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Reduction and Normal Forms of Matrix
Pencils

Olivier Verdier

January 21, 2011

Abstract

Matrix pencils, or pairs of matrices, may be used in a variety of applications. In
particular, a pair of matrices (E,A) may be interpreted as the differential equation
Ex′ + Ax = 0. Such an equation is invariant by changes of variables, or linear combi-
nation of the equations. This change of variables or equations is associated to a group
action. The invariants corresponding to this group action are well known, namely the
Kronecker indices and divisors. Similarly, for another group action corresponding to
the weak equivalence, a complete set of invariants is also known, among others the
strangeness.
We show how to define those invariants in a directly invariant fashion, i.e. without

using a basis or an extra Euclidean structure. To this end, we will define a reduction
process which produces a new system out of the original one. The various invariants
may then be defined from operators related to the repeated application of the reduction
process. We then show the relation between the invariants and the reduced subspace
dimensions, and the relation with the regular pencil condition. This is all done using
invariant tools only.
Making special choices of basis then allows to construct the Kronecker canonical

form. In a related manner, we construct the strangeness canonical form associated to
weak equivalence.

Keywords: 15A03, 15A21, 15A22, 47A50, 34M03

1 Introduction

1.1 Equivalence

The primary study of this paper is that of pairs of matrices, also called matrix pencils.
In other words, we study pairs of operators (E,A) both acting from a finite dimensional
vector spaces M to a finite dimensional vector space V .
A typical example we have in mind is the linear differential equation

E
dx

dt
+ Ax = 0. (1)

Such a model is clearly invariant by changes of variable, or by changing the order of the
equations. More precisely, it is invariant by simultaneous equivalence transformation of
the operators E and A. The corresponding equivalence relation is the following: two pairs
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of operators (E1,A1) and (E2,A2) will be considered equivalent if there exists invertible
operators P and Q, operating on M and V respectively, such that

E2 = PE1Q,

A2 = PA1Q.
(2)

This equivalence relation is associated to a group, which is simply GL(M)×GL(V ). This
is called strong equivalence in [1]. We are interested in properties which are invariant with
respect to that group action on the matrix pencil. In other words, we are interested in
quantities that label the orbit of the group action.
In fact, a complete set of invariants and a canonical form has been known since the

works of [16] and [6]. Modern versions of those proofs may be found in [1, § XII.4] and in
[2, § A.7]. The primary tool for obtaining those invariants is the Jordan canonical form.
For that reason, those proofs are impossible to extend to nearby cases, for example to the
infinite dimensional case, or to the parameter dependent case, not to mention the numerical
difficulties associated with the computation of the Jordan canonical form.
As a result, alternative proof techniques were developed, most notably in [13] and [17].

Those authors observed indeed that using a Jordan canonical form is not suitable to com-
pute the invariants other than the Jordan invariants, i.e., the Kronecker indices and the
“infinite elementary divisors” [13]. The idea is to transform the pair of matrices into a form
which exhibits all the invariants but is not a canonical form. Those forms are known under
the names of generalized Schur-staircase form, or GUPTRI (Generalized Upper Triangular
Form). We refer to [4, §4.1] and [8] for more references on those algorithms.
Our approach is similar, although with a shift of focus towards the underlying algebraic

structures as opposed to the algorithmic aspects. In particular, we attempt to define the
invariants from the dimensions of subspaces which are themselves invariants with respect
to the equivalence relation at hand. The advantage of our approach is that a great deal of
results are automatically independent of the choice of a basis, or any other structure (like
a Euclidean structure).

1.2 Invariants

A matrix pencil, when considered as a differential equation (1), may be decomposed in an
intrinsic ordinary differential equation, and an extra structure. We will call the invariants
of the underlying ordinary differential equation the dynamical invariants, and we will call
the remaining invariants the non-dynamical invariants. In the parlance of the Kronecker
decomposition theorem as presented in [1], the dynamical invariants would be the finite
elementary divisors (essentially a Jordan form), whereas the non-dynamical invariants
would be the infinite elementary divisors along with the row and column minimal indices.
The dynamical invariants, i.e., the invariants of the intrinsic differential equations boil

down to the Jordan invariant associated to similarity transformations, and are therefore
of less interest to us. We will thus mostly focus on the non-dynamical invariants, which
appear only when E is not invertible. Those invariants are well-known in control theory,
and in the study of differential algebraic equations. In control theory, such invariants are
the controllability and observability indices ([5, § 6.3]), for differential algebraic equations
(DAE), in the case of a regular pencil (see subsection 3.8), the most used non-dynamical
invariant is the index ([3, VII.1]).
Our goal is to define the non-dynamical invariants in a invariant manner, without any

other structure than the linear algebraic structure.
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1.3 Reduction

