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A fast tensor-product solver for
incompressible fluid flow in partially
deformed three-dimensional domains

Arne Morten Kvarving, Tormod Bjøntegaard, Einar M. Rønquist*

October 7, 2010

We present a fast solution method for solving partial differential equations in
a particular class of three-dimensional geometries; the two-dimensional cross-
section can have a general shape, but is assumed to be invariant with respect
to the third direction. For each elliptic operator considered here, the approach
involves solving a one-dimensional eigenvalue problem, performing two simple
transformation steps (matrix-matrix multiplications), and the solution of a set
of completely decoupled two-dimensional problems. The focus of this paper
is on the extension of the method proposed in [1] to the numerical solution
of the unsteady Navier-Stokes equations. Particular attention is given to the
solution of the consistent pressure Poisson problem resulting from the use of
spectral elements in combination with a semi-implicit approach. Numerical
results are presented for selected three-dimensional test problems. A reduction
in computational time with a factor of 4-20 compared to alternative approaches
has been achieved.
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1 Introduction

We discuss the numerical solution of partial differential equations in a particular class of
three-dimensional geometries; the two-dimensional cross-section (in the x1x2-plane) can
have a general shape, but is assumed to be invariant with respect to the third direction;
see Figures 1 and 2. Earlier work has exploited such geometries by approximating the
solution as a truncated Fourier series in the x3-direction [3, 5, 12]. The use of Fourier
series puts a severe limitation of the applicability of the method; in particular, only periodic
boundary conditions can be imposed. In a recent paper [1] a new solution algorithm was
proposed which also exploits the tensor-product feature between the x1x2-plane and the x3-
direction. This new algorithm is not limited to periodic boundary conditions, but works for
general Dirichlet and Neumann type of boundary conditions. The algorithm also works for
problems with variable coefficients as long as these can be expressed as separable functions
with respect to the variation in the x1x2-plane and the variation in the x3-direction. The
work presented in [1] focuses on solving the standard Poisson problem and the Helmholtz
problem. It was mentioned that the new solver could be extended to other problems as
well. The present work represents one such extension, namely to the numerical solution
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of the unsteady (Navier-)Stokes equations. In this work the spatial discretization is based
on finite elements, more specifically, high order spectral elements where the velocity is
continuous across element boundaries, while the pressure is discontinuous. A pressure-
velocity splitting scheme gives rise to a set of elliptic systems at each time step: one
Helmholtz problem for each velocity component and a consistent pressure Poisson problem.
The discrete pressure operator is different from the standard Laplace operator and requires
special treatment both in terms of being able to use the approach proposed in [1], as well as
in terms of preconditioning of the resulting independent two-dimensional systems. In fact,
the extension of the approach proposed in [1] to new operators requires special attention in
each case, and may not always be possible. The focus of this paper is on the solution of the
consistent pressure Poisson problem. The new tensor-product algorithm allows us to solve
a 3D problem through the solution of several decoupled 2D subproblems. The algorithm is
thus highly parallel in nature. Additionally, in the context of iterative solution strategies,
optimal preconditioners are often easier to construct in 2D and are often more efficient
(lower constants) compared to their 3D realizations.

The outline of the paper is as follows. In Section 2 we state our model problem and define
the class of geometries we consider. The discretization of this problem is then discussed
in Section 3. The tensor-product form of the discrete operators is highlighted in Section
4, and this is used to construct the new tensor-product solver for the consistent pressure
operator in Section 5. We then move on to consider preconditioning of the resulting
systems of equations in Section 6 in the context of iterative solution of the independent
two-dimensional systems. In Section 7, numerical results are presented both for fully
tensor-product geometries as well as for extruded geometries. In Section 8, we also give
some results where we have used the new solver as a preconditioner in fully deformed
domains. Finally, in Section 9, we summarize our findings and present our conclusions.

2 The unsteady Stokes problem

As a model problem we consider the incompressible Stokes equations in a three-dimensional
domain Ω,

∂u

∂t
−∇2u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(1)

where u is the velocity, p the pressure and f a given body force. We assume homogenous
Dirichlet boundary conditions for the velocity, however, this assumption will be relaxed
and commented on later. We consider geometries which are extrusions of some general 2D
cross-sections, i.e.,

Ω = O × (0, d),

where O refers to the (general) two-dimensional cross-section, while d is the extrusion
length in the x3-direction; see Figure 1 for two examples of such geometries.
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(a) Three parallel cylinders

x2

x3

x1

(b) A hexagonal container

Figure 1: Two examples of extruded geometries. The left figure depicts a geometry suitable
for studying flow past cylinders mounted between two parallel plates. The right
figure depicts a geometry suitable for simulating internal flow in a hexagonal
container.

3 Discretization

Before we derive the new tensor-product solver we first describe the discretization process
leading to the linear systems of equations we have to solve. Our discretization is based
on the weak formulation of the unsteady Stokes problem (1). In addition, a pressure-
velocity splitting scheme is utilized, specifically an incremental pressure-correction projec-
tion scheme [4, 8, 11, 24, 25, 28].
The splitting scheme is given for a solution which is discrete in time, i.e., it relies on the

particular temporal discretization used. For simplicity of presentation we here consider a
first order BDF scheme; we briefly comment on the extension to higher order temporal
schemes later. We introduce the time step ∆t and two temporary quantities: an approx-
imate velocity field, ûn+1, and a pressure extrapolant, p̂, both quantities associated with
the new time level tn+1. The idea is to first calculate a (in general) non-solenoidal velocity
field based on an extrapolant of the pressure at earlier time levels, and then correct this
velocity field by projecting it onto the space of solenoidal fields. The pressure extrapolant
p̂ is taken as one order less than the temporal accuracy of the scheme, i.e., for a first order
scheme we consider a zeroth order extrapolant p̂ = pn.
If we introduce the function spaces X = (H1

0 (Ω))3 and Y = L2
0(Ω), the weak, semi-

discrete problem (discrete in time) can be stated as:

Find
(
un+1 ∈ X, pn+1 ∈ Y

)
, n = 0, 1, · · · , such that(

ûn+1 − un

∆t
,v

)
+
(
∇ûn+1,∇v

)
− (p̂,∇ · v) = (f ,v) ∀ v ∈ X,(

un+1 − ûn+1

∆t
,v

)
=
(
pn+1 − p̂,∇ · v

)
∀ v ∈ X,(

q,∇ · un+1
)

= 0 ∀ q ∈ Y,

where (·, ·) denote the usual L2 inner product.
At any time level, we thus seek the solution for all the velocity components in the same

space, reflecting the fact that all components are subject to the same boundary conditions;
this assumption will be relaxed later.
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The discretization in space will be based on spectral elements, however, we could also
have used other types of finite elements. We decompose the domain into K (spectral)
elements, and introduce K affine mappings Φk, k = 1, . . . ,K, which map the reference
domain into these elements, i.e.,

Ω =
K
∪
k=1

Ωk,

Ωk = Ok × (0, d),

Ω̂ = (−1, 1)3 ,

Φk : Ω̂→ Ωk, k = 1, . . . ,K.

