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Abstract

The paper deals with the numerical treatment of stochastic differential-algebraic
equations of index one with a scalar driving Wiener process. Therefore, a partic-
ularly customized stochastic Runge-Kutta method is introduced. Order conditions
for convergence with order 1.0 in the mean-square sense are calculated and coeffi-
cients for some schemes are presented. The proposed schemes are stiffly accurate and
applicable to nonlinear stochastic differential-algebraic equations. As an advantage
they do not require the calculation of any pseudo-inverses or projectors. Further, the
mean-square stability of the proposed schemes is analyzed and simulation results
are presented bringing out their good performance.
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1 Introduction

Stochastic differential equations (SDEs) have turned out to be the appropriate
instrument to deal with stochastically disturbed ordinary differential equations
(ODEs). But in many areas of applications like mechanical multibody systems
or network simulation one is not confronted with ODEs but with differential-
algebraic equations (DAEs). These are differential equations on manifolds and
their stochastic counterparts are called stochastic differential-algebraic equa-



tions (SDAEs). One important example, where SDAEs typically arise, is the
modelling of electronic circuits that are disturbed by so called electrical noise.

SDAEs are a generalization of both, DAEs and SDEs. While the theory and
numerical treatment of DAEs is well-understood (see e.g. [2,6,7]) and a lot
of research has been devoted to the field of SDEs (see e.g. [9,10]), the un-
derstanding of SDAEs is still in its infancy. However, first results have been
obtained in recent years. For example, Schein and Denk consider linear SDAEs
and propose a two-step as well as a generalized Euler method for their nu-
merical treatment in [16,17]. This two-step method is restricted to SDAEs
with additive noise and therefore attains strong convergence order 1.0 while
the generalized Euler method can be applied to linear SDAEs and has strong
order 0.5. Moreover, Schein gives existence and uniqueness results for linear
SDAEs in [16]. On the other hand, Winkler proves the existence and unique-
ness for solutions of nonlinear SDAEs with index 1 in [19] and, together with
Römisch, adapts some schemes for SDEs to make them applicable to SDAEs
in [12,19]. They propose a drift-implicit Euler, a split-step backward Euler and
a trapezoidal scheme which attain strong order 0.5 and a drift-implicit Mil-
stein scheme of strong order 1.0. Furthermore, Sickenberger, Weinmüller and
Winkler propose linear two-step Maruyama schemes for the numerical treat-
ment of SDAEs with small noise in [18]. The proposed multistep Maruyama
schemes in general attain at most strong order 0.5, however in case of small
noise some higher orders of convergence are possible for a restricted range of
stepsizes.

In the present paper we introduce stochastic Runge-Kutta (SRK) methods
with convergence order 1.0 in the mean-square sense for SDAEs of index 1
with scalar noise. In contrast to the schemes proposed in [16,17], our SRK
methods can also be applied to nonlinear SDAEs and are not restricted to
the additive noise case. Compared to the Euler schemes, the trapezoidial rule
and the multistep Maruyama schemes in [12,18,19] the SRK method proposed
in the following attains a higher order of convergence. Further, the split-step
backward Euler scheme and the Milstein scheme are not easy to implement
because they need the explicit calculation of projectors, pseudo-inverses or
derivatives. As an additional advantage, the new SRK method is derivative-
free and does not require the calculation of any projectors or pseudo-inverses.

The paper is organized as follows: Firstly, we give a brief introduction to
SDAEs of index 1. In Section 2 we propose a new SRK method and calculate
order conditions for the coefficients of the SRK method assuring convergence
for SDEs with order 1.0 in the mean-square sense. Then, we show how to mod-
ify an SRK scheme designed for SDEs such that it can be directly applied to
SDAEs of index 1, and we present some stiffly accurate SRK schemes for order
1.0. Furthermore, a stability analysis is carried out for the proposed schemes
w.r.t. mean-square stability in Section 4 and the corresponding domains of
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stability are determined. Finally, we present some simulation results that con-
firm the theoretical order of convergence for the proposed SRK schemes. The
results are summarized by a short conclusion.