The crucial tool to the study of the invariants of a pencil is the concept of reduction, which
we define precisely in Section 2.
This concept was gradually developed, under various names, or no name at all, first

in [18] for the study of regular pencils, then in [17, §4] and [13] to prove the Kronecker
decomposition theorem. It is also related to the geometric reduction of nonlinear implicit
differential equations as described in [10] or [9]. In the linear case, those coincide with
the observation reduction, as shown in [14]. It is also equivalent to the algorithm of
prolongation of ordinary differential equation in the formal theory of differential equations,
as shown in [12].
The reduction procedure is an operation that, out of a pair of operators (E,A), creates a

new, smaller one (E′,A′). “Smaller” is in the sense that the reduced operators E′ and A′ are
restrictions of E and A on subspaces of M and V , defined by V ′ := EM and M ′ := A−1V ′.
This process of reduction is iterated, producing systems (E(k),A(k)) and subspaces M (k)

and V (k). This process ultimately stops, and we will call the number of steps before it
stops the index. When the process stops, the system which is produced, denoted by
(E(∞),A(∞)), is such that E(∞) is surjective. After running the reduction algorithm once
more on the dual of that reduced system, i.e., on (E(∞)∗,A(∞)∗), one obtains an isolated
system (E(∞)∗(∞),A(∞)∗(∞)) such that E(∞)∗(∞) is now invertible.
At each step of the reduction, some information from the original system is lost. That

information is encoded by integers called “defects”. Those defects are of three kinds: α,
β+ and β−. The defect α1 is defined as the dimension of the kernel of E, regarded as a
quotient operator from M/M ′ to V ′/V ′′. The defect β+1 is defined as the dimension of the
cokernel of A, regarded as a quotient operator fromM/M ′ to V/V ′. The iterated reduction
then generates the sequences of defects αk and β+k . The defects β−k are defined as the β+

defects of the system (E(∞)∗,A(∞)∗).
Using those subspaces, defined in an invariant manner, we are able to show the following

facts:

• the operator E is invertible if and only if all the defects vanish

• the pair (E,A) is a regular pencil if and only if the β+ and β− defects vanish

• we show that the invariants defined in [7], like the strangeness, may also be defined
directly in an invariant manner, i.e., without using any extra structure or basis

We also show that the defects and the system (E(∞)∗(∞),A(∞)∗(∞)) completely charac-
terize the equivalence class corresponding to the equivalence relation (2).

• the defects are related to the Kronecker indices

• the invariants defined in [7] may be used to construct a corresponding canonical form
for weak equivalence: this connects the approaches of [17] and [7]

• using the relation with the Kronecker decomposition theorem, we show that the
defects of the dual system (E∗,A∗) are related to those of (E,A) by switching the β+

and β− defects.
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1.4 Outline

The layout of the paper is as follows.
In the first part, Section 2 and Section 3, we show how to derive the non-dynamical

invariants. In Section 2 we define the reduction procedure. In Section 3 we define the
defects of a system, and study their properties. In particular, we give an original proof of
the relation between the property of a pencil to be regular, and the presence of some of
the defects.
In the second part, we show that the invariants obtain in the first part, namely the

defects, supplemented by a Jordan structure, are the only invariants of the pair of matrices
with respect to equivalence. Most of the results in this part are already in [17] and [13]. In
Section 4 we prove the basic lemmas needed to construct canonical forms. In Section 5, we
show how to use those tools to construct a canonical form with respect to weak equivalence
In Section 6 and Section 7 we show that the defects determine a complete canonical form.
In Section 8 we study the relation with the existing Kronecker canonical form.

2 System Reduction

2.1 Setting

Definition 2.1. We will call a pair of linear operators (E,A) a linear system, or simply
a system, if E and A have the same domain and codomain, both of finite dimension.

Given a system (E,A), we will denote the common domain of E and A by M(E,A) and
the common codomain of E and A by V(E,A), so a system (E,A) may be represented as

E,A : M(E,A) −→ V(E,A).

2.2 Reduced spaces

The idea behind the reduction of a linear system (E,A) is to “disentangle” the spaces
associated with the operators E and A. The strategy pursued is to try and make the
operator E surjective, by successive reduction steps. In order to achieve this, we have to
describe the lack of surjectivity of E, first independently of A, which leads to the definition
of the subspace

V ′ := EM.

The next step is now to describe the lack of surjectivity of E, with respect to A, which we
measure using the subspace

M ′ := A−1V ′.

Remark 2.2. Those definitions make sense when considering the differential equation

Ex′ + Ax = 0.

Notice that any suitable initial condition for this equation must be in M ′. If the initial
condition is not in M ′, there cannot be any solution stemming from that initial condition.

Let us put those definitions together:
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Definition 2.3. Given a linear system (E,A) we define its reduced codomain V ′(E,A)Reduced
codomain as

V ′(E,A) := EM(E,A),

and its reduced domain M ′(E,A) as

M ′(E,A) := A−1V ′(E,A) =
{
x ∈M(E,A) : Ax ∈ V ′(E,A)

}
.

