experimental results due to
Koschmieder [22]. They obtained results which were in good agreement, both at the
qualitative level, reproducing the patterns from the experiments, as well as predicting
the critical Marangoni numbers. Their simulations were started with an initial condition
consisting of a superposition of all Fourier modes that were resolved on their grids.
Dauby et al [13] used a spectral Tau method to determine the critical Marangoni number,

as well as the convective pattern at the threshold. The simulations were performed for
rectangular containers with rigid walls, with the aspect ratio as the main parameter. The
influence of a non-vanishing gravity and a non-zero Biot number at the free surface was
examined. The authors showed that the convective pattern above the threshold may differ
substantially from the pattern predicted from linear stability theory due to the presence of
the rigid walls. In a follow-up study [14] the linear instability in circular containers were
investigated. The authors numerically confirmed the principle of “exchange of stabilities”
[15].
In a more recent study [30], Medale and Cerisier investigated numerically the convection

patterns in containers of various shapes and sizes using a finite volume method. They also
found results which were in very good agreement with the experimental results from [24].
Bjøntegaard and Rønquist [6] studied numerically the effects of a deformable free surface

using a high order spectral element method. The deformations were found to be small with
an amplitude varying linearly with the capillary number. This is in good agreement with
the analysis done in [37]. The flow pattern was found to be mostly unaffected by the
deformation, which means that the errors incurred by modelling the free surface as flat can
be ignored for applications considering pattern formations. This confirms the theoretical
results from several analyses, such as those found in [16, 25, 38].
As previously mentioned, the flow tends to organize in hexagonal cells for Marangoni

numbers close to the critical number. Since a linear analysis cannot predict the shape of
the cells, Cloot and Lebon performed a nonlinear analysis in an attempt to explain why the
hexagonal shape seems to be preferred [12]. They investigated how different cell structures
(triangular, square, pentagonal, hexagonal) behave with respect to perturbations. They
found that indeed only a hexagonal flow pattern is stable with respect to perturbations of
other shapes. If the triangular, square or pentagonal cells were perturbed with a hexagonal
pattern, the original pattern eventually broke down and the system evolved into a new
configuration which was dominated by hexagonal cells. This seems to confirm that in
the supercritical regime, where instabilities have been triggered, we would expect a flow
dominated by hexagonal cells, possibly with a few exceptions near the boundaries where
wall effects play a significant role, and this is exactly what is observed in most experiments
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and computations. It turns out that this is only part of the overall picture. Nitschke
and Thess showed experimentally [31] the existence of a secondary instability for large
temperature differences. This instability seems to break the stability of the hexagonal cells
and instead drives the flow towards a pattern dominated by square cells. Their findings
were numerically confirmed in a DNS performed by Bestehorn [3]. He was able to show
that this instability is only present for a finite Prandtl number, and that the strength of
the secondary instability increases for decreasing Prandtl numbers.
Other deviations from a hexagonal pattern are dislocations observed experimentally even

in the weakly supercritical regime; in this case cells which are pentagonal, square or even
triangular in shape appear; see Figure 1. Koschmieder et al briefly comment on this in
[23] where they speculate that the defects are caused by impurities in the experimental
setup, although they were never able to locate any impurities. Cerisier et al attempted to
get some quantitative data on this through statistical analysis of experimental data in [9]
and from a topological analysis in [10]. They found that the pattern defects follow many
well established topological laws from other physical systems. However, they could not
find any statistically significant influence of the initial conditions on the pattern dynamics
when the initial conditions were seeded with either triangular patterns, square patterns or
pentagonal patterns, reassuring the predictions from [12].
A lot of data about the defects and their formation is available. However, we have not

been able to find a satisfactory explanation in the literature concerning the appearance
of such defects well below the threshold of the secondary instability. We intend to see if
it is possible to reproduce such defects in our computations. In particular, we investigate
the effect of using different initial conditions on the pattern formation. We also examine
the effect of imposing selected geometry deformations. An obvious advantage numerical
tests have over experiments is the fact that we do not have to worry about the influence
of measurement errors or imperfect geometries.
The governing equations for this problem are the incompressible Navier-Stokes equations

coupled with a convection-diffusion equation for the temperature. The solution to this
problem (velocity, temperature and pressure) is expected to be of high regularity and
thus high order spatial discretizations [28] should be very attractive to use for this class
of application. Combined with the solution algorithms recently developed for “extruded”
three-dimensional domains [4], our computational approach help us to more easily consider
larger systems and make it more feasible to perform repeated computations with different
initial conditions.
The outline of the paper is as follows. In Section 2, we present the governing equations

in strong form for the coupled fluid-thermal problem; the corresponding weak form is given
in Section 3. The discretization is briefly outlined in Section 4. In Section 5, we present
numerical results verifying the correctness of the fully discrete model by considering a
number of complimentary test problems. In Section 6, we study the pattern formation
resulting from random initial conditions. Several statistical series of tests are performed in
order to demonstrate the possible states the system may end up in, and also to reproduce
dislocations in the patterns which are also observed experimentally. In Section 7, we con-
sider the effect of using slightly deformed containers. Finally, in Section 8, we summarize
our findings and present our conclusions.
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Figure 1: Convection cells (top view) formed due to Bénard-Marangoni convection. We
observe cells which are not hexagonal in nature and which locally form a star-
like pattern (a dislocation). The experimental result is taken from [21] and is
reprinted here with permission from Wiley (permission contract is currently in
progress).

2 Governing equations: strong form

This problem represents a coupled thermal/fluid problem. The governing equations follow
from conservation of mass, linear momentum and energy. For an introduction to the
mathematical theory of thermally driven instabilities in fluid layers heated from below, we
refer the reader to Chandrasekhar’s monograph [11].
As mentioned earlier, there are two effects which may be driving the flow. Buoancy-

driven flow is a consequence of the fact that the density, ρ, is a function of the tempera-
ture, T . This gives rise to a volumetric body force in the presence of temperature gradi-
ents. Surface-tension-driven flow is due to the fact that surface tension strength, measured
through the coefficient γ, is a function of the temperature, which gives rise to tangential
forces along the free surface in the presence of temperature gradients. In our linearized
model, the surface tension and the density both vary linearly with the temperature