In the following, let (Ω,F , P ) be a complete probability space and let (Ft)t≥0

denote a filtration which fulfills the usual conditions [9]. We consider a d-
dimensional index 1 SDAE system in integral form which can be written as

M · Xt = M · Xt0 +
∫ t

t0
f(s, Xs) ds +

∫ t

t0
g(s, Xs) dWs (1.1)

for t ∈ I = [t0, T ]. Here, M is a constant d× d matrix which can be singular,
(Wt)t≥0 denotes a one-dimensional Wiener process which is adapted w.r.t. the
filtration (Ft)t≥0 and X = (Xt)t∈I denotes the d-dimensional solution process.
Further, the functions f, g : I×Rd → Rd are assumed to be Borel-measurable
with f ∈ C1,1(I×Rd, Rd) and for the initial value we assume Xt0 ∈ L2(Ω) and
that Xt0 is independent of the Wiener process (Wt)t≥t0 . For ease of notation,
we also make use of the short-hand notation for SDAE (1.1)

M · dXt = f(t, Xt)dt + g(t, Xt)dWt (1.2)

with consistent inital value Xt0 . If the matrix M is non-singular, premultiply-
ing by M−1 transforms (1.2) to a classical SDE. However, if M is singular,
we have a system of SDAEs. To be more specific: If M is singular, there exist
nonsingular matrices P and Q such that

PMQ =







ID 0

0 0





 . (1.3)

Premultiplying (1.2) by P and using the transformed variables Q−1Xt =
(XD

t , XA
t ) we obtain the system

dXD
t = fD(t, XD

t , XA
t )dt + gD(t, XD

t , XA
t )dWt (1.4)

0 = fA(t, XD
t , XA

t )dt + gA(t, XD
t , XA

t )dWt

consisting of differential equations and algebraic constraints. Here, XD
t and

XA
t denote the differential and algebraic components of Xt respectively. Then,

the following definition is given in [19]:

Definition 1.1 The SDAE (1.2) is said to be an index 1 SDAE if

(i) the noise sources do not appear in the constraints, and
(ii) the constraints are globally uniquely solvable for the algebraic variables.

Thus, the definition of index 1 SDAEs implies that gA ≡ 0 and the remaining
algebraic constraints fA(t, XD

t , XA
t ) = 0 can be solved with respect to XA

t ,
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i.e. there exists a function F A such that XA
t = F A(t, XD

t ). Inserting this into
the differential part of (1.4), we obtain an SDE in XD

t , which is sometimes
referred to as the state space form (SSF):

dXD
t = fD(t, XD

t , F A(t, XD
t ))dt + gD(t, XD

t , F A(t, XD
t ))dWt (1.5)

XA
t = F A(t, XD

t )

In Definition 1.1, the second condition is guaranteed, if the inverse of the
Jacobian fA

z (t, y, z) is uniformely bounded w.r.t. t, y and z. If in addition f
and g fulfill a global Lipschitz condition w.r.t. the state variable x and if g
is continuous in t, then there exists a pathwise unique solution process X of
SDAE (1.1) (see Theorem 4 in [19]).

Our next aim is to construct numerical schemes which give identical solutions
when directly applied to the SDAE (1.1) and to the state space form (1.5).
Therefore, we firstly introduce a new SRK method attaining order 1.0 for
SDEs in the following section.

2 A stochastic Runge-Kutta method for SDEs

In this section, we consider a d-dimensional SDE system with a scalar driving
Wiener process given by

dYt = f(t, Yt) dt + g(t, Yt) dWt (2.1)

for t ∈ I with some initial value Yt0 ∈ L2(Ω). Let a discretization Ih =
{t0, t1, . . . , tN} with t0 ≤ t1 ≤ . . . ≤ tN = T of the time interval I with step
sizes hn = tn+1 − tn and maximum step size h be given. Then, we say that
a time discrete approximation process (yt)t∈Ih

converges in the mean square
sense with order p to the solution Y of SDE (2.1) at time T if there exists a
constant C > 0, not depending on h, and some δ0 > 0 such that for h ∈ ]0, δ0]

(E(‖YT − yT‖2))1/2 ≤ Chp. (2.2)

We consider the following s-stages stochastic Runge-Kutta method for SDE
(2.1) defined by y0 = Yt0 and

yn+1 = yn +
s

∑

i=1

αihn f(tn + ci hn, Hi)

+
s

∑

i=1

(

β(1)
i I(1),n + β(2)

i

I(1,1),n√
hn

+ β(3)
i

√

hn

)

g(tn + ci hn, Hi)

(2.3)
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for n = 0, . . . , N − 1, making use of the notation yn = ytn and with stages

Hi = yn +
s

∑

j=1

Aijhn f(tn + cj hn, Hj)

+
s

∑

j=1

(

B(1)
ij I(1),n + B(2)

ij

I(1,1),n√
hn

+ B(3)
ij

√

hn

)

g(tn + cj hn, Hj)