Remark 2.4. We will often drop the dependency on the system (E,A), and simply write
M , M ′, V and V ′ when the context is clear enough.

Remark 2.5. As explained in [14, §5.1], the reduction of Definition 2.3 corresponds to the
non-linear reduction of general systems of differential equations with constraints. The
study of differential equations is also the point of departure in [17].

Remark 2.6. One of the first occurrence of the definition of that subspaceM ′ seems to be in
[18, Lemma 2.1]. It is used to study systems which are regular pencils (see Definition 3.19).
Another explicit definition is to be found in [11, §7], although with a different purpose

than ours, namely the study of linear, time-varying differential algebraic equations of index
one.

2.3 System Reduction

The subspaces M (k) and V (k) defined in Definition 2.3 allow for defining a new system.
This procedure will be called “reduction”.

Proposition 2.7. Given a system (E,A), the operators E′ and A′ are uniquely defined by
the following commuting diagram.

M V

M ′ V ′

E,A

E′,A′

The vertical arrows are canonical injection from a subspace into the ambient space.
The operators E′ and A′ build up a new system (E,A)′ which we call the reduced system,

and is defined by
(E,A)′ := (E′,A′).

Proof. The proof rests on the observation that

EM ′(E,A) ⊂ V
′
(E,A) and AM ′(E,A) ⊂ V

′
(E,A).

Remark 2.8. Consider the category which objects are vector spaces and arrows are systems
as defined in Definition 2.1. The reduction operation, denoted by a prime, is an endofunctor
in this category, i.e., a functor from that category to itself.
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As we mentioned in the beginning of subsection 2.2, our goal is to obtain a reduced
system such that E is surjective. It is only part of a general strategy to obtain a reduced
system where E is invertible. It is therefore important that the reduction algorithm does
not alter the injectivity of E. We observe that this is indeed the case.

Proposition 2.9. If, in a system (E,A), E is injective, then E′ is also injective.

Proof. It is a consequence of the observation that

kerE′ ⊂ kerE.

The pendant of that observation is the equally simple observation regarding the kernel
of the operator A with respect to the reduced space M ′:

Proposition 2.10. Given a system (E,A), the null-space of A is included in M ′(E,A), i.e.,

kerA ⊂M ′(E,A).

2.4 Iterated Reduction

We may iterate the reduction process described in subsection 2.3 on the new system (E,A)′.
This leads to a sequence of systems {(E,A)(k)}k∈N which is defined recursively as follows.

Definition 2.11. The iterated of the reduction of a system (E,A) are defined recursively
by

(E(k+1),A(k+1)) := (E(k),A(k))′, ∀k ≥ 0,

and
(E(0),A(0)) := (E,A).

We will make use of the straightforward notation, for k ∈ N.

M
(k)
(E,A) := M(E,A)(k) ,

V
(k)
(E,A) := V(E,A)(k) .

(3)

The reduced operators E(k) and A(k) are essentially restrictions of the original operators
E and A, so we may rewrite the definition of the iterated reduced subspacesM (k) and V (k).

Proposition 2.12. For a system (E,A) the following assertions hold for any integer k ≥ 0:

∀x ∈M (k) E(k)x = Ex A(k)x = Ax,

V (k+1) = EM (k),

M (k+1) =
{
x ∈M (k) : Ax ∈ V (k+1)

}
.

Proof. The proof is a simple verification by induction on k.
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2.5 Totally Reduced Systems

As we shall notice in subsection 2.7, the repeated operation of reduction transforms a
system into one which cannot be reduced anymore, or rather, for which the reduction does
not create a new system. We call such systems “totally reduced”:

Definition 2.13. We will say that a system (E,A) is totally reduced if

(E,A)′ = (E,A).

A practical characterisation of a totally reduced system is that V ′ = V . The verification
is straightforward.

Proposition 2.14. A system (E,A) is totally reduced if and only if

V ′(E,A) = V(E,A).

2.6 Almost Reduced System

Definition 2.15. We will say that a system (E,A) is almost reduced if

M ′(E,A) = M(E,A).

The chosen vocabulary is supported by the following facts:

• a totally reduced system is also almost reduced, which follows from Definition 2.3.

• a system which is almost reduced will be totally reduced at the next step of the
reduction, since by Proposition 2.12: V ′′ = EM ′ = EM = V ′.

Remark 2.16. In the situation of a reduced system which is almost but not totally reduced,
the following subspace sequences

M (n+1) =M (n) ⊂ . . . ⊂M ′′ ⊂M ′ ⊂M
V (n+2) = V (n+1) ⊂V (n) ⊂ . . . ⊂ V ′′ ⊂ V ′ ⊂ V

would be produced.
A concrete example where this happens is when A = 0 and E is not surjective. It is

clear that M ′ = M but V ′ ( V . The corresponding system is thus almost reduced but not
totally reduced.