ρ(T ) = ρ0 (1− β (T − T0)) , (1)
γ(T ) = γ0 (1− τ (T − T0)) , (2)

where ρ0 and γ0 are the reference values for the density and surface tension at the tem-
perature T0, while β and τ are positive constants. The reference temperature T = T0

is imposed on the bottom surface. At the top surface we assume that, in the absence of
convection, the temperature is held at a constant value T = T1. Furthermore, we introduce
Θ, the deviation of the temperature from a linear profile between T = T0 at the bottom
and T = T1 at the top, i.e.,

T (x, t) = T0 −
∆T

d
x3 + Θ (x, t) , (3)
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where d is the height of the container and ∆T = T1 − T0; see Figure 2.
Introducing the velocity u = (u1, u2, u3), the pressure p, and the temperature T , the

governing equations can be expressed as

∇ · u = 0 in Ω, (4)

ρ0
Du

Dt
− µ∇2u +∇p = g ρ(T ) e3 in Ω, (5)

ρ0c
DT

Dt
− k∇2T = u3 in Ω, (6)

where g is the gravity, µ the dynamic viscosity, c the heat capacity, k the thermal conduc-
tivity, e3 the unit vector in the third direction and D

Dt is the total derivative.
Hence, the fluid is modelled as an incompressible fluid, with a buoyancy term arising

from small density variations; see (1). This is the well known Bousinessq approximation
[11]. The fluid flow is also coupled to the temperature via the surface tension; see (2). The
temperature is coupled to the fluid through the convection term in (6).
The domain Ω represents the fluid layer. The bottom and top surfaces of the domain are

denoted by ∂Ωb and ∂Ωt, respectively. The top surface is modelled as a flat free surface.
The vertical side walls are denoted as ∂Ωs. Some sample geometries are given in Figure 2.

Boundary conditions

We assume that the bottom surface, as well as the vertical side walls, are all rigid. Hence,
along ∂Ωb and ∂Ωs we impose homogenous Dirichlet boundary conditions for the velocity,

ui = 0, on ∂Ωb ∪ ∂Ωs, i = 1, 2, 3.

Along the top surface ∂Ωt we impose the Marangoni boundary conditions

µ
∂u1

∂x3
= −γ(T )

∂T

∂x1
,

µ
∂u2

∂x3
= −γ(T )

∂T

∂x2
,

u3 = 0.

The first two equations express continuity of the tangential stress across the free surface
[39], while the last equation is consistent with the fact that the free surface is treated as
flat and stationary.
The temperature is subject to the boundary conditions

∂T

∂n
= −∆T

d
+
∂Θ

∂n
on ∂Ωt,

∂T

∂n
= 0 on ∂Ωs,

T = T0 on ∂Ωb,

where ∂
∂n denotes the derivative in the outward normal direction.

Treatment of the pressure

Before we proceed with non-dimensionalizing the governing equations, we comment a bit
more on the treatment of the pressure. In the momentum equations the buoyancy term on
the right hand side can be expressed as

ρ0gδi3 (1− β (T − T0)) = ρ0gδi3 + ρ0gδi3β
∆T

d
x3 − ρ0gδi3βΘ.
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x1

x2

(a) cross-section

x2

x3

x1

(b) circular container

(c) cross-section (d) hexagonal container

(e) cross-section (f) square container

Figure 2: Some examples of the geometries we consider. The cross-sections are depicted in
the left column. These are extruded to form the full 3D geometries depicted in
the right column. The height of the containers is denoted by d.

The first two terms can alternatively be expressed as

ρ0gδi3 + ρ0gδi3β
∆T

d
x3 =

∂

∂x3

(
ρ0gx3 +

1

2
ρ0gβ

∆T

d
x2

3

)
δi3.

We can thus absorb the two terms by defining a modified pressure

p∗ (x, t) = p (x, t) + ρgx3 +
1

2
ρ0gβ

∆T

d
x2

3.

This modified pressure has a readily available physical interpretation; it simply includes the
hydrostatic pressure (the term ρgx3) and the contribution from the buoyancy associated
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with the linear temperature profile, 1
2ρ0gβ

∆T
d x

2
3. In summary, we have that

− ∂p

∂xi
+ ρ0gδi3 (1− β (T − T0)) = −∂p

∗

∂xi
+ ρ0gδi3βΘ.

In the following, we drop the superscript ∗ and this modified pressure is assumed.

Non-dimensionalization

We now proceed with non-dimensionalizing the governing equations; see [41]. For the
spatial coordinates a natural length scale is the height of the container

x′i = xi/d, i = 1, 2, 3.

For time we use the thermal diffusivity time constant,

t′ = t/(d2/αT ),

where the thermal diffusivity is αT = k/(ρ0c). These two together naturally give us the
velocity scale as the ratio d/(d2/αT ) = αT /d, and we non-dimensionalize the velocity as

u′i = ui/(αT /d), i = 1, 2, 3.

The pressure is non-dimensionalized as

p′ = p/
(
µαT /d

2
)
,

while the temperature is scaled using the temperature difference ∆T ,

T ′ = T/∆T.

Together with (1)-(3), the chosen scales give us the governing equations on non-dimensional
form:

∇ · u = 0 in Ω, (7)
1

Pr

Du

Dt
−∇2u +∇p = RaΘ e3 in Ω, (8)

DΘ

Dt
−∇2Θ = u3 in Ω, (9)

where we have dropped the primes for clarity of presentation. We have introduced the
Prandtl number,

Pr =
ν

αT
,

where ν = µ/ρ0 is the kinematic viscosity, as well as the Rayleigh number,

Ra =
gβ∆Td3

αT ν
.

The corresponding velocity conditions on the boundary ∂Ωt can be expressed as

∂u1

∂x3
= −Ma

∂Θ

∂x1
, (10)

∂u2

∂x3
= −Ma

∂Θ

∂x2
, (11)

u3 = 0, (12)
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where Ma is the Marangoni number

Ma =
γ0τ∆Td

µαT
,

and the boundary conditions for the temperature are given as
∂Θ

∂n
= 0 on ∂Ωt, (13)

∂Θ

∂n
= 0 on ∂Ωs, (14)

Θ = 0 on ∂Ωb. (15)

The system is thus parameterized through four non-dimensional numbers: Pr, Ra, Ma,
and Γ, the aspect ratio of the container. Here,

Γ =

√
A

d
,

where A is the cross-sectional area and d is the height of the container.
Finally, we need to specify initial conditions for the temperature and the velocity. We

will return to this shortly.