(2.4)

for i = 1, . . . , s. For some independent N (0, 1)-distributed random variables
ξn, the random variables I(1),n and the iterated stochastic integrals I(1,1),n can
be calculated by

I(1),n =
√

hn · ξn and I(1,1),n = 1
2(I

2
(1),n − hn). (2.5)

The coefficients of the SRK method (2.3) are presented by an extended Butcher
tableau:

c A B(1) B(2) B(3)

αT β(1)T β(2)T β(3)T
(2.6)

Now, by applying the colored rooted tree theory for Itô SDEs given in [4,13,14],
order conditions for the coefficients of the SRK method (2.3) can be easily
calculated, making use of the vector e = (1, . . . , 1)T ∈ Rs:

Theorem 2.1 Let f, g ∈ C1,3(I ×Rd, Rd). If the coefficients of the stochastic
Runge–Kutta method (2.3) fulfill the equations

1. αTe = 1 2. β(1)T e = 1

3. β(2)T e = 0 4. β(3)T e = 0

5. β(1)T B(1)e =
λ

2
6. β(3)T B(3)e = −λ

2

7. β(2)T B(3)e + β(3)T B(2)e = 1 − λ 8. αT B(3)e = 0

9. β(1)T B(3)e + β(3)T B(1)e = 0 10. β(2)T B(2)e = 0

11. β(1)T B(2)e + β(2)T B(1)e = 0 12. β(3)T Ae = 0

13. 2β(1)T (B(1)e)(B(2)e) + 2β(1)T (B(1)e)(B(3)e) + β(2)T (B(1)e)2

+ β(2)T (B(2)e)2 + β(2)T (B(2)e)(B(3)e) + β(3)T (B(1)e)2

+
1

2
β(3)T (B(2)e)2 + β(3)T (B(3)e)2 = 0

14. β(1)T (B(1)(B(2)e)) + β(1)T (B(2)(B(1)e)) + β(1)T (B(1)(B(3)e))

+ β(1)T (B(3)(B(1)e)) + β(2)T (B(1)(B(1)e)) + β(2)T (B(2)(B(2)e))

+
1

2
β(2)T (B(2)(B(3)e)) +

1

2
β(2)T (B(3)(B(2)e)) + β(3)T (B(1)(B(1)e))
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+
1

2
β(3)T (B(2)(B(2)e)) + β(3)T (B(3)(B(3)e)) = 0

for some λ ∈ R and if c = Ae, then the stochastic Runge–Kutta method (2.3)
attains order 1.0 for the strong approximation of the solution of the Itô SDE
(2.1) with scalar noise.

Proof. The SRK method (2.3) is covered by the general class of SRK methods
proposed in [13]. Therefore, Proposition 5.2 in [13] based on the colored rooted
tree analysis can be applied, which directly results in the order conditions given
in Theorem 2.1. !

Remark 2.2 Let f, g ∈ C1,2(I × Rd, Rd). Then, Conditions 1.–4. together

with the condition β(1)T B(1)e + 1
2β

(2)T B(2)e + β(3)T B(3)e = 0 are sufficient for
an order 0.5 strong SRK method (2.3).

Example 2.3 The well-known stochastic trapezoidal rule [10] satisfies the or-
der 0.5 conditions. The method is given by the following Butcher tableau:

0 0 0 0 0 0 0 0 0

1 1
2

1
2 1 0 0 0 0 0

1
2

1
2 1 0 0 0 0 0

Remark 2.4 From the order conditions of Theorem 2.1 one can choose B(2)
ij =

0 and β(2)
i = 0 for i, j = 1, . . . , s in the case of λ = 1. Thus, the SRK method

(2.3) can be significantly simplified.

3 Stiffly accurate SRK methods applied to SDAEs

The SRK method (2.3) is called stiffly accurate if yn+1 = Hs, or equivalent,

if αi = Asi and β(ν)
i = B(ν)

si for i = 1, 2, . . . , s and ν = 1, 2, 3. Stiffly accurate
SRK methods with a nonsingular coefficient matrix A = (Aij) can be applied
to the index 1 SDAE (1.2) with singular matrix M as follows

M · Hi = M · yn +
s

∑

j=1

Aijhn f(tn + cjhn, Hj)

+
s

∑

j=1

(

B(1)
ij I(1),n + B(2)

ij

I(1,1),n√
hn

+ B(3)
ij

√

hn

)

g(tn + cjhn, Hj),

yn+1 = Hs

(3.1)
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for i = 1, . . . , s and n = 0, 1, . . . , N−1, cf. [11]. Moreover, the order conditions
given in Theorem 2.1 apply without modifications. This can be proved by the
following argument: The linear transformations used to transfer (1.2) to (1.4)
can be applied to the numerical solution as well, resulting in