In Figure 2 we show some sample geometries together with their elemental decompositions.
We now seek our solution in the discrete, polynomial subspaces ([2, 19, 20])

XN =

{
v ∈ X,v (x; t) ◦ Φk ∈

(
PN
(

Ω̂
))3

}
,

YN =
{
v ∈ Y, v (x; t) ◦ Φk ∈ PN−2

(
Ω̂
)}

.

This leads to the discrete problem:

Find
(
un+1 ∈ XN , p

n+1 ∈ YN
)
, n = 0, 1, · · · , such that(

ûn+1 − un

∆t
,v

)
+
(
∇ûn+1,∇v

)
− (p̂,∇ · v) = (f ,v) ∀ v ∈ XN ,(

un+1 − ûn+1

∆t
,v

)
=
(
pn+1 − p̂,∇ · v

)
∀ v ∈ XN ,(

q,∇ · un+1
)

= 0 ∀ q ∈ YN .

Note that we use the same symbols in both the semi-discrete (discrete in time) and the
fully discrete case. In the following, the symbols will always refer to the fully discrete case.
The class of geometries considered allows us to use a basis where each individual basis

function can be viewed as the product of some general two dimensional function and a
basis function in the x3-direction, i.e., a three-dimensional basis function γ(x1, x2, x3) can
be given on the form

γ (x1, x2, x3) = φ (x1, x2)ψ (x3) .

It is a well-known fact that the tensor-product nature of such bases can be exploited to
construct fast methods in simple domains. In the next section, we show how this structure
can be exploited to construct fast methods suitable for fluid flow problems in the considered
class of geometries.
For each velocity component and for each coordinate, we consider a basis which is based

on Lagrangian interpolants through the Gauss-Lobatto-Legendre nodes on the reference
cube. For example, within each 2D elemental cross-sectionOk, we approximate the physical
coordinates using a nodal tensor-product basis,

xki (ξ, η) =
N∑
m=0

N∑
n=0

(
xki

)
mn

`m(ξ)`n(η), i = 1, 2,

where ξ and η are the coordinates in the two-dimensional reference domain and `m(ξ), `n(η) ∈
PN (−1, 1) are one-dimensional Lagrangian interpolants through the Gauss-Lobatto Leg-
endre nodes. These are combined with the appropriate basis functions in the x3-direction
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(affinely mapped Lagrangian interpolants through the Gauss-Lobatto Legendre points) to
form the full basis. The geometry representation is isoparametric and precalculated using
a Gordon-Hall mapping procedure [9]. Each velocity component is expressed using a sim-
ilar basis, while the pressure space uses a nodal basis based on a Gauss-Legendre point
distribution on the reference domain. All integrals are evaluated using Gauss quadrature
[19].

x1

x2

(a) Cross-section

x2

x3

x1

(b) 3D geometry

(c) Cross-section (d) 3D geometry

(e) Cross-section (f) 3D geometry

Figure 2: Some examples of the type of geometries we consider together with their elemen-
tal decompositions. The cross-sections are depicted in the left column. These
are extruded to form the full 3D geometries depicted in the right column.
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The set of algebraic equations can then be expressed as

Hûn+1 = DT p̂+ B

(
f +

1

∆t
un
)
,

1

∆t
B
(
un+1 − ûn+1

)
= DT

(
pn+1 − p̂

)
,

Dun+1 = 0,

where B is the (velocity) mass matrix, D is the discrete divergence operator, and DT is
the discrete gradient operator. The H operator is the discrete Helmholtz operator,

H = A + αB,

where A is the discrete Laplace operator and α = 1
∆t for a first order temporal realization.

We now apply block Gaussian elimination to the last two of these systems to end up with
the pressure update equation

DB−1DT︸ ︷︷ ︸
=E

∆p = E∆p = − 1

∆t
Dûn+1,

where ∆p = pn+1 − p̂. The operator E is usually referred to as the consistent pressure
Poisson operator. The computational complexity is often dominated by the inversion of this
operator in a typical implementation. Hence efficient and reliable inversion is imperative
for a fast solver. This is the main focus of our work.

4 Tensor-product forms of the discrete operators

We now consider the tensor-product structure of the discrete operators. We initially iden-
tify our unknowns using a global numbering scheme, while the basis functions are enu-
merated in a mixed local-global scheme, where we use a single, global number within each
x1x2-plane and a separate number in the x3-direction.
In the following, let φm (x1, x2)ψn (x3) be a basis function for one of the velocity compo-

nents and φj (x1, x2)ψk (x3) an associated test function. Likewise, let φ̃m (x1, x2) ψ̃n (x3)
be a basis function for the pressure, and
φ̃j (x1, x2) ψ̃k (x3) be an associated test function.
The elements in the mass matrix are given as

(φm(x1, x2)ψn(x3), φj(x1, x2)ψk(x3)) =

∫
Ω
φmψnφjψk dΩ

=

(∫
O
φmφj dx1dx2

)
︸ ︷︷ ︸

B2D
jm

(∫ d

0
ψnψk dx3

)
︸ ︷︷ ︸

B1D
kn

.

The mass matrix can thus be written as a tensor-product between a 2D and a 1D operator,
i.e., the global mass matrix can be expressed as

B =
(
B1D ⊗B2D

)
.

This also means that, according to the rules of tensor-products, we have

B−1 =
((

B1D
)−1 ⊗

(
B2D

)−1
)
.
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Similarly, the (scalar) Laplace operator can be expressed as

(∇φm(x1, x2)ψn(x3), ∇φj(x1, x2)ψk(x3)) =(∫
O
∇̃φm · ∇̃φj dx1dx2

)
︸ ︷︷ ︸

A2D
jm

(∫ d

0

ψnψk dx3

)
︸ ︷︷ ︸

B1D
kn

+

(∫
O
φmφj dx1dx2

)
︸ ︷︷ ︸

B2D
jm

(∫ d

0

ψ′nψ
′
k dx3

)
︸ ︷︷ ︸

A1D
kn

,

where ∇̃ denotes the gradient operator in the x1x2-plane. Again, the resulting global
operator can be expressed on tensor-product form as

A = B1D ⊗A2D + A1D ⊗B2D.