3 Governing equations: the weak form

We now present the weak formulation of the non-dimensionalized problem (7)-(9) subject
to the boundary conditions (10)-(15). We introduce the function spaces Xi, Y and Z
defined as

X1 = X2 =
{
v(t) ∈ H1 (Ω) , v(t) = 0 on ∂Ωb ∪ ∂Ωs

}
,

X3 =
{
v(t) ∈ H1 (Ω) , v(t) = 0 on ∂Ωb ∪ ∂Ωs ∪ ∂Ωt

}
,

Y =
{
q ∈ L2 (Ω)

}
,

Z =
{
v(t) ∈ H1 (Ω) , v(t) = 0 on ∂Ωb

}
.

The governing equations for the fluid flow can then be expressed as:

Find ui(t) ∈ Xi, i = 1, 2, 3, and p(t) ∈ Y such that

1

Pr

∫
Ω
vi

(
∂ui
∂t

+ u · ∇ui
)

dΩ =∫
Ω

(
−∇ui · ∇vi + p

∂vi
∂xi

)
dΩ + Iγ,i (vi) ∀vi ∈ Xi,∫

Ω
q∇ · u dΩ = 0 ∀ q ∈ Y,

where no summation over repeated indices is assumed. Here Iγ,i, i = 1, 2, 3, represent the
terms due to the Marangoni boundary conditions on ∂Ωt, as well as the buoyancy term for
the third component, i.e.,

Iγ,1 (v1) = −Ma

∫
∂Ωt

∂Θ

∂x1
v1 dA, (16)

Iγ,2 (v2) = −Ma

∫
∂Ωt

∂Θ

∂x2
v2 dA, (17)

Iγ,3 (v3) = Ra

∫
Ω

Θv3 dΩ. (18)
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The temperature problem reads:

Find Θ ∈ Z such that∫
Ω
v

(
∂Θ

∂t
+ u · ∇Θ

)
dΩ =

∫
Ω

(−∇v · ∇Θ + vu3) dΩ ∀v ∈ Z.

4 Discretization

We now discretize the weak form of the governing equations using spectral elements [28].
The geometry is represented using isoparametric elements, i.e., within each element Ωk,
k = 1, · · · ,K, we represent the physical coordinates using a nodal, tensor-product basis,

xki (r1, r2, r3) =
N∑
l=0

N∑
m=0

N∑
n=0

(
xki

)
lmn

`l (r1) `m (r2) `n (r3) , i = 1, 2, 3,

where (xi)
k
lmn are the basis coefficients, and `p (r) ∈ PN (−1, 1) is the one-dimensional

Lagrangian interpolant through the Gauss-Lobatto Legendre points ξq, q = 0, · · · , N , with
`p (ξq) = δpq. The nodes are first distributed along the edges of the elements, before we
use the Gordon-Hall algorithm to generate the nodal values from the given surface values
[19]. Some examples of the resulting grids used are depicted in Figure 3. The semi-discrete
equations (discrete in space, continuous in time) can be stated on the form

1

Pr

(
B

du

dt
+ Cu

)
+ Au = DT p+ Iγ , (19)

Du = 0, (20)

B
dΘ

dt
+ CΘ = −AΘ + Bu3, (21)

where A denotes the discrete Laplacian and B the velocity mass matrix. Note that these
operators are vector operators; in particular they impose different boundary conditions
on the different velocity components. Furthermore, C denotes the discrete (nonlinear)
convection operator, D the discrete divergence operator and DT the discrete gradient
operator. Finally, Iγ is the discrete realization of the integrals given in (16)-(18).

The semi-discrete equations are now discretized in time using the backward difference
method [18]. A pressure-correction projection scheme is used to split the velocity and
pressure in the momentum equations [42, 20, 40]. The convection is handled through an
operator-integrating-factor (OIF) scheme [29]. In the simulations presented later we have
used a second order temporal scheme, however, for clarity of presentation we here present
the discrete equations for a first order temporal realization [5]. At each time level we start
by solving three convection problems, one for each velocity component. This consists of
integrating the semi-discrete convection equations

dũi
dτ

= −B−1C (u∗) ũi,

ũi(0) = uni , i = 1, 2, 3,

from τ = 0 to τ = ∆t using the classical 4th order explicit Runge-Kutta (RK4) scheme [18].
The convecting velocity field u∗ represents an extrapolant for the velocity in (tn, tn+1); for
a first order realization we simply use

u∗ = un.
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We need this extrapolant when integrating the three convection problems as we need values
for the velocity between τ = 0 and τ = ∆t which are not available to us at this point in
time. For a first or a second order realization, a zeroth, respectively first, order extrapolant
retain the full temporal order of the overall scheme. This is an application of the OIF-
scheme and the calculation allows us to approximate the total derivative at time level tn+1.
We denote the output from this calculation by ũn+1.
With the convection problems solved, we can move on to solving the momentum equa-

tions. As mentioned earlier we use a velocity-pressure splitting scheme; in particular, the
equations for the velocity is decoupled from the pressure by using an extrapolant for the
pressure which we denote by p∗. Again, the order of this extrapolant is taken as one less
than the temporal order of the overall scheme. This gives us the following equations for
the velocity,

Hûn+1 =
1

Pr∆t
Bũn+1 + DT p∗ + Iγ ,

where p∗ is the pressure extrapolant as discussed earlier, and H = A+ 1
∆tB is the discrete

Helmholtz operator.
The third step in the solution of the momentum equations is correcting the velocity

by projecting it onto the space of divergence-free fields. In practice, this is done through
solving an elliptic problem for the pressure,

E∆p = − 1

Pr∆t
Dûn+1,

where E = DB−1DT is the consistent pressure Poisson operator. We then update the
pressure and the velocity through

pn+1 = p∗ + ∆p,

un+1 = ûn+1 + Pr∆tB−1DT∆p.

The final problem to be solved is the energy equation. Again, we start by solving a
convection problem,

dΘ̃

dτ
= −B−1C (u∗) Θ̃,

Θ̃(0) = Θn,

from τ = 0 to τ = ∆t using RK4. The output of this calculation is denoted as Θ̃n+1.
With the convection step completed, we can solve the elliptic temperature problem

resulting from the convection-diffusion equation expressed in a Lagrangian framework,

HΘn+1 = B

(
un+1

3 +
1

∆t
Θ̃n+1

)
.