2.7 Index

The reduction procedure produces decreasing sequences of subspaces. When both se-
quences stall, the system is totally reduced. The number of reduction steps needed to
transform a system into a totally reduced one is called the index of the system (E,A):

Definition 2.17. The smallest integer n ∈ N for which the system (E(n),A(n)) is totally
reduced is called the index of the system (E,A).

We will use the following notation for the index of the system (E,A):

ind(E,A) := min
{
n ∈ N : (E,A)(n+1) = (E,A)(n)

}
.
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Remark 2.18. The index is always a finite integer1, and the reduced system (E′,A′) has an
index dropped by one, i.e,

ind(E,A)′ = ind(E,A)−1.

Those observations will be used repeatedly to prove statements by induction on the
index (e.g., in Proposition 3.20, Theorem 6.1 and Theorem 8.2).

Remark 2.19. Using Proposition 2.14 we observe that

ind(E,A) = min
{
n ∈ N : V (n+1) = V (n)

}
.

Remark 2.20. The index defined in Definition 2.17 is closely related to the geometric index
defined in [10], [9] or [14, §5.1]. In fact, the geometric index would be the first integer
n such that the system (E,A)(n) is almost reduced (Definition 2.15). As we shall see in
Corollary 3.17 and Proposition 3.20, this minor difference is only relevant for singular
pencils.

2.8 Totally Reduced System

Definition 2.21. For a system (E,A) of index n = ind(E,A) we define the totally reduced
system as

(E(∞),A(∞)) := (E(n),A(n)).

Remark 2.22. We could simply have defined, say E(∞) by the limit of the sequence of
operators E(k) (because this sequence eventually stalls), which explains the notation “∞”.
We pointed out in subsection 2.2 that the idea behind the reduction procedure was to

lead to a system where E is surjective. The reduction algorithm indeed achieves this goal:

Proposition 2.23. The totally reduced operator E(∞) is surjective.

Proof. The system (E(∞),A(∞)) is totally reduced so we may use Proposition 2.14 to con-
clude that E(∞)M (∞) = (V (∞))′ = V (∞), so E(∞) is surjective.

3 Defects

3.1 Quotient Operators

At each step of the reduction some information is lost, by passing from the original system
to the reduced one. We capture that information loss by two quotient operators defined
on the quotient space M/M ′.

Proposition 3.1. The following commutating diagrams uniquely define the quotient oper-
ators [A] and [E] (the vertical arrows are the natural projections on a quotient space).

M V

M/M ′ V/V ′

A

[A]

M V ′

M/M ′ V ′/V ′′

E

[E]

1as opposed to the differentiation index, which is infinite in the non-regular pencil case; see, e.g., [3, §
VII.1].
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Moreover, [A] is injective and [E] is surjective.

Proof. The quotient operators [A] and [E] are well defined because AM ′ ⊂ V ′ and EM ′ ⊂
V ′′ (since in fact, EM ′ = V ′′ by definition). [E] is surjective because E is surjective onto
V ′ by definition of V ′. [A] is injective since, by definition of M ′,

Ax ∈ V ′ =⇒ x ∈M ′.

3.2 Constraint and Observation Defects

Since [A] is injective and [E] is surjective, the information stemming from those operators
are to be collected in the cokernel of [A] and the kernel of [E]. The dimension of those
subspaces are important invariants of the system (E,A) which we now precisely define.

Definition 3.2. Let [E] and [A] be defined as in Proposition 3.1. We measure the lack of
surjectivity of [A] by the first observation defect β+1 (E,A), defined as

β+1 (E,A) := dim coker[A] (4)

and the lack of injectivity of [E] by the first constraint defect α1(E,A), defined as

α1(E,A) := dim ker[E]. (5)

Now we take advantage of the reduction procedure and define those defects recursively:

Definition 3.3. The constraint defects αk(E,A) of a system (E,A) are defined for any
integer k ≥ 1 by

αk(E,A) := α1((E,A)(k−1)).

Similarly, the observation defects β+k (E,A) are defined for any integer k ≥ 1 by

β+k (E,A) := β+1 ((E,A)(k−1)).

3.3 Control Defects

There is another important kind of defect that will be needed. In is obtained by considering
the dual of the totally reduced system obtained after repeated reductions. That totally
reduced system (E(∞),A(∞)) is such that E(∞) is surjective, so E(∞)∗ is injective. So what
happens for a system (E,A) such that E is injective? It turns out that such a system has
no constraint defects.

Proposition 3.4. Given a system (E,A), if E is injective, then the system has no constraint
defects, i.e., for all integer k ≥ 1, αk(E,A) = 0.

Proof. The proof proceeds by induction on the index.

1. If the index is zero, then M ′ = M and V ′ = V , so dim ker[E] = 0.
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2. For a positive index, using Proposition 2.9 we may apply the induction hypothesis
and deduce that αk(E,A) = 0 for k ≥ 2.