Next, we consider the divergence operator. This operator is the sum of three contribu-
tions. We consider each contribution separately. For the x1-component (i.e., differentiation
with respect to the x1-direction) we have(

∂

∂x1
φmψn, φ̃jψ̃k

)
=

(∫
O
φ̃j

∂

∂x1
φm dx1dx2

)
︸ ︷︷ ︸

(D2D
1 )

jm

(∫ d

0
ψnψ̃k dx3

)
︸ ︷︷ ︸

(B1D
up )

kn

,

giving rise to the global operator

D1 = B1D
up ⊗D2D

1 .

Similarly, the x2-component yields

D2 = B1D
up ⊗D2D

2 .

Finally, for the x3-component we get(
∂

∂x3
φmψn, φ̃jψ̃k

)
=

(∫
O
φ̃jφm dx1dx2

)
︸ ︷︷ ︸

(B2D
up )

jm

(∫ d

0
ψ̃k

∂

∂x3
ψn dx3

)
︸ ︷︷ ︸

(D1D)kn

which assembles to the global operator

D3 = D1D ⊗B2D
up .

Our divergence operator is then given as

D =
[
D1 D2 D3

]
,

while the gradient operator is given as the transpose.
Inserting the tensor-product form of our operators into the consistent pressure Poisson

operator, E, and applying the rules of tensor-products, we get

E =
[
D1 D2 D3

] B−1 0 0
0 B−1 0
0 0 B−1

DT
1

DT
2

DT
3


= B1D

∗ ⊗E2D + E1D ⊗B2D
∗ (2)
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where

B1D
∗ = B1D

up

(
B1D

)−1 (
B1D
up

)T
,

E1D = D1D
(
B1D

)−1 (
D1D

)T
,

B2D
∗ =

[
B2D
up B2D

up

] [B−1 0
0 B−1

][(
B2D
up

)T(
B2D
up

)T
]

E2D =
[
D1 D2

] [B−1 0
0 B−1

] [
DT

1

DT
2

]
(3)

Thus the 3D consistent pressure Poisson operator, E, can also be stated on tensor-product
form.
In the following, we will refer to the operators B1D

∗ and B2D
∗ as “consistent pressure mass

matrices”.

5 Tensor-product solvers

This work is based on earlier work reported in [1]. We here briefly recall the key steps for
the Helmholtz solver.
From the previous section it readily follows that the Helmholtz operator can be expressed

as
H = B1D ⊗A2D + A1D ⊗B2D + αB1D ⊗B2D.

With the boundary conditions considered here, the A1D and B1D operators are symmetric
and positive definite. We then consider the generalized symmetric eigenvalue problem

A1DQ = B1DQΛ,

where the eigenvectors are scaled such that

QTB1DQ = I ⇒B1D = Q−TQ−1,

QTA1DQ = Λ⇒A1D = Q−TΛQ−1.

This is exactly the same eigenvalue problem we would consider if we were constructing a
classical fast diagonalization solver in fully tensor-product geometries [17]. Substituting
the expressions for A1D and B1D we get

H = Q−TQ−1 ⊗A2D + Q−TΛQ−1 ⊗B2D + αQ−TQ−1 ⊗B2D

=
(
Q−T ⊗ I2D

) (
I1D ⊗A2D +

(
Λ + αI1D

)
⊗B2D

) (
Q−1 ⊗ I2D

)
.

We now change to a mixed local-global numbering system, where we identify each unknown
using a global number in the x1x2-plane, while we use a separate number in the x3-direction.
We can then solve the linear system

Hu = g,

as given in Algorithm 1. Note that the number of subproblems we have to solve depends
on the boundary conditions on the top and the bottom of the domain. For example, for
homogenous Dirichlet boundary conditions and a single layer of elements, N1 = N − 1.
We want to emphasize one of the main attractive features of the algorithm: the individual
subproblems in step 2) of the algorithm are completely decoupled.
We proceed in much the same way to construct a solver for the consistent pressure Pois-

son operator. With the given Dirichlet boundary conditions for the velocity, the E operator
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is symmetric and positive semi-definite. In particular this applies to the E1D operator. We
have exactly one zero eigenvalue, which is associated with the hydrostatic pressure mode,
while all the other eigenvalues are strictly positive. We consider the generalized symmetric
eigenvalue problem

E1DQ = B1D
∗ QΛ,

and scale the eigenvectors such that

QTB1D
∗ Q = I⇒

Q−TQ−1 = B1D
∗ , E1D = Q−TΛQ−1.

Inserting this into (2) yields

E =
(
Q−T ⊗ I2D

) (
I1D ⊗E2D + Λ⊗B2D

∗
) (

Q−1 ⊗ I2D
)
.

Switching to our mixed local-global numbering scheme again, we can then solve the problem

E∆p = g,

as given in Algorithm 2. Again, each of the systems in Step 2 are completely decoupled.
The number of systems we have to solve is independent of the boundary conditions for the
velocity. For example, for a single layer of elements, N2 = N − 1.
Note that, except for the case when λj = 0, the two-dimensional pressure operator in

Step 2,

E2D
λ ≡ E2D + λjB

2D
∗ , (4)

is different from the standard two-dimensional pressure operator E2D.

Algorithm 1 Fast tensor-product solver for the Helmholtz system

(A + αB)u = g

in partially deformed three-dimensional geometries.
Initialization Solve the generalized eigenvalue problem of dimension N1

A1DQ = B1DQΛ

scaled such that

B1D = Q−TQ−1

A1D = Q−TΛQ−1.

Then

1) Compute
g̃ = QT g.

2) Solve (
A2D + (λj + α)B2D

)
ũj = g̃j , ∀ j = 1, · · · ,N1.

3) Finally compute the solution as
u = ũQ.
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Algorithm 2 Fast tensor-product solver for the pressure system

E∆p = g

in partially deformed three-dimensional geometries.
Initialization Solve the generalized eigenvalue problem of dimension N2

E1DQ = B1D
∗ QΛ

scaled such that

B1D
∗ = Q−TQ−1

E1D = Q−TΛQ−1.

Then

1) Compute
g̃ = QT g.

2) Solve (
E2D + λjB

2D
∗
)
p̃j = g̃j , ∀ j = 1, · · · ,N2.