Note that the operatorsH andB are not identical to those considered for the fluid problem;
they are here associated with the scalar temperature field, and temperature boundary
conditions are imposed.
At this point we have arrived at new values for the velocity, the pressure and the tem-

perature at time level tn+1; the solution is advanced forward in time by repeating this
overall procedure.
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x1

x2

(a) cross-section, 192 elements

x2

x3

x1

(b) 3D geometry

(c) cross-section, 48 elements (d) 3D geometry

(e) cross-section, 192 elements (f) 3D geometry

Figure 3: Some examples of the grids we consider. The cross-sections with their elemental
decomposition are given in the left column. As can be seen in the right column,
we here only consider a single layer of spectral elements in the vertical direction.

Initial conditions

As previously mentioned, we need to supply the system with initial conditions for the
velocity and temperature. For the velocity we simply start with all components exactly
equal to zero, i.e.,

u0
1 = u0

2 = u0
3 = 0.

For the temperature we usually start by calculating a random field in the x1x2 plane,
hereby denoted by Rand(x1, x2). We then multiply this field by a suitable function in the
third direction. This procedure gives the initial condition

θ0(x1, x2, x3) = Rand(x1, x2)x3(2− x3).

11



The function x3(2 − x3) is chosen since it is compatible with the boundary conditions in
the third direction, namely

θ(x1, x2, 0) = 0,

∂θ

∂x3
(x1, x2, 1) = 0.

This initial condition was also used in [30].

Equation solvers

The geometries we consider are of a particular kind; see Figures 2 and 3. Specifically, all
cross-sections are invariant in the third direction. This allows us to use the algorithms
developed in [26, 27, 4]. These are specialized algorithms which exploit the tensor-product
structure available in these geometries and these grids, saving us close to an order of
magnitude in computational time compared to not exploiting this feature. In addition,
all our numerical results have been obtained through parallel processing using a combined
MPI/OpenMP implementation [26].

5 Verification

We now perform several tests to confirm that our simulation tool behaves as expected.

Analytic solution and data

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

∆ t

E
rr

or

 

 

1. order

2. order

(a) temporal

4 6 8 10 12 14 16
10

−8

10
−6

10
−4

10
−2

N

E
rr

or

(b) spatial

Figure 4: The left plot depicts the discretization error of the velocity measured in the
discrete H1-norm at time t = 1 as a function of the time step, ∆t, for a first
and second order temporal splitting scheme; here, K = 48 spectral elements
are used, each of order N = 16. We observe the expected first and second order
convergence. The right plot depicts the same error as a function of the polynomial
degree, N , for a fixed time step and a fixed number of elements. We observe the
expected exponential convergence. The temporal error is here subdominant for
N < 12.

First, we solve the three-dimensional Navier-Stokes equations in a cylindrical domain 0 ≤
r ≤ R, 0 ≤ z ≤ d. We use a forcing function compatible with the known analytical solution
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(here expressed in cylindrical coordinates)

ur (r, θ, z, t) =
1

5
sin2 (πr) sin (θ) sin (2πz) sin t,

uθ (r, θ, z, t) = −1

5
sin2 (πr) cos (θ) sin (2πz) sin t,

uz (r, θ, z, t) =
1

10π
sin (πr)

(
2π cos (πr) +

2

r
sin (πr)

)
sin (θ) (cos (2πz)− 1) sin t,

p (r, θ, z, t) = sin2 (πr) sin (πz) sin t.

The difference between the exact and numerical solution is measured in the discrete H1-
norm. The convergence results in Figure 4 show the expected behavior: first and second
order convergence in time, as well as exponential convergence in space for problems with
analytic solutions and data.

Verification in a periodic geometry

Here, we follow the example from [39]. We assume an infinite Prandtl number and a zero
Rayleigh number. At steady state this corresponds to the limit of solving the steady Stokes
equations under zero gravity conditions. Hence, we do not have an evolution equation for
the momentum, and we resort to a Uzawa decoupling approach [1] to handle the momentum
equations at each time level. Note that, even though the velocity do not follow an evolution
equation directly, the velocity field will not be constant in time until we reach a steady
state for the temperature field. This is because the two fields are coupled through the
Marangoni boundary conditions on the top of the domain. The computational domain is
given by Ω = (0, lx)× (0, ly)× (0, d) where

lx
d

=
4π√
3k
,

ly
d

=
4π

k
,

with k = 1.9929. Periodic boundary conditions are specified along ∂Ωs. The specified
periodicity lengths are compatible with the formation of a single hexagonal cell as predicted
by linear stability theory; [11, 22, 32].
As our indicator we use the kinetic energy,

Eu =
1

V

∫
Ω

(
u2

1 + u2
2 + u2

3

)
dΩ,

where V is the volume of Ω. The main purpose of this test is to determine the critical
Marangoni number. We first do a calculation for Ma = 100, which is well above the pub-
lished critical value. Next, we take the fields we obtain at steady state for this calculation
as initial conditions for new simulations where the Marangoni number is lowered. We then
observe for which Marangoni number the flow vanishes. Linear stability theory predicts
that the critical Marangoni number should be Mac = 79.6, but that in the a subcritical
regime Ma ∈ (79.15, 79.6), the hexagonal cells should prevail [8, 36]. The results given
in Figure 5 show that our obtained values are in good agreement with those obtained in
earlier numerical experiments [39], as well as those predicted by linear stability theory
[8, 36].
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(a) Computational domain and ele-
ment decomposition.
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(b) Contours of the tem-
perature at the top of the
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Figure 5: A plot of the energy measure E1/2
u at steady state for different values of the

Marangoni number. The obtained values are in good agreement with previously
reported results.

Establishing grid independence

For the fully coupled fluid/temperature problem with rigid walls, we do not have any
quantitative data to compare against, i.e., we cannot do convergence tests to establish cor-
rectness of the code. However, a necessary requirement is that we obtain a grid-independent
solution once all the spatial and temporal features of the solution are resolved.
As a test case we consider a circular container with an aspect ratio Γ = 8.38. The value

of Γ is chosen slightly above the value which yields a seven cell solution according to [30].
We use a Marangoni number Ma = 105 in order to be sure that we are well above the
critical value. The Rayleigh number Ra = 48 and the Prandtl number Pr = 890.
Inspired by [30], we consider four metrics for our results. The first is simply the maximum

pointwise temperature in the cylinder

θmax = max
jkl

Θjkl.
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The second is the kinetic energy, Eu, defined earlier, while the third is the “thermal energy”

Eθ =
1

V

∫
Ω
θ2 dΩ,

where V is the volume of Ω. The final measure is the scaled Nussel number

Nu =
1

A

∫
∂Ωt

θt dA,

where θt denotes the temperature on the top of the domain.
We integrate the governing equations until a fixed time tf = 30. This should be sufficient

as the steady state pattern is formed around tf = 10. The numerical results are given in
Table 1.
This seems to confirm grid independence of the solution, as well as a tolerance of 10−6

being sufficient. However, an interesting observation is that this is only one of the final
states we have obtained for the same problem. For two of the calculations we also obtained
an eight cell solution (see Figure 8(b)) instead of a seven cell solution (see Figure 8(a)).
The results for these two cases are given in Table 2.