3. Now if x+M ′ ∈ ker[E] then Ex ∈ EM ′. Since E is injective, this means that x ∈M ′
and thus that ker[E] = 0. We conclude that α1(E,A) = 0.

Let us introduce the notion of a dual system.

Notation 3.5. Given a system (E,A) we define the dual system (E,A)∗ by the pair of
adjoint operators (E∗,A∗), i.e.,

(E,A)∗ := (E∗,A∗).

Proposition 3.6. The dual (E(∞),A(∞))∗ of a totally reduced system has no constraint
defects, i.e.,

α(E(∞)∗,A(∞)∗) = 0.

Proof. According to Proposition 2.23, the operator E(∞) is surjective, so E(∞)∗ is injective,
and we conclude using Proposition 3.4.

This suggests that another set of defects is given by the observation defects of the dual
of the totally reduced system (E(∞),A(∞)).

Definition 3.7. Given a system (E,A), we define the control defects β−k (E,A) by

β−k (E,A) := β+k (E(∞)∗,A(∞)∗) ∀k ≥ 1.

3.4 Intrinsic Dynamical System

The reduction procedure may thus be used once to obtain a totally reduced system, and
may then be applied again to the dual of that totally reduced system.
Starting with a system (E,A), we may completely reduce it to obtain the system (E(∞),A(∞)).

The operator E(∞)∗ is injective. The adjoint system (E(∞)∗,A(∞)∗) may be in turn com-
pletely reduced to obtain the system (E(∞)∗(∞),A(∞)∗(∞)). Using Proposition 2.23 and
Proposition 2.9, we obtain the following result.

Proposition 3.8. The operator E(∞)∗(∞) is invertible.

Since the operator E(∞)∗(∞) is invertible, its domain and co-domain have the same di-
mension. This dimension is the dimension of the intrinsic dynamics of the system.

Definition 3.9. The dynamical dimension δ of the system (E,A) is defined by the
integer

δ := dimM (∞)∗(∞) = dimV (∞)∗(∞).

Remark 3.10. For a differential equation defined by the system (E,A), the system

(E(∞)∗(∞)∗,A(∞)∗(∞)∗)

corresponds to the underlying differential equation. In particular, the dynamical dimension
δ determines the degrees of freedom for the choice of the initial condition.
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3.5 Dimensions of the Subspaces

In order to study the relations existing between the defects and the various subspaces
M (k) and V (k), we define the following spaces, which measure the difference of dimension
between each successive reduction:

Definition 3.11. Recalling Definition 2.11, for any integer k ≥ 1 we define the spaces

∆M (k) := M (k−1)/M (k)

and
∆V (k) := V (k−1)/V (k).

By definition of the defects in Definition 3.2 and using Proposition 3.1, one obtains the
relations

dim ∆M (k) = dim ∆V (k+1) + αk, ∀k ≥ 1,

dim ∆V (k) = dim ∆M (k) + β+k , ∀k ≥ 1,
(6)

between the dimensions of the spaces defined in Definition 3.11 and the defects.
For any integer k ≥ 1 this implies the inequalities

· · · ≤ dim ∆M (k+1) ≤ dim ∆V (k+1) ≤ dim ∆M (k−1) ≤ dim ∆V (k) ≤ · · · .

Remark 3.12. This is the same sequence of inequalities as in [17, 5.2].

In particular, the dimensions of the spaces ∆M (k) and ∆V (k) may be expressed using
the constraint and observation defects.

Lemma 3.13. For any integer k ≥ 1, the dimensions of the spaces ∆M (k) and ∆V (k) are
related to the defects by the identities

dim ∆V (k) =
∑
j≥k

(αj + β+j ),

dim ∆M (k) =
∑
j≥k

(αj + β+j+1).

Proof. Those identities follow from an induction based on (6) and the observation that
the integers dim ∆V (k) and dim ∆M (k) are zero when k is bigger than the index of the
system.

Remark 3.14. As we shall see in Theorem 5.1, the quantity defined in [7] as the “strangeness”
s turns out to be the integer

s = dim ∆V ′′.

Roughly speaking it expresses the number of constraints that, when differentiated, will
help to reduce the system.
We may thus give the precise relation of the strangeness to the defects using Lemma 3.13,

namely

s = dim ∆V ′′ =

∞∑
k=2

β+k +

∞∑
k=2

αk.
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The dimensions of the spaces M and V may also be expressed from the defects and the
dynamical dimension δ (see Definition 3.9).

Proposition 3.15. The dimensions of M , V , the defects α, β+ and β− and the dynamical
dimension δ are related by the formulae

dimM = δ +
∑
k≥1

kαk +
∑
k≥1

kβ−k +
∑
k≥1

kβ+k+1,

dimV = δ +
∑
k≥1

kαk +
∑
k≥1

kβ+k +
∑
k≥1

kβ−k+1.