3) Finally compute the solution as
p = p̃Q.

Extension to other boundary conditions

The pressure operators (3) reflect the velocity boundary conditions. Let us now instead
consider the following boundary conditions on the top and the bottom of some domain
Ω = O × (0, 1),

u1 (x1, x2, 0) = u2 (x1, x2, 0) = u3 (x1, x2, 0) = 0,

u3 (x1, x2, 1) = 0,

∂u1

∂x3
(x1, x2, 1) =

∂u2

∂x3
(x1, x2, 1) = 0.

(5)

Note that we have not given the boundary conditions on the side walls, since they are
of no consequence for the following. The new boundary conditions (5) lead to a different
basis being used for the first two velocity components, as opposed to the third component.
Carefully considering the integrals given earlier, we again end up with an operator of the
form

E = B1D
� ⊗E2D + E1D ⊗B2D

∗ .

However, this time around the operators B1D
� and E1D are constructed from different bases.

In particular, E1D involves the basis for the third velocity component, while B1D
� involves

the basis for the first two components. That is, B1D
� is constructed from a velocity mass

matrix which does not include a homogenous boundary condition on the top of the domain.
Thus we see that none of this influences the actual algorithm, only the formation of the
one-dimensional operators. In particular, if we keep the Dirichlet boundary conditions on
the side walls, the 2D operators defined earlier are left unchanged.
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The discussion here also reveals a restriction in the applicability of the method. The
boundary conditions for the first two velocity components need to be of the same type
(Dirichlet or Neumann), both along the top surface and along the bottom surface. If this
is not the case, we cannot state the operator on tensor-product form.

Extension to higher temporal order

In principle, the computational approach readily extends to higher order BDF schemes.
However, the use of the splitting scheme brings some restrictions. The pressure correction
schemes are only unconditionally stable for first and second order realizations. While a
third order realization is conditionally stable under a ∆t & O(N−4) limitation on the
time step [11], we do not consider it here. The main reason is that this limitation can
lead to unconditionally unstable schemes when combined with a semi-explicit method for
integrating the Navier-Stokes equations. The explicit treatment of the convection operator
imposes a CFL restriction on the time step. We may then end up in a situation where
there is no overlap between the time step restriction imposed by the CFL condition and
the time step limitation required by the splitting scheme.

6 A preconditioner for the 2D systems

In the previous section we showed how to solve the full 3D elliptic systems through inversion
of several independent 2D systems. If the individual 2D systems are sufficiently small, they
can be solved using a direct method. This would mean that the proposed algorithm can be
classified as a direct solution method. In many applications though, these systems will be
too large to be solved using direct methods. In this case we have to resort to an iterative
solution strategy for the individual subproblems. As previously discussed, the systems we
consider are either symmetric positive definite or symmetric positive semi-definite. Hence,
the conjugate gradient method can be used in combination with a suitable preconditioner.
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Figure 3: The condition number of the one-dimensional operator RT (H1D)−1RE1D
λ . In (a)

the condition number is plotted as a function of the number of spectral elements,
K, and in (b) as a function of the element order, N . Here RT is the prolongation
operator which interpolates from a GL to a GLL point distribution within each
element, and R the corresponding restriction operator. Three different values of
λ are considered.
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Earlier studies have shown that the E operator is close to the A operator (in the sense
that their spectra resemble each other), e.g., see [7]. Inspired by this, we expect the E2D

λ

operator in (4) to be close to the two-dimensional Helmholtz operator, H2D = A2D +
λjB

2D. To test this idea, we first consider a simple one-dimensional test where we use
H1D = A1D + λjB

1D as a preconditioner for E1D
λ = E1D + λjB

1D
∗ . This seems to work

well for moderate values of λ; see Figure 3. However, the growth with the order of the
elements, N , for large λ is a source of concern. This growth is not entirely unexpected
either since our preconditioner enforces continuity across the element boundaries, while
the pressure is discontinuous. Nonetheless, these results are quite encouraging since they
show that we achieve good preconditioning for moderate values of λ, at least in one space
dimension.
To improve the preconditioning for all values of λ, our preconditioner will be composed

of two different preconditioners, one used for small to moderate values of λ and one used for
large values of λ. The first part of the preconditioner is based on the work presented in [7]
and represents a preconditioner based on the (additive) overlapping Schwarz methodology
[6, 26]. We introduce a coarse grid with KC subdomains, independent of the number of
degrees of freedom on the fine grid. Each subdomain can span one or several spectral
elements on the fine grid. The preconditioner is then constructed as a sum of local, finite-
element based solves within the subdomains and a global, coarse solve on the fine grid.
This preconditioner can be expressed as

M−1
1 =

KC∑
k=1

RT
k,CH̃−1

k Rk,C + RT
0,CH−1

0 R0,C ,

where the local operators H̃k are based on (tensorized) linear finite element discretizations
on the pressure grid and the coarse operator H0 is based on quadratic elements. In our case,
the local solves are performed using fast (two-dimensional) tensor-product solvers even
though the subdomains will not (in general) be rectangles. The global solve is performed
using Cholesky factorization. The coarse restriction operator R0,C is the composition of
two restriction operators R0,A and R0,B, where R0,A is taken such that the prolongation
operator RT

0,A is the interpolation operator which does interpolation from second order
polynomials to Nth order polynomials within each element, and R0,B is taken such that
the prolongation operator RT

0,B is the interpolation operator between the velocity and
pressure grid within each element. The local restriction operator Rk,C restricts the input
(the residual) to the specific subdomain considered (k = 1, · · · ,KC).
From the results in Figure 3, we expect the efficiency of this preconditioner to degrade

as λ grows. The second part of our preconditioner is designed to deal with this deficiency.
For large values of λ, the Eλ operator approaches the consistent pressure mass matrix,
B∗ (up to a multiplicative factor). Inspired by the preconditioning of the Uzawa pressure
operator in the steady Stokes context [18], we consider a preconditioning strategy for large
values of λ based on the standard (diagonal) pressure mass matrix, B̃,

M−1
2 = B̃−1.

We have also tried several other preconditioning strategies, including some of the variants
proposed in [7], as well as the deflation-based preconditioner proposed in [23] (only suitable
for λ = 0). Our experiences are consistent with those reported earlier in the literature and
we will not discuss these alternatives further here. A final class of preconditioners is the
multi-grid-based methods [16]; we have not tried any preconditioner from this class.
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7 Numerical results

We start with analyzing the two preconditioners under idealized conditions. We then give
convergence results and speedup results in more realistic settings. Finally, we solve the
three-dimensional Bénard-Marangoni problem in a hexagonal container using the proposed
solver. In Section 8, we report some results where we have used the tensor-product solver
as a preconditioner in nonextruded domains.