Table 1: Different measures of the seven cell final state (Figure 8(a)). We consider three
different grids and three different tolerances; the same tolerance is used in both
the Helmholtz solver and the consistent pressure Poisson solver. Each simulation
is started with a different random initial condition for the temperature. The time
step is ∆t = 1

200 .

tolerance grid θmax (Eu)
1
2 (Eθ)

1
2 Nu

10−6
N = 8, K = 48 0.3128 1.9357 0.1093 0.0881
N = 12, K = 48 0.3128 1.9357 0.1093 0.0881
N = 8, K = 192 0.3128 1.9358 0.1093 0.0881

10−8
N = 8, K = 48 0.3128 1.9358 0.1093 0.0881
N = 12, K = 48 0.3127 1.9358 0.1093 0.0881
N = 8, K = 192 0.3128 1.9358 0.1093 0.0881

10−10
N = 8, K = 48 0.3128 1.9357 0.1093 0.0881
N = 12, K = 48 0.3127 1.9358 0.1093 0.0881
N = 8, K = 192 0.3128 1.9358 0.1093 0.0881

Table 2: Measures for the two simulations that yielded an eight cell solution (Figure 8(b)).

tolerance grid θmax (Eu)
1
2 (Eθ)

1
2 Nu

10−8 N = 8, K = 48 0.3060 1.9557 0.1096 0.0901
10−10 N = 8, K = 192 0.3061 1.9558 0.1096 0.0901

Again, it seems that the measures are sufficiently grid independent. In addition, these
tests seem to indicate that, for this geometry and for the chosen non-dimensional numbers,
there exist more than one final state. We will return to this issue later.
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To check that the temporal component of the error also behaves as expected, we perform
the same integration using a time step half the size used in Table 1. The results are given in
Table 3. We seem to have about four digits of accuracy in the first calculations, something
which fits nicely with the experience from convergence tests for the Navier-Stokes case.
We conclude that the numerical solution also seems to behave as expected with respect to
the temporal integration.

Table 3: Measures using two different time steps. We have here used K = 48, N = 12, and
a tolerance tol = 10−10.

∆t θmax (Eu)
1
2 (Eθ)

1
2 Nu

1
200 0.3128 1.9357 0.1093 0.0881
1

400 0.3128 1.9358 0.1094 0.0882

Secondary instability

As mentioned in the Introduction, a secondary instability in the system has been found,
both experimentally [31] as well as in a DNS [3]. As another indication of the correctness
of our computational tool, we want to make sure that we can recreate this effect.
The secondary instability is known to kick in for

ε =
∆T −∆Tc

∆Tc
=

∆T

∆Tc
− 1 ∼ 3,

where ∆Tc is the critical temperature difference for convection to occur and ∆T the ac-
tual temperature difference in the system. Since the Marangoni number is linear in the
temperature difference, we have to increase the Marangoni number with approximately a
factor of 4. We do not know the critical Marangoni number / critical temperature differ-
ence precisely. However linear stability theory for a system without walls predicts that the
critical Marangoni number lies somewhere around 79.6. The existence of walls increases
this somewhat. Taking these facts into consideration, we have chosen a Marangoni number
Ma1 = 105 for the calculations within the primary instability regime, and a Marangoni
number Ma2 = 400 for the calculations within the secondary instability regime. As the
cells should be square in shape [31], we have focused our attention on square containers
since they should give the most uniform patterns. The results obtained for two different
geometries are given in Figure 6 and Figure 7. We clearly observe that the increased
Marangoni number has driven the cells toward a square shape, as predicted.
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(a) Primary instability (b) Secondary instability

Figure 6: Two different resulting flow patterns in a square container with Γ = 9.5, Ra = 48,
and Pr = 890. The left plot shows a calculation with Ma = 105 which is
within the primary instability regime. The right plot shows a calculation with
Ma = 400, where a secondary instability, which tends to drive the flow towards
square cells, is dominating.

(a) Primary instability (b) Secondary instability

Figure 7: Two different resulting flow patterns in a square container with Γ = 12.0, Ra =
48, and Pr = 890. The left plot shows a calculation with Ma = 105 which is
within the primary instability regime. The right plot shows a calculation with
Ma = 400, where a secondary instability, which tends to drive the flow towards
square cells, is dominating.

6 Pattern selection from random initial conditions

Since the parameter space for this problem is quite large, we have focused our attention
mainly on the parameter Γ, the global aspect ratio of the computational domain, and the
effect of the shape of the vessel. In these tests we start each simulation with a random
initial condition for the temperature as described earlier. The majority of the simulations
have been performed with Ra = 48 and Ma = 105. These values were chosen since they
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are well above the critical numbers for our problems, yet well below the supercritical regime
where the secondary instability (which shifts the pattern selection toward square cells) is
expected to dominate. In addition, the availability of experimental data for these values
is quite extensive. All simulations have been performed with Pr = 890 which corresponds
to silicon oil. This is also the fluid used in many experiments.
We start by considering a container with a circular cross-section and Γ = 8.38. Our

earlier grid independence study revealed the presence of more than one final state, and we
will now investigate this effect in more detail. To this end, we perform a statistical study
comprising 500 simulations, each starting from a different random initial condition for the
temperature. The results are reported in Table 4.
These results indicate the importance of the initial conditions on the resulting pattern.

While the seven cell pattern seems to be the preferred one (in the sense that the system
selects it in the vast majority of simulations), there are several possible final states. In
just 500 simulations, we observe three possible patterns for a fairly small container. We
conclude that it is the random initial condition for the temperature which causes the
different patterns since it is the only thing that differs between the simulations.

Table 4: Numerical results for a circular container with Γ = 8.38. The non-dimensional
numbers are kept at Ra = 48 and Ma = 105. We report the number of cells
observed at steady state for 500 independent calculations.