Proof. First observe that since dimV (k) = dimV (k+1) + dim ∆V (k+1) and dimM (k) =
dimM (k+1) + dim ∆M (k+1), we have

dimM = dimM (∞) +
∑
k≥1

dim ∆M (k) dimV = dimV (∞) +
∑
k≥1

dim ∆V (k).

Using Lemma 3.13 we obtain

dimV = dimV (∞) +
∑
k≥1

kαk +
∑
k≥1

kβ+k ,

and
dimM = dimM (∞) +

∑
k≥1

kαk +
∑
k≥1

kβ+k+1.

Now using the observation of Proposition 3.6 that α(E(∞)∗,A(∞)∗) = 0, along with Def-
inition 3.7 of the defects β− and Definition 3.9 of the dynamical dimension δ we readily
obtain the result.

3.6 Relation with the Index

The index is, as expected, a non-dynamical invariant. More precisely, it is a function of
the defects, as the following proposition shows:

Proposition 3.16. The index ind(E,A) (see Definition 2.17) of a linear system (E,A) is
given by

ind(E,A) = min
{
n ∈ N : ∀k > n αk(E,A) = 0 and β+k (E,A) = 0

}
.

Proof. Following Remark 2.19, the index fulfills

ind(E,A) = min
k

dim ∆V (k+1) = 0.

Using Lemma 3.13 we thus obtain

dim ∆V (k) = 0 ⇐⇒ αj + β+j = 0 ∀j ≥ k + 1,

which proves the claim.

In the case of a system without observation defects we obtain readily:

Corollary 3.17. The index of a system (E, A) without observation defects (i.e., β+ = 0)
is the biggest index of non-zero constraint defects, i.e.,

ind(E,A) = min
{
n ∈ N : ∀k > n αk(E,A) = 0

}
.

backgroundcolor=green!40]add remark on index for DAEs?
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3.7 Defects and Invertibility

The choice of the name “defect” may seem overly negative, but those integers really measure
how far this system is from a system where E is invertible. This is the essence of the
following proposition.

Proposition 3.18. For a given system (E,A) the following statements are equivalent.

(i) All the defects α, β+ and β− are zero.

(ii) The operator E is invertible.

Proof. E is surjective if and only if ∆V ′ = 0. By Lemma 3.13, that is equivalent to
α = β+ = 0. Since E is invertible if and only if both E and E∗ are surjective, we obtain
the result using Definition 3.7.

3.8 Regular Pencils

A pencil is a polynomial on a ring of matrices. Since we are interested in pairs of matri-
ces, our attention is restricted to first order polynomials, and to the property of such a
polynomial to be regular.

Definition 3.19. The system (E,A) is a regular pencil if there exists λ ∈ C such that
λE + A is invertible.

There is a remarkable relation between the property of being regular and the defects:

Proposition 3.20. The system (E,A) is a regular pencil if and only if all the defects β+

and β− are zero.

We need first a lemma to understand how the pencil regularity property may be lost
during the reduction.

Lemma 3.21. The system (E,A) is a regular pencil if and only if both the following prop-
erties hold:

(i) β+1 (E,A) = 0

(ii) The reduced system (E,A)′ is a regular pencil

Proof. 1. Consider, for any λ ∈ C, the operator Sλ defined by

Sλ := λE + A.

Sλ can be decomposed into S′λ and [Sλ] according to the following commuting dia-
gram:

0 M ′ M M/M ′ 0

0 V ′ V V/V ′ 0

S′λ Sλ [Sλ]
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Since both rows are exact sequence, out of the three operators S′λ, Sλ and [Sλ], if
two of them are invertible then the third one is. One easy way to prove this fact2 is
by choosing bases in M and V which are compatible with the subspaces M ′ and V ′.
The operator Sλ is then represented by a block triangular matrix where the diagonal
blocks are the matrices of S′λ and [Sλ]. Now it is easy to check that if two of those
three matrices are invertible, the third one is.

2. Notice that for any λ ∈ C, [Sλ] = [A] (the operator [A] is defined in Proposition 3.1),
so [Sλ] is invertible if and only if β+1 = 0. As a result, we obtain the property

β+1 = 0 =⇒
[
∀λ ∈ C Sλ invertible ⇐⇒ S′λ invertible

]
.

3. For any λ ∈ C, the surjectivity of Sλ implies that of [Sλ]. Since [Sλ] does not depend
on λ, it means that if [Sλ] = [A] is not surjective, then Sλ is not surjective for any
λ ∈ C. Now since, by definition, if β+1 6= 0 then [A] is not surjective, we conclude
that

β+1 6= 0 =⇒ ∀λ ∈ C Sλ not invertible.

All the possibilities are covered and the claim is proved.

Proof of Proposition 3.20. 1. We first show by induction on the index that (E,A) is a
regular pencil if and only if β+ = 0 and (E,A)(∞) is a regular pencil. It is easy to
show using Lemma 3.21.