Preconditioning

We first consider preconditioning the Eλ operator in 1D using the M1 preconditioner. In
these idealized tests the number of subdomains used in the preconditioner and the number
of spectral elements are taken to be equal (i.e., KC = K). The results are presented in
Figure 4.
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Figure 4: The condition number of the one-dimensional operator M−1
1 E1D

λ . In (a) the
condition number is plotted as a function of the number of spectral elements, K,
and in (b) as a function of the element order, N . Three different values of λ are
considered.

These results are somewhat surprising. Comparing Figures 3 and 4, it seems that M1 is
a slightly better preconditioner for E1D

λ compared to the global Helmholtz operator H1D.
This can probably be explained by the fact that we do the local solves directly on the
pressure grid rather than on the velocity grid. Qualitatively we see that we have the same
behavior as when using the full Helmholtz operator; the condition number is uniformly
bounded as a function of K, but has growth as a function of N for large λ. These one-
dimensional results also translate to two space dimensions as shown in Figure 5. In these
tests, the two-dimensional domain is a square comprised of K = K1×K1 spectral elements
of order N .
The preconditioner M1 is suboptimal for large λ. For large λ, the operator E2D

λ will
approach B2D

∗ (up to a multiplicative constant). This operator can again be approximated
by the (diagonal) pressure mass matrix, B̃. For λ larger than some threshold value we
should switch to the preconditioner M2, both because of the lower condition number and
because of the lower computational cost; see Figure 6.
To estimate where the cross-over value of λ is, we can consider a scaling argument.

Numerical results indicate that the condition number of the consistent pressure Poisson
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operator scales as

κ2

(
E2D

)
∼ c1K

2
1N

3,

while the condition number of the consistent pressure mass matrix scales as

κ2

(
B2D
∗
)
∼ c2N

3.

Balancing these two terms gives

c1K
2
1N3 = λc2N

3 ⇒ λ =
c1

c2
K2

1 .

Hence, the cross-over value of λ should be independent of N , and only depend on K1, the
number of elements in one spatial direction in the two-dimensional plane. Numerical tests
confirm these predictions.
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Figure 5: The condition number of the two-dimensional operator M−1
1 E2D

λ . In (a) the
condition number is plotted as a function of the number of spectral elements, K,
and in (b) as a function of the element order, N . Two different values of λ are
considered.

Convergence results in a circular cylinder

We now perform a convergence test to confirm the expected exponential convergence in
space as well as the expected temporal order.

The geometry we consider is a circular cylinder. We divide our geometry into K = 48
spectral elements, with a single layer of elements in the x3-direction, see Figure 7(a). The
preconditioner is based on a KC = 32 subdomain division of the computational grid; see
Figure 7(b). As initial conditions at t = 0 we take those that are consistent with the exact
unsteady Stokes solution (here in cylindrical coordinates)
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ur(r, z, θ, t) =
1

5
sin2 (πr) sin (2πz) sin θ sin t

uθ(r, z, θ, t) =
1

5
sin (πr) (2πr cos (πr) + sin (πr)) cos θ sin (2πz) sin t

uz(r, z, θ, t) =
1

10π
sin (πr)

(
2π cos (πr) +

2

r
sin (πr)

)
sin θ (cos (2πz)− 1) sin t

p(r, z, θ, t) = sin2 (πr) sin t

(6)

where

r =
√
x2 + y2, sin θ =

y

r
, cos θ =

x

r
.

In order to compare our results with the exact solution we use the source function f that
corresponds to this solution.

The pressure-velocity splitting scheme introduce splitting errors which are of the same
order as the BDF scheme employed, which means we expect full first and second order
convergence for the velocity measured in the L2 norm. However, while numerical evidence
shows that we obtain full second order convergence in the H1 norm as well, current theory
shows that we can only expect 3/2 order convergence for general problems [10].

For the pressure, however, the story is a bit more complicated. Current theory shows
that we can, in general, only expect a convergence rate of ∆t1/2 for a first order realization
and a convergence rate of ∆t3/2 in a second order realization if we measure the error in
the L2-norm [11]. Numerous numerical test cases have shown that this estimate is overly
conservative and that we typically get the full expected (first/second) order. Here, we
only give convergence results for the velocity; see Figure 8. We observe that we obtain the
expected order of convergence; first and second order in time, and spectral convergence in
space for smooth solution and data.
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(a) Domain decomposition: spectral elements
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Figure 7: 2D cross-sections of the cylinder we consider. In (a) we show the decomposition
of the computational domain into spectral elements (here K = 48), while in (b)
we show the subdomains used in the preconditioner M2 (here KC = 32).
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Figure 8: The left plot depicts the discretization error of the velocity measured in the dis-
crete H1-norm at time t = 1 as a function of the time step, ∆t, for a first and
second order temporal splitting scheme. The right plot depicts the discretiza-
tion error of the velocity measured in the discrete H1-norm at time t = 1 as a
function of the polynomial degree of the elements, N . We observe the expected
exponential convergence. The temporal error is here subdominant for N < 16.

Efficiency on a single processor

We are now ready to compare the new tensor-product solver with a more conventional
iterative solver. Our 3D reference solvers (for the Helmholtz problem and the consistent
pressure Poisson problem, respectively) will be based on the additive Schwarz method
using minimal overlap; for the consistent pressure Poisson operator we will use the method
proposed in [7]. However, note that the 3D reference solver for the pressure involves the
3D operator E, while the decoupled 2D systems in the new tensor-product solver involve
the operator E2D

λ (for different values of λ). In the reference solvers, we also take into
account the particular geometries we study, i.e., any geometric terms we know are zero
are eliminated. The reason for this is to emphasize that any observed speedup is not just
caused by doing less work due to having eliminated specific geometric terms in the new
solver. Hence, the speedup reported will be conservative since in a general 3D spectral
element code this elimination would most likely not be performed.
We consider two simple test problems, one for each of the operators. For the Helmholtz

problem −∇2u+ αu = f , we use a right hand side

f = 1. (7)

To test the consistent pressure operator, we consider a test problem with a body force
f = (f1, f2, f3)T , with

f1 = f2 = 0, f3 = −1. (8)

This body force is compatible with a zero velocity and a pressure which is linear in the
x3-direction in all “extruded” geometries. We do a single time step with ∆t = 1.
The domain is a circular container. The specific shape of this container is determined

by the global aspect ratio

Γ =

√
A

d
,

where A denotes the top surface area and d the height of the container. In the following
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we consider two different cases:

Container 1: Γ = 1,

Container 2: Γ = 5.