HD
i = yD

n +
s

∑

j=1

Aijhn fD(tn + cjhn, HD
j , HA

j )

+
s

∑

j=1

(

B(1)
ij I(1),n + B(2)

ij

I(1,1),n√
hn

+ B(3)
ij

√

hn

)

gD(tn + cjhn, H
D
j , HA

j ),

(3.2a)

0 =
s

∑

j=1

Aijhn fA(tn + cjhn, HD
j , HA

j ), (3.2b)

yD
n+1 = HD

s , (3.2c)

yA
n+1 = HA

s . (3.2d)

If A is nonsingular, then (3.2b) can be solved with respect to HA
j due to the

index 1 condition. Thus HA
j = F A(tn + cjhn, HD

j ). Inserting this into (3.2a)
gives exactly the same result as if the SRK method had been applied to the
SSF (1.5) directly. Thus, the SRK method (3.1) attains the same strong order
p for SDAE (1.1) as it possessed for SDE (2.1).

The requirement that A has to be nonsingular may be relaxed: If the first stage
is explicit, i.e. if H1 = yn, it is sufficient to require a nonsingular submatrix
(Aij)s

i,j=2. The trapezoidal rule of Example 2.3 is an example of this.

When implicit methods are applied, care has to be taken to ensure the regu-
larity of the solution of the nonlinear equations (3.1). In this paper, we restrict
ourself to diagonal implicit methods, in which the coefficient matrices A and
B(3) are lower triangular, while B(1) and B(2) are strictly lower triangular.
Within these restrictions, from the order conditions given by Theorem 2.1, we
have constructed five different order 1.0 SRK methods, presented in Table 1.
The first (RK1W1) is a first order extension of the trapezoidal rule. Because
of the FSAL property (H1,n+1 = H3,n) this method is efficiently of only two
stages. The next three (RK1W2–4) are extensions of the deterministic second
order L-stable method of Alexander [1], two of them drift-implicit, and one
drift-diffusion implicit. We like to draw attention to the second, which does not
depend on the stochastic variable I(1,1),n. For comparison, we finally present a
second drift-diffusion-implicit method, RK1W5.
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0 0 0 0 0 0 0 0 0 0 0 0 0

1
2 0 1

2 0 0 0 0 0 0 0 1 0 0

1 1
2 0 1

2 1 0 0 −1 1 0 0 0 0

1
2 0 1

2 1 0 0 −1 1 0 0 0 0

RK1W1: Reduces to the trapezoidal rule in the deterministic case.

1 −
√

2
2 1 −

√
2

2 0 0 0 0 0 0 0 0 0 0 0

1 −
√

2
2 0 1 −

√
2

2 0 0 0 0 0 0 0 1 0 0

1
√

2
2 0 1 −

√
2

2 1 0 0 −1 1 0 0 0 0
√

2
2 0 1 −

√
2

2 1 0 0 −1 1 0 0 0 0

RK1W2: Reduces to the Alexander order 2 method in the deterministic case.

1 −
√

2
2 1 −

√
2

2 0 0 0 0 0 0 0 0 0 0 0

1 −
√

2
2 0 1 −

√
2

2 0 1
2 0 0 0 0 0 −1

2 0 0

1
√

2
2 0 1 −

√
2

2 0 1 0 0 0 0 −1 1 0
√

2
2 0 1 −

√
2

2 0 1 0 0 0 0 −1 1 0

RK1W3: As RK1W2, but with no use of I(1,1),n.

1 −
√

2
2 1 −

√
2

2 0 0 0 0 0 0 0 0 1 0 0

1 −
√

2
2 0 1 −

√
2

2 0 0 0 0 0 0 0 0 −1 0

1
√

2
4

√
2

4 1 −
√

2
2

1
2

1
2 0 1

2 −1
2 0 0 0 0

√
2

4

√
2

4 1 −
√

2
2

1
2

1
2 0 1

2 −1
2 0 0 0 0

RK1W4: As RK1W2 and RK1W3, additionally implicit in the diffusion.