No. of cells No. of cases
6 1
7 480
8 19

Our next series of tests involves a hexagonal container with Γ = 22. The large aspect
ratio yields convection patterns with more cells, and each simulation is much more time
consuming to integrate until a steady state. Again, we perform many simulations of the
same system, each starting with a different random initial condition for the temperature.
Most of the simulations ended up in a stationary and very regular pattern with 48 cells.
However, we also found several exceptions.
The first exception is a simulation which ended up in a 52-cell pattern; see Figure 9.

The second exception is a simulation which ended up in a final state with one of the cells
maintained in a steady periodic (oscillatory) state which was maintained for close to a
thousand units of dimensionless time; see Figure 10.
Of particular interest, however, are two patterns which ended up with a star defect

resembling those observed in experiments; see Figure 1 for an experimental result and
Figure 12 for our numerical results. Note that the experimental result in Figure 1 was
obtained in a larger container with a circular cross-section, while our results have been
obtained in a container with a hexagonal cross-section. After each defect appeared, we
integrated the system for a long time and the pattern did not change, indicating that
this pattern indeed represents a possible configuration of the system. It is interesting to
note that we are able to obtain such a dislocation simply through a change of the initial
condition. It has earlier been speculated that such defects are due to impurities in the
experimental setup.
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(a) 7 cell pattern. (b) 8 cell pattern.

Figure 8: Two possible cell patterns obtained at steady state for Ma = 105, Ra = 48,
Pr = 890, and Γ = 8.38.

(a) 48 cells (b) 52 cells

Figure 9: Two different resulting flow patterns in a hexagonal container with Ma = 105,
Ra = 48, Pr = 890, and Γ = 22. The only difference between the two simula-
tions is the random initial condition for the temperature. The 48-cell configura-
tion appears to be the most common, while the 52-cell configuration is a more
exceptional case.

However, our numerical result show that such defects may appear even if the geometry
is perfect. Since we are only able to check a limited number of cases, it is difficult to
give a precise estimate for the probability of such defects to occur. In our experiments we
observed patterns with defects in 2 out of 250 simulations. Note that while the orientation
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of the two patterns are different, we believe they describe the same solution. By rotating
and flipping around the y-axis, we can orientate the rightmost flow pattern the same way
as the leftmost. The flow patterns then look similar to the naked eye; in fact, we found a
maximum pointwise error of less than 1%, measured relative to the maximum temperature.
This strongly suggests that the two solutions with dislocations represent a single possible
state the system can settle in (save for rotation and mirroring).

 

(a)

(b) (c) (d)

(e) (f)

Figure 10: Final oscillatory pattern after long time integration for a hexagonal container
with Ma = 105, Ra = 48, Pr = 890, and Γ = 22. The overall pattern is
shown in (a), while the remaining plots show a close-up of the pattern near the
oscillatory cell at different times during one period.

We also mention that we have performed similar tests with other containers, in which
case we did not observe any defects. Overall, this seems to indicate that the appearance
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of such defects is rather rare. This also fits well with the experiences from experiments
where the appearance of such defects tend to be an exception rather than the norm.
The Bénard-Marangoni problem we have studied has a rich set of solutions. For the

chosen Marangoni number, Rayleigh number, and Prandtl number, the key sources behind
the different patterns we observe are the initial condition for the temperature and the
domain aspect ratio. The importance of the initial conditions seems to grow with the
aspect ratio which is only to be expected — the more cells in the pattern the larger the
set of possible orientations of those cells. We have also investigated the effect of the shape
of the container on the resulting patterns. In Figure 11 we give the number of cells in the
final patterns for the three container shapes we have considered. We remark that some
of the simulations yield a steady periodic (oscillatory) state for one or more cells after
long time integration. In these cases we have taken the number of cells to be the largest
number achieved during the oscillations. Our results indicate that the number of cells is
fairly invariant with respect to the shape of the container.
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Figure 11: The number of cells in the final pattern as a function of Γ, the global aspect
ratio of the domain, for circular, hexagonal and square containers. As expected,
the number of cells seems to scale approximately quadratically with Γ.

Symmetrizing the initial conditions

In all the tests we have considered so far we have started with random initial conditions
for the temperature; this should allow the system to select the most likely final pattern. It
is also of interest to see if we are able to force the system into selecting different patterns.
To this end, we perform selected tests where we impose initial conditions with inherent
symmetries. We limit our attention to square and circular geometries. We choose the
initial condition for the temperature with either quadrant or octant symmetry, while still
being random within each quadrant/octant. In the vast majority of these tests, the en-
forced symmetries eventually broke down, and the system reconfigured itself into a pattern
which did not exhibit the initially enforced symmetries. However, even though the initially
enforced symmetry breaks down, the steady state pattern still appears to be influenced
by the initial condition. In our computations the system often ended up in a pattern that
differed from what we obtained if we started the system from random initial conditions
without any symmetries enforced. An example of such a situation can be found in Figure
13. This might seem to contradict the findings in [9], where they found no statistically sig-
nificant influence of seeding the initial condition with various patterns (triangular, square,
hexagonal). However, we believe this is not the case. In experiments there will inevitably
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be asymmetries introduced due to imperfections, and these asymmetries are what makes
the system reconfigure itself. However, under the more “ideal” conditions offered by our
numerical simulations, we also see breakdown of the initial symmetries imposed, but are
able to influence the pattern selection statistics. Whether or not this is only valid in a finite
time frame is an issue we have not been able to fully resolve through our computations.
In the literature, experiments have been reported to have been running for days before
the system eventually reconfigured itself [9]. Running such long simulations is outside the
scope of our current implementation. While the breakdown of the initially imposed sym-
metries seems to be a general trend, we have observed exceptions. Figure 14 shows a rare
case where a pattern compatible with the enforced octagonal symmetry seems to exist. If
we use a slightly larger or slightly smaller container, the octagonal symmetry does break
down, another indication that such configurations are highly unstable and that they are
only maintainable for very specific container sizes (i.e., specific values of Γ). In Table 6 we
report results where we have performed 500 simulations for the specific case Γ = 8.5, with
and without enforced symmetries. In Table 5 we have performed the same test, but using
the container with global aspect-ratio 8.38 discussed earlier. For the larger container, we
obtain the additional the 9 cell solution as shown earlier. However, it also seems that the
occurance of the 8 cell solution has increased somewhat. These are strong indications that
symmetries in the initial condition do in fact influence the pattern formation.

Table 5: Numerical results for a circular container with Γ = 8.38. The non-dimensional
numbers are kept at Ma = 105, Ra = 48, Pr = 890. We report the number
of cells observed at steady state for 500 independent simulations where we start
with completely random calculations (second column) and initial conditions with
enforced octagonal symmetries (third column).