Table 1: A 3D Helmholtz problem (α = 100) is solved in Container 1 using (7) as the
source function. In (a) we report the mean number of iterations for solving the
two-dimensional subproblems in Algorithm 1, both when using unpreconditioned
conjugate gradient iterations (CG) or preconditioned conjugate gradient (PCG)
iterations. In (b) we report the number of iterations for the reference 3D solver.
In all cases a tolerance of ‖r‖ < 10−10 has been used. The largest grid (K = 768,
N = 16) has about 2.5 million grid points.

(a) Tensor-product solver (Algorithm 1)

k = 48 k = 192 k = 768
N CG PCG CG PCG CG PCG
4 79 33 158 45 321 58
6 111 42 221 56 450 76
8 146 51 291 72 595 102
10 178 60 354 87 723 124
12 213 69 420 102 854 146
14 248 77 485 116 979 166
16 282 85 550 129 1101 185

(b) 3D reference solver

k = 48 k = 192 k = 768
N CG PCG CG PCG CG PCG
4 47 41 87 58 181 82
6 82 64 154 96 318 140
8 121 91 231 137 479 206
10 168 117 324 183 666 276
12 221 145 428 230 881 348
14 282 174 541 278 1112 421
16 347 204 663 324 1361 491

We first consider the efficiency of our preconditioners in terms of the number of iterations.
We start with the Helmholtz problem to confirm that we have the expected behavior. In
all these tests we put α = 100, which should be close to the value it would have in a Stokes
problem, assuming a time step ∆t ≈ 10−2. The results for Container 1 are given in Table
1. Since our preconditioners use minimal overlap we see that the number of iterations
grows approximately linearly with N . This is as expected since near the edges the Gauss
point distribution have a spacing which is O(N2). This means that the condition number
will grow as O(N2) which translates into a O(N) behavior for the iteration counts.

Results are reported for K = 48, K = 192 and K = 768 spectral elements. Each
refinement has been constructed by splitting the two-dimensional cross-section of each
spectral element into 4 new elements. Since we use a fixed number of subdomains (KC =
32) in all cases, each refinement means that the overlap between the subdomains will be
reduced by a factor of two, and hence the condition number will increase with a factor of

18



two, which again translates into an increase in the number of iterations with a factor
√

2.
This agrees quite well with the numerical results.

Table 2: The consistent pressure Poisson problem is solved in Container 1 using (8) as the
body force. A single time step with ∆t = 1 is performed. In (a) we report the
number of iterations used when solving the first plane with λj > 0 in Step 2 in
Algorithm 2. In (b) we report the number of iterations for the reference 3D solver.
In all cases a tolerance of ‖r‖ < 10−10 has been used. The largest grid (K = 768,
N = 16) has about 2.5 million grid points.

(a) Tensor-product solver (Algorithm 2)

k = 48 k = 192 k = 768
N CG PCG CG PCG CG PCG
4 126 33 265 45 544 55
6 215 40 445 50 907 64
8 250 43 472 54 940 71
10 296 51 612 67 1245 98
12 378 61 783 82 1598 129
14 464 70 966 102 1983 168
16 556 81 1153 126 2392 206

(b) 3D reference solver

k = 48 k = 192 k = 768
N CG PCG CG PCG CG PCG
4 202 127 446 184 935 264
6 393 138 838 212 1717 311
8 525 213 1101 324 2265 468
10 597 261 1246 387 2578 559
12 630 298 1323 440 2723 678
14 773 358 1617 545 3366 843
16 932 423 1942 656 4056 1027

Note that we have here used non-optimal local solvers, both in the context of solving
the independent 2D systems in the new solver and in the context of using the 3D reference
solver; this derives from the fact that each subdomain is approximated as a rectangle (in the
2D context) or as a hexahedron (in the 3D context). The advantage of this approach is fast,
local, tensor-product solvers with minimum memory requirement. The disadvantage is that
the iteration count is somewhat higher compared to using local operators which perfectly
reflect the geometry of the subdomains. However, our main interest is to construct a fair
comparison of the performance of the new solver relative to a suitable reference solver.

We now consider the consistent pressure Poisson operator. The results obtained for
Container 1 are presented in Table 2. We observe the same behavior with respect to K
and N as we did for the Helmholtz operator. Again, the absolute iteration count could
have been reduced a bit with the use of local solvers which perfectly reflect the geometry
of the subdomains.
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Table 3: A 3D Helmholtz problem (α = 100) is solved using (7) as the source function. We
present timing results (in seconds) as well as the speedup for the tensor-product
solver relative to the 3D reference solver. In (a) we report results for Container
1, while in (b) we report results for Container 2.

(a) Container 1

k = 48 k = 192 k = 768
N solver CG PCG CG PCG CG PCG

8
3D reference 0.30 0.45 2.72 3.01 26.0 20.7

Tensor-product 0.073 0.094 0.54 0.60 5.87 4.12
Speedup 4.1 4.79 5.03 5.01 4.43 5.02

16
3D reference 16.5 14.5 163 105 1403 686

Tensor-product 2.33 1.24 24.9 9.18 225 59.7
Speedup 7.08 11.7 6.55 11.4 6.23 11.5

(b) Container 2

k = 48 k = 192 k = 768
N solver CG PCG CG PCG CG PCG

8
3D reference 1.00 1.42 8.45 9.65 72.0 62.8

Tensor-product 0.20 0.28 1.85 1.96 23.0 14.4
Speedup 5.00 5.07 4.57 4.92 3.13 4.36

16
3D reference 6.38 7.32 52.3 53.6 434 350

Tensor-product 1.07 1.03 9.62 7.64 76.5 49.7
Speedup 5.96 7.1 5.44 7.02 5.67 7.04

Next, we present timing and speedup results on a single processor. We solve the same
problems as earlier, but now consider the wall clock time. We consider both unprecondi-
tioned operators and preconditioned operators to make sure the speedups obtained are due
to the algorithm itself, and not due to technicalities of the preconditioners. The results
obtained for the Helmholtz problem are given in Table 3, while Table 4 reports the results
for the consistent pressure Poisson problem. Note that the timing results for the new
solver represent the total time to solve all the two-dimensional problems for each single
3D problem. It is interesting to note that for both problems, the tensor-product solver
gives a better speedup in the preconditioned case than in the unpreconditioned case for
Container 1. This effect seems to be less pronounced for Container 2. An explanation for
this observation will be discussed shortly.
The speedup for the Helmholtz problem is slightly lower than what has been reported

earlier. The observed speedup for the new tensor-product solver is approximately 5-7 for
the largest aspect ratio considered, while the results in [1] indicate a speedup of around
8-10. This is most likely due to the fact that the reference solver used in [1] involved the
full 3D Helmholtz operator (i.e., without explicitly removing the terms we know are zero
due to the particular geometries we consider).