1
2

1
2 0 0 0 0 0 0 0 0 1 0 0

1 1
2

1
2 0 0 0 0 0 0 0 1

2 −1
2 0

1 0 1
2

1
2 0 1 0 1 −1 0 0 0 0

0 1
2

1
2 0 1 0 1 −1 0 0 0 0

RK1W5: Alternative diffusion-implicit method.
Table 1
Stiffly accurate SRK-methods of order 1 in 3 stages.
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4 Mean–square stability analysis

The stability analysis for SDEs is based on the following scalar linear test
equation with multiplicative noise,

dYt = λ Yt dt + µ Yt dWt , Yt0 = y0 ∈ R \ {0} , (4.1)

for t ≥ t0 and with some constants λ, µ ∈ C. In order to analyze the stability
of the proposed SRK method (2.3), we apply a stiffly accurate version of the
method to test problem (4.1).
In this paper, we restrict our studies to the so–called mean–square stability
(MS–stability) which denotes the analysis w.r.t. the second moment of the
solution process of SDE (4.1) and the corresponding approximation process,
respectively. See [3,5,8,10,15] for further details. The solution of SDE (4.1) is
said to be (asymptotically) MS–stable if

lim
t→∞

E(|Yt|2) = 0 ⇔ 2+(λ) + |µ|2 < 0 (4.2)

holds for the coefficients λ, µ ∈ C. We point out that for µ = 0 the stabil-
ity condition (4.2) reduces to the well known deterministic stability condition
+(λ) < 0.

We are now looking for conditions such that a numerical method applied to
SDE (4.1) yields numerically stable solutions. As a consequence of the left
hand side of the equivalence in (4.2), we say that a method is numerically
MS–stable if the approximations yn satisfy limn→∞ E (|yn|2) = 0. Applying
the numerical method to the linear test equation (4.1), we obtain

yn+1 = Rn(ĥ, k) yn , (4.3)

where Rn(ĥ, k) denotes the stability function with the parametrization ĥ = λ h
and k = µ

√
h [5,8]. Then, calculating the mean–square norm of equation

(4.3), we obviously yield MS–stability, if R̂(ĥ, k) := E(|Rn(ĥ, k)|2) < 1. The
set RMS = {(ĥ, k) ∈ C2 : R̂(ĥ, k) < 1} ⊂ C2 is then called the domain of
MS–stability of the method. Especially, RMS is called region of stability in
the case of (ĥ, k) ∈ R2 [5]. Now, the numerical method is said to be A–stable
if the domain of stability of the test equation (4.1) is a subset of RMS. Since
the domain of stability for λ, µ ∈ C is not easy to visualize, we restrict our
attention to figures presenting the region of stability with λ, µ ∈ R in the ĥ–
k2–plane. Then, for fixed values of λ and µ, the set {(λ h, µ2 h) ⊂ R2 : h > 0}
is a straight ray starting at the origin and going through the point (λ, µ2).
Clearly, varying the step size h corresponds to moving along this ray. For
λ, µ ∈ R, the region of MS–stability for SDE (4.1) reduces to the area of the
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µ h2

λ h

Implicit Euler−Maruyama

−100 −50 0 50 100
0

50

100

150

200

−5 0 5
0

5

10 µ h2

λ h

The trapezoidal rule

−100 −50 0 50 100
0

50

100

150

200

Fig. 1. Mean–square stability region for implicit Euler method and trapezoidal rule
from Example 2.3 in the left and right figure, respectively.

ĥ–k2–plane with the ĥ–axis as the lower bound and k2 < −2ĥ as the upper
bound for ĥ < 0.

Next, we will find an expression for the stability function Rn(ĥ, k) for an s-
stage method: Let H = (H1, . . . , Hs)T and 1s = (1, . . . , 1)T ∈ Rs. Then (2.4)
applied to (4.1) with equidistant step size h = hn becomes

H = 1syn + hλAH + µ
(

I(1),nB(1) +
I(1,1),n√

h
B(2) +

√
hB(3)

)

H.

Together with (2.5) and the parametrization ĥ = λh and k = µ
√

h this can
be reformulated to

H =
(

Is − ĥA − k
(

ξnB(1) +
1

2
(ξ2

n − 1)B(2) + B(3)
)

)−1

1syn.

Since the methods are stiffly accurate, that is yn+1 = Hs, the stability function
becomes

Rn(ĥ, k) = εT
s

(

Is − ĥA − k
(

ξnB
(1) +

1

2
(ξ2

n − 1)B(2) + B(3)
)

)−1

1s (4.4)

where εT
s = (0, . . . , 0, 1) ∈ Rs.

Based on this we give the stability function for 3–stages diagonally implicit
SRK methods (2.3) with Aij = B(3)

ij = 0 for j > i and B(1)
ij = B(2)

ij = 0 for
j ≥ i in the Appendix. As a result, the considered SRK method is MS–stable
for the linear test equation (4.1) on the domain

RMS = {(ĥ, k) ∈ C
2 :Γ2 + 2ΓΣ2 + 6ΓΣ4 + Σ2

1 + 6Σ1Σ3 + 3Σ2
2

+ 30Σ2Σ4 + 15Σ2
3 + 105Σ2

4 < 1} .
(4.5)

with Γ and Σi, i = 1, . . . , 4, given in the Appendix.