2. Now a system (E,A) is a regular pencil if and only if the dual system (E,A)∗ is a
regular pencil, so we may apply on (E(∞)∗,A(∞)∗) the claim just proved. Because of
Definition 3.7, we obtain that (E,A) is a regular pencil if and only if β+ and β− are
zero, and (E(∞)∗(∞),A(∞)∗(∞)) is a regular pencil

3. Since, by Proposition 3.8, E(∞)∗(∞) is invertible, the system (E(∞)∗(∞),A(∞)∗(∞)) is
a regular pencil, and the claim is proved.

4 Coupling

4.1 Motivation: coupling spaces

In Section 2 we showed how to define invariant subspaces for the system (E,A). “Invariant”
means here that those subspaces are not arbitrarily chosen, they depend in a unique way
from the system at hand.
In order to obtain a simple matrix representation of that system, we will need to choose

supplementary spaces to the invariant subspaces M ′ and V ′. In this section, we focus on
such supplementary spaces for one reduction step only, and establish some results which
will be needed in Section 6.
We first look at the case of supplementary subspaces to the subspace M ′, i.e., subspaces

N ′ ⊂M such that
M = M ′ ⊕N ′.

2This is a very general result that holds in other contexts as well, since one may also prove it by diagram
chasing.
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The strategy is to try and choose N ′ in the same direction as the part of kerE that
remains out of M ′. First we define what this space is by decomposing the kernel of E
in the part that is included in M ′ and some supplementary space. This is achieved by
choosing any supplementary space K ′ such that

kerE = (kerE ∩M ′)⊕K ′.

Then since, by construction, K ′ ∩M ′ = 0 one may complete M ′ by choosing a supplemen-
tary space C ′ such that

M = M ′ ⊕ C ′ ⊕K ′.

We now define N ′ as
N ′ := C ′ ⊕K ′.

The choice of C ′ will prove to be essential to obtain a complete decomposition of the
system (E,A). The tool to choose C ′ appropriately will be Lemma 4.2.
But notice now that no matter how we choose C ′, the space K ′ roughly speaking corre-

sponds to the variables that are decoupled from the rest of the system. They are sometimes
called the algebraic constraints.

Example 4.1. Let us illustrate the previous remark by a trivial example. Consider the
simple system {

x′ = x

y = 0.

The variable y is decoupled from the rest of the system.

4.2 Coupling Lemma for E

We will assume that some coupling space W ′′ has already been chosen in the reduced
system, and that will serve as a starting point for the choice of the coupling space at the
present stage. More precisely, we assume that the reduced space V ′ is already decomposed
as

V ′ = EM = EM ′ ⊕W ′′.

That decomposition allows to construct the coupling spaces in an optimal manner, in one
subspace C ′ coupled with W ′′, and complement with vectors in the null-space of E.
We state the result in a lemma, formulated outside the context of linear systems.

Lemma 4.2. Assume that an operator E acting on a space M , and consider a subspace
M ′ ⊂M . For any subspace W ′′ such that EM = EM ′ ⊕W ′′ there exists subspaces K ′ and
C ′ such that

M = M ′ ⊕ C ′ ⊕K ′

and such that the sequence

0 K ′ K ′ ⊕ C ′ W ′′ 0
E

is exact. The exactness means here that kerE ∩ (K ′ ⊕ C ′) = K ′ and E(K ′ ⊕ C ′) = W ′′.
Moreover, for any choice of basis in W ′′ one may choose a basis of C ′ such that its image

by E is the basis in W ′′ (see Figure 1).
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EM ′

M ′

EM

M

C ′ K ′

W ′′

Figure 1: An illustration of Lemma 4.2. There is a basis choice such that the operator E is
represented as this matrix. Blue squares are identity matrix blocks. Other areas
are filled with zeros.

Proof. 1. Consider
C ′ := E−1W ′′ =

{
x ∈M : Ex ∈W ′′

}
.

Observe that M ′ + C ′ = M , and EC ′ = W ′′.

2. Pick x ∈ C ′ ∩M ′. It implies that Ex ∈ W ′′ ∩ EM ′, so Ex = 0, i.e., x ∈ kerE. We
conclude that C ′ ∩M ′ ⊂ kerE.

3. Choose C ′ such that C ′ = kerE ⊕ C ′. It follows from the previous observation that
C ′ ∩M ′ = 0. This implies

M = (M ′ + kerE)⊕ C ′.

4. Decompose further kerE as

kerE = (kerE ∩M ′)⊕K ′.

As a consequence, we obtain

M ′ + kerE = M ′ ⊕K ′

and K ′ ⊂ kerE.

5. Finally we have EC ′ = EC ′ = W ′′, and C ′ ∩ kerE = 0. Moreover, since E restricted
on C ′ sends C ′ bijectively to W ′, the inverse image of the basis of W ′′ is a basis of
C ′.
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4.3 Complementary subspaces

The definition of M ′, in Definition 2.3, is the set of vectors in M such that Ax intersects
with the image of E. We are now interested in the converse statement, namely, that if we
choose a subspace N ′ which does not intersectM ′, its image AN ′ by A should not intersect
the image of E. This is the gist of the following lemma.