Preconditioning effect: 2D versus 3D

The speedup results indicate a sensitivity to the shape of the domain (in this case the
global aspect ratio). For example, Table 4 indicate a speedup of about 20 for Container
1 and about 10 for Container 2 (preconditioned case and N = 8). We suspect that the
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difference is due to the difference in the element/subdomain aspect ratios. In an attempt
to illuminate the observed effect, we consider the condition number of the preconditioned
pressure Poisson operator in a rectangular geometry. We consider two different grids,
and investigate numerically how the aspect ratio of the domain influences the condition
numbers. In the first grid, denoted as grid A, the rectangle is divided into a square number
of equal-sized elements. In addition to the number of elements, K, and the polynomial
degree of the elements, N , we have one more parameter given by

Γ =
L1

L2
,

where L1 and L2 are the lengths of the domain in the x1 and x2-direction, respectively.
The parameter Γ gives the global aspect ratio of the domain. The numerical results for
grid A for two different aspect ratios are reported in Figure 10. This shows the expected
dependence of the condition number on the aspect ratio – higher aspect ratios lead to
severe degradation in the preconditioning effect [7]. Note that the local aspect ratios Γk,
k = 1, . . . ,K, are here precisely equal to the global aspect ratio Γ since

Γk =

L1√
K
L2√
K

= Γ.

The relevance to the “real” grid is that this shows the importance of keeping the subdomain
aspect ratios close to unity.

Table 4: The consistent pressure Poisson problem is solved using (8) as the body force. A
single time step with ∆t = 1 is performed. We present timing results (in seconds)
as well as the speedup for the tensor-product solver relative to the 3D reference
solver. In (a) we report results for Container 1, while in (b) we report results for
Container 2.

(a) Container 1

k = 48 k = 192 k = 768
N solver CG PCG CG PCG CG PCG

8
3D reference 5.51 5.20 49.9 33.5 434 210

Tensor-product 0.506 0.243 4.70 1.71 46.7 11.1
Speedup 10.9 21.4 10.6 19.6 9.30 18.9

16
3D reference 138 114 1165 818 9996 5911

Tensor-product 9.95 4.63 91.0 35.8 795 277
Speedup 13.9 24.6 12.8 22.8 12.6 21.3

(b) Container 2

k = 48 k = 192 k = 768
N solver CG PCG CG PCG CG PCG

8
3D reference 3.18 2.66 28.4 16.9 244 101

Tensor-product 0.300 0.232 2.66 1.60 26.1 10.5
Speedup 10.6 11.5 10.7 10.6 9.35 9.62

16
3D reference 79.8 56.6 663 381 5665 2566

Tensor-product 5.57 3.42 46.1 24.4 382 168
Speedup 14.3 16.5 14.3 15.6 14.8 15.3
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In the second grid, denoted as grid B, we divide the rectangle into a strip of elements.
That is, we have only one layer of elements in the x2-direction. The effect of the aspect
ratio in this case can be seen in Figure 11. We observe that the effects are the opposite
here, that is, a high global aspect ratio gives a better preconditioning effect. The reason
for this is easy to see if we consider the local aspect ratios,

Γk =
L1
K

L2
=

Γ

K
.

Now the local aspect ratios are dependent on both Γ and the number of elements. Hence
for a large global aspect ratio Γ, the local aspect ratios improve with an increasing number
of elements, until we reach unity, at which point we again have degradation. This is
made even clearer in Figure 9 where we plot the condition number in the two geometry
configurations as a function of the global aspect ratio Γ = L1

L2
for the consistent pressure

Poisson operator.
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Figure 9: Condition number for the pressure operator using the two different grids as a
function of Γ, the global domain aspect ratio. We use N = 8 and K = 9,
while we have left λ = 0 since this is where the effect is most pronounced. In
(a) we observe that the aspect ratio have the opposite effect on the two mesh
configurations. In (b) we show an extended plot for the strip geometry to indicate
the growth for large Γ.

This explains why we observe the diminishing gain from using the tensor-product solver
for the larger aspect ratio containers. The topology of the elements in the x3-direction is
exactly as in the strip case; by increasing the global aspect ratio, we get local aspect ratios
in the elements which are closer to unity. This property is something only the 3D reference
solver benefits from. The tensor-product solver only ”sees" the 2D grid where we have no
such benefit; the local aspect ratio of the elements are the same no matter what the global
aspect ratio is.
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(c) κ2 as a function of K.
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(e) κ2 as a function of N .
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(f) κ2 as a function of N .

Figure 10: Condition numbers κ2 for the preconditioned consistent pressure operator E2D

using grid A. The left column shows the results obtained with a global aspect
ratio Γ = 1, while the right column shows the results obtained with a global
aspect ratio Γ = 10. We observe that a higher global aspect ratio results in a
higher condition number. In (c) and (d) we have kept N fixed at N = 8, while
in (e) and (f) we have kept K fixed at K = 3× 3 = 9.
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Figure 11: Condition numbers κ2 for the preconditioned consistent pressure operator E2D

using grid B. The left column shows the results obtained with a global aspect
ratio Γ = 1, while the right column shows the results obtained with a global
aspect ratio Γ = 10. We observe that a higher global aspect ratio results in a
lower condition number. In (c) and (d) we have kept N fixed at N = 8, while
in (e) and (f) we have kept K fixed at K = 3× 3 = 9.
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Bénard-Marangoni simulation

Finally we show some results where the new tensor-product algorithm has been used to
solve a real problem. Specifically, we consider three-dimensional Bénard-Marangoni con-
vection in a hexagonal container [14, 21]. This is a coupled fluid-thermal problem with a
rich set of solutions depending on the pertinent nondimensional numbers. Figure 12 shows
the temperature on the top of the domain after long time integration. The flow organizes
itself in such a way that we get hexagonal convection cells with hot fluid at the center of
each cell, and colder fluid along the borders. The result were obtained using a parallel
implementation of the algorithms [15].