In the following, we present the regions of stability for the implicit Euler
method [12,19] and the trapezoidal rule from Example 2.3, both representing
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10 µ h2

λ h

RK1W2

−100 −50 0 50 100
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Fig. 2. Mean–square stability region for RK1W1 and RK1W2 in the left and right
figure, respectively.

µ h2

λ h

RK1W3

−100 −50 0 50 100
0

50

100

150

200

−4 −2 0
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5

10 µ h2

λ h

RK1W4

−100 −50 0 50 100
0
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Fig. 3. Mean–square stability region for RK1W3 and RK1W4 in the left and right
figure, respectively.

µ h2

λ h

RK1W5

−100 −50 0 50 100
0

50

100

150

200

−10 0 10
0

10

20

Fig. 4. Mean–square stability region for RK1W5.

order 0.5 methods, and for the proposed order 1.0 SRK methods RK1W1–
RK1W5 in Figures 1–4, respectively. All regions of stability for the numerical
method under consideration were plotted using the software Matlab. As men-
tioned before, the region of MS–stability for the solution of the test equation
(4.1) is given by the area beneath the linear slope k2 = −2ĥ. The coloured ar-
eas mark the region of numerical MS–stability for the corresponding method.
It is a well–known result, that the implicit Euler method as well as the trape-
zoidal rule are A–stable methods [8]. However, the proposed order 1.0 meth-
ods do not have this eligible property, even though the methods RK1W2 and
RK1W3 get close to A–stability when stability considerations are restricted
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to the real plane (cf. zoomed parts of the stability regions). The construction
of A–stable order 1.0 methods may be subject to further research.

5 Simulation results

In this section, we examine the mean square error of the introduced SRK
methods versus the used step sizes. Therefore, we compare the performance
of these methods to that of the strong order 0.5 implicit Euler (IEu) and
the trapezoidal rule (Trapez) from Example 2.3 when applied to some test
equations. In the following, for each step size h under consideration we simulate
2000 trajectories with each of the considered schemes, in order to estimate the
mean square error at T = 1/16, respectively. Then, the errors are plotted
against the step sizes into a log2–log2–diagram. The absolute value of the
slope of each of the resulting lines in the diagram gives the convergence order
of each particular scheme.

5.1 Test example 1

We consider a test equation which is linear in the state variable given by

M · dXt = (B · Xt + s(t)) dt + G · Xt dWt (5.1)

with some consistent initial value Xt0 ∈ Rd, where the matrix G ∈ Rd×d

has the special form G = BV
(

B̃ 0
0 0

)

V −1 with B̃ ∈ Rd̃×d̃, d̃ < d. M ∈ Rd×d

is a singular and B, V ∈ Rd×d are regular matrices, see also [11]. Further, we
require that s ∈ C1(I, Rd). In the index 1 case, SDAE (5.1) can be decomposed
into differential and algebraical equations

dXD
t =(L−1XD

t + L−1s1(t)) dt + L−1B̃XD
t dWt (5.2)

0 =XA
t + s2(t) (5.3)

where the transformations V −1B−1MV =
(

L 0
0 0

)

with L ∈ Rd̃×d̃ regular, Xt =

V (XD
t , XA

t )T and s(t) = BV (s1(t), s2(t))T are used. If the matrices L−1 and
L−1B̃ commute, then we get the following analytical expression for the solution
of SDE (5.2) (see [10]):

XD
t = Φt,t0

(

XD
t0 +

∫ t

t0
Φ−1

u,t0L
−1s1(u) du

)

(5.4)
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Fig. 5. Mean–square error vs. step size for test example 1.

with the fundamental solution

Φt,t0 = exp
((

L−1 − 1

2
(L−1B̃)(L−1B̃)

)

(t − t0) + L−1B̃(Wt − Wt0)
)

(5.5)

and with a consistent initial value (XD
t0 , XA

t0)
T = V −1Xt0 . Furthermore, it is

obvious that the algebraical equations (5.3) can be solved for the algebraic
variables XA

t :

XA
t = −s2(t). (5.6)

As a concrete example for our simulations we consider the 4-dimensional
SDAE (5.1) where