No. of cells Completely random Symmetrized
7 481 480
8 19 20

Table 6: Numerical results for a circular container with Γ = 8.50. The non-dimensional
numbers are kept at Ma = 105, Ra = 48, Pr = 890. We report the number
of cells observed at steady state for 500 independent where we start with com-
pletely random calculations (second column) and initial conditions with enforced
octagonal symmetries (third column).

No. of cells Completely random Symmetrized
7 468 424
8 32 73
9 0 3
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(a) Dislocation 1 (b) Dislocation 2

(c) Difference

Figure 12: Two simulations which exhibit a ’star’ defect resembling those which have been
occasionally observed in experiments; see Figure 1. We have used Ma = 95,
Ra = 48, Pr = 890, and Γ = 22.0. The simulations were started from random
initial conditions for the temperature. The first two plots show the final patterns
after long time integration, while the last plot shows the difference between the
two solutions after a 90 degree rotation and then mirroring. The maximum
pointwise difference between the two independent cases, measured relative to the
maximum pointwise temperature, is less than 1%, indicating a fixed dislocation
pattern whenever a dislocation occurs. Only two out of 200 simulations resulted
in dislocations in the otherwise regular hexagonal pattern.
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(a) No symmetries. (b) Quadrant symmetries. (c) Octant symmetries.

Figure 13: Resulting patterns from simulations where we enforce (a) none, (b) quadrant,
or (c) octant symmetries on the initial conditions for the temperature. The
final patterns are quite different, an indication that we are able to influence the
pattern selection process through our choice of initial condition.

(a) 7 cell pattern. (b) 9 cell pattern.

Figure 14: Steady state patterns for two simulations with Ma = 105, Ra = 48, Pr = 890,
and Γ = 8.5. The left figure shows the pattern when we start from completely
random initial conditions, while the right figure shows the pattern when we
start from random initial conditions with octant symmetries. This symmetry is
never broken during the simulation; the system evolves into a pattern consisting
of a single cell in the middle enclosed by 8 cells around, a consequence of the
original octant symmetry.

7 Results in selected deformed containers

We now turn our attention to pattern selection in slightly deformed containers. As men-
tioned earlier, it has been theorized [23, 21] that small geometric irregularities may have
caused the (rare) dislocations observed in otherwise regular convection patterns. We will
here not consider very small geometric irregularities for two reasons: (i) because of the
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significant computational challenges associated with resolving small geometric details; and
(ii) because our numerical results have shown that such dislocations can occur in "ideal"
containers. Instead, we assume that the deformations are nontrivial and fairly regular. In
the following, the deformations along the bottom surface are taken to be localized Gaus-
sians,

z0 (x, y) = ae
(x−x0)

2+(y−y0)
2

σ2

where (x0, y0) is the center, σ the standard deviation and a the amplitude. See Figure 15
for an illustration identifying the parameters involved.

σ
(xc, yc)
a

(a) Side view

σ
(xc, yc)

(b) Top view

Figure 15: A cylindrical container with a Gaussian bump at the bottom. (a) Side view of
the bump centered at (xc, yc) with standard deviation σ. We have here zoomed
in on the bump to highlight the definition of the parameters. b) Top view
showing a sample placement of the bump.

In the first series of tests, we choose a deformed version of the circular container con-
sidered earlier; see Table 4 and Figure 8. We now put a small local bump with a = 0.05,
σ = 0.2 centered at (−2,−2) at the bottom. This seems to have fairly large consequences
for the stability of the resulting system. While all the 100 simulations performed without
the bump rapidly converged to a final stable flow pattern, most of the simulations now end
up in a steady-periodic (oscillatory) state; see Table 7. With oscillatory we mean that one
or more cells appear and disappear in a steady-periodic fashion; see Figure 17. However,
in the cases that did settle in a steady state, we obtained the familiar (and dominant) 7
cell pattern, now slightly skewed due to the deformation on the bottom; see Figure 16. In
all the cases where we obtained a steady state solution, the pattern appeared quite fast,
within a few tens of non-dimensional time units and was then essentially unchanged during
the rest of the simulations. In the cases where the system evolved into an oscillatory state,
it stayed in this state for the rest of the simulation. It appears that the oscillatory state is
a fundamental state, in the sense that, if the system evolves into such a state, it will stay
oscillatory for all times.
We also performed limited tests in a larger container (the same hexagonal container

discussed earlier) except this time with bumps of different sizes and amplitudes. Since
these calculations take substantially longer time, we have not been able to repeat these
simulations enough times to extract reliable statistical data. However, we still think some
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information can be extracted from the few cases we have been able to complete.
In the first case we want to discuss, we put a bump with a = 0.05 and σ = 2.0 centered

at (−5, 0). The calculation was initialized using the 48-cell solution seen in Figure 9.
The size of the bump was chosen so as to approximately cover one convection cell. The
resulting pattern can be seen in Figure 18. We observe that the effect of the bump seems
to be localized to the area where the bump is centered, with little or no influence on the
global pattern. To see if this is a result of the particular initial condition we used, we also
performed a calculation where we started from a random initial condition compatible with
the deformed container. The pattern we obtained can be seen in Figure 20(a). In this case,
the deformation seems to have a much larger influence on the global pattern. The pattern
comes through as somewhat irregular.
In addition, one of the cells (the one at the bottom of the figure) is in a steady-periodic

(oscillatory) state. Whether or not the pattern eventually will settle into something re-
sembling Figure 18 is hard to conclude. The pattern seems quite stable; we integrated
the system for about 200 units of dimensionless time before the pattern settled. We then
integrated the system for another 500 units of dimensionless time without any qualitative
change occurring.

(a) Without the bump. (b) With the bump.

Figure 16: The resulting pattern from two computations. The left figure shows the re-
sulting pattern in the container without the bump. The right figure shows the
stationary pattern obtained when there is a bump at the bottom. The right
pattern resembles the left one, except locally where the bump is placed, the
system behaves as if the fluid layer is thinner.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Final oscillatory pattern after long time integration in a circular container with
Ma = 105, Ra = 48, Pr = 890 and Γ = 8.38. The plots show 6 evenly spaced
snapshots over a single period. There is a small bump with a = 0.05, σ = 0.2
centered at (−2,−2). This results in a steady periodic flow pattern.
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Table 7: Numerical results for a circular container with Γ = 8.38 and a Gaussian defor-
mation (a bump) at the bottom with a = 0.05 and σ = 0.02 and centered at
(−2,−2). The non-dimensional numbers were kept at Ma = 105, Ra = 48, and
Pr = 890. In each of the 100 independent simulations a different random initial
condition is imposed on the temperature.