Figure 12: The steady state pattern for a particular Bénard-Marangoni simulation; see [21]
for a detailed discussion of this type of problem. The plot shows the temperature
along the top of the domain. We observe the characteristic hexagonal cells. The
nondimensional numbers used here are Marangoni numberMa = 105, Rayleigh
number Ra = 48, Prandtl number Pr = 890, and a global aspect ratio Γ = 30.

8 The new tensor-product solver as a preconditioner

We now consider computational domains where the assumption about an "extruded" ge-
ometry is only approximately satisfied. In such cases, the proposed solver may be used
as a global preconditioner in a conjugate gradient iteration. This idea is quite natural
and inspired by the fact that fast tensor-product solvers have been much used as building
blocks (local subdomain solvers) in Schwarz-type preconditioners [27, 7].
We consider two kinds of deformations. The first is a tapered cylinder, where the relevant

parameter is the taper ratio

γ =
d

r1 − r2
;

see Figure 13. By this definition the taper ratio approaches infinity as we approach a
straight cylinder. This kind of geometry have received some attention in the CFD com-
munity lately, in particular in studies of flow around marine risers [22].
We again use the test problems described earlier. The efficiency is now measured as the

speedup compared to a standard 3D implementation. We test the preconditioning effect
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on two different grid configurations. The first configuration consists of K = 48 spectral
elements where each element is of order N = 16. The 3D reference solver is based on the
additive Schwarz algorithm described earlier [7]. The numerical results for this geometry
are given in Figure 15(a) and Figure 15(b). The results are quite encouraging, in particular
for the consistent Poisson operator, with speedup close to 5 for relatively small taper ratios.

r2

r1

d

Figure 13: Illustration of a tapered cylinder. The taper ratio is defined as the ratio between
the cylinder height and the difference in the radii. The smaller the ratio, the
larger the deviation from a straight cylinder.

σ
(xc, yc)
a

(a) Side view

σ
(xc, yc)

(b) Top view

Figure 14: a) Side view of a cylinder with a bump at the bottom. The bump is a Gaussian
centered in (xc, yc) with standard deviance σ. The parameter we study is the
amplitude a. b) Top view of a cylinder with a bump at the bottom, showing a
sample placement of the bump.

The second configuration consists of K = 480 spectral elements organized in 10 layers,
with each element of order N = 4. The results for this geometry are given in Figure 15(c)
and 15(d). For the Laplacian operator it seems that the preconditioning effect is fairly
invariant with respect to the discretization grid, i.e., about the same for a few high order
elements as for many elements of low order. While the consistent pressure Poisson operator
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seems to benefit more from using high order elements, the results in the low order context
are still quite good. We remark that the reason for the plateaus in the speedup curves
for the high order elements, is that very few iterations are performed. For each plateau
the iteration count has been reduced by one. In the low order context, this effect is less
pronounced, hence we get smoother speedup curves.
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Figure 15: Speedup as a function of the taper ratio γ when using the tensor-product solver
as a preconditioner in a conjugate gradient iteration. In (a) and (b) we use
K = 48 spectral elements, each of order N = 16. In (c) and (d) we use K = 480
spectral elements, each of order N = 4. We compare the elapsed cpu time
relative to the 3D reference solver [7].

The second geometry we consider is a standard (straight) cylinder with a bump at the
bottom. This geometry is of interest in studying how such a deformation might affect the
pattern formation in Bénard-Marangoni convection [13]. Our bump is a Gaussian with a
standard deviation set to span approximately 4 elements of our grid; see Figure 14. We
consider the speedup as a function of the amplitude a of this Gaussian, where a is measured
in percentage of the container height. The results for the two grid configurations are given
in Figure 16.
We observe a rather rapid decline in the speedup for the standard Laplace operator.

While the consistent pressure Poisson operator also experiences decline, it is still quite
efficient, even with an amplitude being 20% of the container height. For the application
we have in mind the geometry deformations are expected to be quite small. Hence, the
results are quite encouraging for our intended application.
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Figure 16: Speedup as a function of the amplitude a of the deformation when using the
tensor-product solver as a preconditioner in a conjugate gradient iteration. In
(a) and (b) we use K = 48 spectral elements, each of order N = 16. In (c) and
(d) we use K = 480 spectral elements, each of order N = 4. We compare the
elapsed cpu time relative to the 3D reference solver [7].

9 Summary and conclusions

We have presented a new tensor-product algorithm for solving linear systems of equations
in partially deformed three-dimensional geometries. In particular, we have extended the
method presented in [1] to solve incompressible fluid flow problems. The focus has been
on solving the consistent pressure Poisson problem arising in the context of solving the
unsteady Stokes or Navier-Stokes equations using mixed finite/spectral elements in com-
bination with a pressure-velocity splitting approach.
Certain conditions need to be fulfilled in order to use the new solution algorithm: (i)

the computational domain must have a two-dimensional cross-section which is invariant in
the third direction; and (ii) the boundary conditions for the first two velocity components
(i.e., the components associated with the cross-sectional plane) must be of the same type
(either Dirichlet or Neumann).
The new method requires the solution of a series of independent two-dimensional systems.

The discrete operator associated with these systems is generally not the same as the two-
dimensional version of the consistent pressure Poisson operator, but is rather an operator
which resembles a "Helmholtz-like" pressure operator. In the context of iterative solution
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of the independent two-dimensional systems, we have proposed extensions of currently
available preconditioners for the consistent pressure Poisson operator to this new operator.
An advantage of the current method is that it is generally more efficient to solve several two-
dimensional systems instead of a single three-dimensional system. The new method is also
relatively easy to implement and offers alternative ways to exploit parallel architectures;
this will be explored in a separate paper.
In the single-processor context, we have achieved speedup between 4 and 20 compared

to an alternative three-dimensional reference solver. The preconditioner used to solve the
independent two-dimensional systems can be regarded as an extention and adaptation of
the preconditioner used in the reference solver. Hence, if other alternative reference solvers
are used, extensions and adaptations of these can also be used to solve the independent two-
dimensional systems. In this respect, we believe the speedup observed in this work should
also extend to alternative realizations of the new tensor-product solver and to alternative
reference solvers.
If the assumption of an "extruded" geometry is only approximately satisfied, the pro-

posed solver may also be used as a global preconditioner in a conjugate gradient iteration.
We have tested this idea for two different domains: a tapered cylinder and a cylindrical
container with a deformation along the bottom. The new solver offers speedup as long as
the geometry is not too far from an ideal situation.
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