M =





















− 1
10 −12

5
9
10

1
10

3
2 3 0 −3

2

−3
2 −15

2
9
2

3
2

0 0 0 0





















, B =





















1 1 −1 −1

1 0 0 0

0 1 0 0

0 0 0 1





















, V =





















1 0 0 1

0 1 0 0

1 1 1 0

0 0 0 1





















Furthermore, the matrices B̃ and L are given by

B̃ =















−1
8

1
15

1
8

1
30 −13

80 0

1
120 − 1

45 − 59
240















, L =















3
2 3 0

3 −3 9
2

−12
15

3
2 − 9

10















,
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and we have the nonlinear function s(t) = BV (0, 0, 0, sin (t))T and the ini-
tial value Xt0 = V (1

5 ,
1
2 ,

7
10 , 0)T for t0 = 0. For the simulation results pre-

sented in Figure 5 we considered the integration interval [0, 1
16 ] and step sizes

h = 2−4, 2−5, . . . , 2−13. The convergence order 0.5 of the implicit Euler (IEu)
method and the trapezoidal rule (Trapez) as well as the order 1.0 of the SRK
methods (RK1W1–RK1W5) are clearly revealed. As expected, the SRK meth-
ods perform better than the other 0.5 schemes. For this example, the schemes
RK1W2 and RK1W3 yield similar errors. This may be due to the fact that the
drift dominates the solution and that both schemes have the same coefficient
matrix A. Further, the scheme RK1W4, being L-stable for ODEs and implicit
in B(3), produces the best results.

5.2 Test example 2

Secondly, we consider a nonlinear 2–dimensional test example of the form

M · dXt = f(t, Xt) dt + g(t, Xt) dWt (5.7)

with the singular matrix

M =







db2 − cab dba − ca2

cb2 + dab cba + da2







using the abbreviations a = sin (α), b = cos (α), c = sin (β), d = cos (β), where

α, β ∈ [0, 2π[ . Let X [1]
t and X [2]

t be the components of the solution process Xt.
With some constant r ∈ R, the drift and diffusion function are given by

f(Xt) =







r2(db − ca) −da − cb

r2(cb + da) db − ca













(bX [1]
t + aX [2]

t )(bX [2]
t − aX [1]

t )2

(bX [2]
t − aX [1]

t )2 − (bX [1]
t + aX [2]

t )2 − 1







and

g(Xt) = r(−aX [1]
t + bX [2]

t )2







db − ca

cb + da





 .

Note that the value of r influences the intensity of the noise and part of the
drift function. For a given consistent initial value X0 = (X [1]

0 , X [2]
0 )T and with

Ut = tan (rWt + arctan (bX [1]
0 + aX [2]

0 ))
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Fig. 6. Mean–square error vs. step size for test example 2.

the corresponding solution can be calculated by

Xt =







Ut
√

1 + U2
t







for t ≥ 0. For the following simulation results we chose the initial value X0 =
(−a, b)T and the parameters α = 3

5π, β = 9
5π, r = 0.8 as well as the integration

interval [0, 1
16 ]. We applied the step sizes h = 2−4, . . . , 2−13 for the results

presented in Figure 6. Again, the implicit Euler scheme and the trapezoidal
rule as well as the considered SRK methods show their expected convergence
behaviour. For this nonlinear example, RK1W3 with B(2) ≡ 0 performs best
compared to the other methods.

6 Conclusion

In the present paper, we propose some new order 1.0 stochastic Runge-Kutta
methods for the approximation of the solution of index 1 SDAEs with scalar
noise. The new methods combine the following advantageous properties com-
pared to the schemes in the literature: First, they do not require the calculation
of pseudo-inverses or other projectors and they are derivative-free which makes
them easy to implement. Second, there is no restriction to any structure of
the SDAE or any special type of noise. As a third advantage, the methods ad-
ditionally attain the higher convergence order 1.0. The investigation of their
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mean–square stability revealed their good stability properties and their appli-
cation to linear and nonlinear test examples confirmed the good performance
for either type of test equation.

There are numerous interesting topics for future research, such as the complete
analysis of the solution space of the order conditions. This includes the search
for optimal schemes with respect to minimal error constants and good stability
properties. Furthermore, the good performance of the schemes should be con-
firmed by their application to further test equations. Since SDAEs driven by
multi-dimensional noise arise in applications as well, the derivation of meth-
ods dealing with this case are of special interest. The generalization of the
proposed SRK methods to these problems is work in progress.