Pattern No. of cases
7 cell, stable 23
oscillatory 77

(a) Initial pattern. (b) Final pattern.

Figure 18: The resulting pattern from a simulation in a hexagonal container with Ma =
105, Ra = 48, Pr = 890, and Γ = 22.0. We have placed a small bump with
a = 0.05 and σ = 2.0 centered at (−5, 0). The simulation is started from a
steady state pattern in a container without the bump, shown in the left plot.
The system quickly evolves into the pattern shown in the right plot. The bump
has no apparent effect on the global pattern; we can only notice it on the
convection cell straight above the bump, which is slightly smaller than the rest
of the cells in the pattern.

Next, we performed the same test using a “bump” with negative amplitude, i.e., instead
of having a bump at the bottom of the container, we now have a dip. The results when
starting from the ideal 48-cell convection pattern can be seen in Figure 19. These results
are in line with those obtained for the bump: the only noticeable effect on the flow pattern
seems to be localized to the cell strictly above the dip, with no apparent influence on
the global flow pattern. The results when starting from a random initial condition for
the temperature can be found in Figure 20(b). As in the case of a “bump”, we observe a
somewhat irregular flow pattern.
We have also performed a few additional simulations starting from different random

intitial conditions for the temperature. All the patterns found after long time integration
seem to deviate from the very regular hexagonal patterns observed in containers with
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no deformations. The pattern may also include oscillatory cell(s), thus indicating that a
geometry deformation can also have a destabilizing effect.
We have not been able to trigger defects in the regular convection patterns through the

selected geometry deformations, in the sense of arriving at diamond shape cells/stars. This
was not expected either since our deformations are non-trivial. What we have been able to
demonstrate is that the system is more likely to be unstable, in the sense of settling into
a steady periodic (oscillatory) state, in particular for smaller containers. If the amplitude
of the deformations becomes sufficiently large, we have even been able to destabilize larger
containers when starting from a regular hexagonal pattern associated with an undeformed
container.

(a) Initial pattern. (b) Final pattern.

Figure 19: The resulting pattern from a calculation in a hexagonal container with Ma =
105, Ra = 48, Pr = 890, and Γ = 22.0. We have placed a small dip with
a = −0.05 and σ = 2.0 centered at (−5, 0). The calculation is started from a
developed pattern in a container without the dip, shown in the left figure. The
system quickly evolves into the pattern shown in the right plot. The dip has no
apparent effect on the global pattern, we can only notice it on the convection
cell straight above the dip, which is slightly larger than the rest of the cells in
the pattern.
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(a) With a bump. (b) With a dip.

Figure 20: The resulting pattern from a simulation in a hexagonal container with Ma =
105, Ra = 48, Pr = 890, and Γ = 22.0. In the left picture we have placed a
small bump with a = 0.05 and σ = 2.0 centered at (−5, 0). In the right picture
we have placed a small dip with a = 0.05 and σ = 2.0 centered at (−5, 0). The
simulations were started from random initial conditions. The systems evolved
into the patterns shown, and remained in this state for about 800 units of
dimensionless time.

8 Summary and conclusions

We have investigated the pattern formation in Bénard-Marangoni flows by numerically solv-
ing the incompressible Navier-Stokes equations coupled with a convection-diffusion equa-
tion for the temperature. The key parameters governing this problem are the Marangoni
number, the Rayleigh number, the Prandtl number, and the global aspect ratio, Γ, of the
three-dimensional container. We have considered Marangoni numbers higher than the crit-
ical number for the onset of convection rolls, but still in the vicinity of the critical number.
Containers with circular, square and hexagonal cross-sections have been investigated. The
main parameter we have varied has been the global aspect ratio. In addition, we have
explored the effect of using different initial conditions.
Our main finding is related to the importance of the initial conditions for the system.

Most of our simulations have been started with a zero initial velocity field and a random
initial temperature field. For a given set of non-dimensional numbers, and for a given
container, the system may evolve into more than one final state. For different random initial
temperature fields, the final pattern may have a preferred state which is also consistent
with experimental observations. However, the computational results indicate that there
may exist several other final states for the system.
For example, the system may reach a steady state pattern which include different number

of convection cells (and where one state is a preferred state). The system may also end
up in a steady-periodic state in which one or more of the convection cells appear and
disappear in an oscillatory fashion. We have also observed that the system may end up in
a steady state where the pattern is quite regular over much of the domain, but with local
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dislocations or irregularities, e.g., the formation of a star-like pattern in the middle of an
otherwise hexagonal pattern. Such dislocations have also been observed experimentally,
although they appear to be somewhat rare. It has been speculated in the literature that
the reason for such irregularities in the pattern is imperfections in the geometry or the
experimental setup. However, our simulations have shown that such dislocations may
appear under otherwise ideal conditions. For a given set of non-dimensional numbers, and
for a given container, we have shown that most of the simulations end up in a preferred
state with a regular (hexagonal) pattern. Only on rare occasions will the system end up in
a state with such dislocations. Again, the only difference between these simulations have
been the use of different random initial conditions for the temperature field.
We have also investigated the case of symmetrizing the initial conditions for the tem-

perature, e.g., imposing a square or octant symmetry, while otherwise using a random
field within each quadrant or octant. Our results indicate that the initial symmetry will
be broken as the system evolves to a final state. Still, this final state may be different
compared to the state reached when starting with a completely random temperature field.
In rare cases (for a container with a particular global aspect ratio), we have observed that
the initial symmetry imposed at the start of the simulation is maintained until a final state
has been reached.
Our final investigation relates to imposing a local Gaussian deformation at the bottom

of the container. For a small circular container, we have observed that this causes the
convection pattern to become more unstable, i.e., fewer cases end up in a steady state,
and more cases end up in a steady-periodic (oscillatory) state. For a larger hexagonal
container, we have performed tests indicating the sensitivity of the initial condition. If
we use the steady state solution without a deformation as a (mapped) initial condition
for a case with a deformation, the steady state pattern is only slightly changed (the cell
above the deformation changes size). However, if we start from a completely random initial
condition for the temperature, the system seems to evolve into a state without the very
regular hexagonal pattern, but instead exhibit a much more irregular pattern, possibly
including oscillatory cells.
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