7 Appendix

The stability function for the considered SRK method (2.3) is calculated as

Rn(ĥ, k) = Γ + Σ1ξn + Σ2ξ
2
n + Σ3ξ

3
n + Σ4ξ

4
n (7.1)

with some independent normally distributed random variables ξn ∼ N (0, 1)
for n = 0, 1, . . . , N and

Γ =
1

(1 − A11ĥ − B(3)
11 k)(1 − A22ĥ − B(3)

22 k)(1 − A33ĥ − B(3)
33 k)

(

1 + A31ĥ

+ A32ĥ + A21A32ĥ
2 − B(3)

11 k − B(3)
22 k − 1

2B
(2)
31 k + B(3)

31 k − 1
2B

(2)
32 k

+ B(3)
32 k − A32B

(3)
11 ĥk − 1

2A32B
(2)
21 ĥk + A32B

(3)
21 ĥk − A31B

(3)
22 ĥk

− 1

2
A21B

(2)
32 ĥk + A21B

(3)
32 ĥk + B(3)

11 B(3)
22 k2 + 1

2B
(3)
22 B(2)

31 k2 − B(3)
22 B(3)

31 k2

+ 1
2B

(3)
11 B(2)

32 k2 +
1

4
B(2)

21 B(2)
32 k2 − 1

2B
(3)
21 B(2)

32 k2 − B(3)
11 B(3)

32 k2 − 1
2B

(2)
21 B(3)

32 k2

+ B(3)
21 B(3)

32 k2 − A22ĥ(1 + A31ĥ − B(3)
11 k − 1

2B
(2)
31 k + B(3)

31 k)

−A11ĥ(1 − A22ĥ + A32ĥ − B(3)
22 k − 1

2B
(2)
32 k + B(3)

32 k)
)

,

(7.2)

Σ1 =
1

(1 − A11ĥ − B(3)
11 k)(1 − A22ĥ − B(3)

22 k)(1 − A33ĥ − B(3)
33 k)

(

B(1)
31 k

+ B(1)
32 k + A32B

(1)
21 ĥk + A21B

(1)
32 ĥk − B(3)

22 B(1)
31 k2 − B(3)

11 B(1)
32 k2

− 1
2B

(2)
21 B(1)

32 k2 + B(3)
21 B(1)

32 k2 − 1
2B

(1)
21 B(2)

32 k2 + B(1)
21 B(3)

32 k2

−A22B
(1)
31 ĥk − A11B

(1)
32 ĥk

)

,

(7.3)
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Σ2 =
1

2(1 − A11ĥ − B(3)
11 k)(1 − A22ĥ − B(3)

22 k)(1 − A33ĥ − B(3)
33 k)

(

B(2)
31 k

+ B(2)
32 k + A32B

(2)
21 ĥk + A21B

(2)
32 ĥk − B(3)

22 B(2)
31 k2 + 2B(1)

21 B(1)
32 k2

− B(3)
11 B(2)

32 k2 − B(2)
21 B(2)

32 k2 + B(3)
21 B(2)

32 k2 + B(2)
21 B(3)

32 k2

− A22B
(2)
31 ĥk −A11B

(2)
32 ĥk

)

,

(7.4)

Σ3 =
B(2)

21 B(1)
32 k2 + B(1)

21 B(2)
32 k2

2(1 − A11ĥ − B(3)
11 k)(1 − A22ĥ − B(3)

22 k)(1 − A33ĥ − B(3)
33 k)

, (7.5)

and with

Σ4 =
B(2)

21 B(2)
32 k2

4(1 − A11ĥ − B(3)
11 k)(1 − A22ĥ − B(3)

22 k)(1 − A33ĥ − B(3)
33 k)

. (7.6)

Then, we calculate the second moment of the stability function in order to
obtain the MS–stability function as

R̂(ĥ, k) =Γ2 + 2ΓΣ2 + 6ΓΣ4 + Σ2
1 + 6Σ1Σ3 + 3Σ2

2

+ 30Σ2Σ4 + 15Σ2
3 + 105Σ2

4 .
(7.7)

References

[1] R. Alexander. Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s. SIAM
J. Numer. Anal., 14(6):1006–1021, 1977.

[2] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-
value problems in differential-algebraic equations, volume 14 of Classics in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1996. Revised and corrected reprint of the 1989 original.

[3] K. Burrage and T. Tian. Implicit stochastic Runge-Kutta methods for
stochastic differential equations. BIT, 44(1):21–39, 2004.

[4] K. Debrabant and A. Kværnø. B-series analysis of stochastic Runge-Kutta
methods that use an iterative scheme to compute their internal stage values.
SIAM J. Numer. Anal., 47(1):181–203, 2008/09.
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Basel, 2003.
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