Lemma 4.3. Consider a linear system (E,A) and assume that N ′ is a subspace of M(E,A)

that does not intersect M ′(E,A), i.e. such that

N ′ ∩M ′(E,A) = 0.

Then the property
AN ′ ∩ V ′(E,A) = 0

holds.

Note that this result is a consequence of Proposition 3.1. Indeed, the subspace N ′ may
be injected in M/M ′ and the result follows from the fact that [A] is injective.
We give also a direct proof of this elementary lemma.

Proof. For general subspaces N ′ ⊂M and W ′ ⊂ V , we have

AN ′ ∩W ′ = A(N ′ ∩ A−1W ′).

With W ′ = V ′ and since by Definition 2.3, M ′ = A−1V ′, we obtain

AN ′ ∩ V ′ = A(N ′ ∩M ′)

from which the claim follows.

4.4 Coupling Lemma for Systems

We may now combine Lemma 4.2 and Lemma 4.3 and obtain a fundamental Lemma that
decouples the operators E and A on supplementary spaces to M ′ and V ′.

Lemma 4.4. Suppose that there is a decomposition

V ′ = V ′′ ⊕W ′′,

and that W ′′ is equipped with a basis.
Then there exists decompositions

M = M ′ ⊕N ′,
V = V ′ ⊕W ′,

and subspaces
C ′ ⊂M D′ ⊂ V,
K ′ ⊂M Z ′ ⊂ V,

such that

N ′ = C ′ ⊕K ′, (7)
W ′ = D′ ⊕ Z ′. (8)

Those subspaces are such that the following sequences are exact:
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0 K ′ K ′ ⊕ C ′︸ ︷︷ ︸
N ′

W ′′ 0

0 N ′ D′ ⊕ Z ′︸ ︷︷ ︸
W ′

Z ′ 0

E

A

and such that
AM ∩ Z ′ = 0.

Moreover, one may choose basis in the subspaces C ′, K ′, D′ and Z ′ such that the basis
of D′ is the image by A of the basis of N ′, and the basis on W ′′ is the image by E of the
basis of C ′.

Proof. 1. By the assumption on W ′′, we have

EM = V ′ = V ′′ ⊕W ′′ = EM ′ ⊕W ′′.

The subspace W ′′ is moreover equipped with a basis by the induction hypothesis.

2. Appealing to Lemma 4.2 we obtain subspaces C ′ and K ′ such that

M = M ′ ⊕ C ′ ⊕K ′

with
EC ′ = W ′′

and
EK ′ = 0

and
kerE ∩ C ′ = 0.

Note that, given a basis in W ′′ we can choose a basis on C ′ such that E sends that
basis on that of W ′′.

Let us now define the subspace N ′ ⊂M by

N ′ := C ′ ⊕K ′.

We choose an arbitrary basis of the space K ′, and this provides us with a basis for
the space N ′.

3. Recall now that, according to Lemma 4.3,

AN ′ ∩ EM = 0,

and by Proposition 2.10, the operator A sends the basis of the space N ′ to a set of
independent vectors in the space V . We thus choose as a basis of AN ′ the image of
the basis of N ′ by A.

4. Now choose a subspace Z ′ ⊂ V such that

V = EM ⊕ AN ′ ⊕ Z ′
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and pick an arbitrary basis of that subspace. We define

D′ := AN ′

and
W ′ := D′ ⊕ Z ′.

Remark 4.5. The dimensions of the spaces introduced in Theorem 6.1 are related to the
dimensions of the spaces introduced in Definition 3.11, and to the defects (Definition 3.2).
The relations are given by

dimW ′ = dim ∆V ′ dimZ ′ = α1,

dimN ′ = dim ∆M ′ dimK ′ = β+1 .

5 Strangeness

In order to illustrate the power of reduction, and to show an application of Lemma 4.4,
we show an intermediate result. Instead of looking at the equivalence classes for the
equivalence of matrices, that is, pairs of invertible operators acting on (E,A) as (PEQ,PAQ),
we look at the weak equivalence.
Weak equivalence is determined by another group, which elements consist of two invert-

ible operators P and Q and an arbitrary operator R, acting on a system (E,A) as

(P,Q,R) · (E,A) := (PEQ,P(ER + AQ)). (9)

5.1 Weak equivalence group

The group operation corresponding to weak equivalence is given by

(P2, Q2, R2) · (P1, Q1, R1) = (P2P1,Q1Q2, Q1R2 +R1Q2),

where P1, P2 are automorphisms of V , Q1, Q2 are automorphisms on M , and R1, R2 are
arbitrary endomorphisms on M .
The identity is then

(I, I, 0),

and the inverse of an element (P,Q,R) is given by

(P,Q,R)−1 = (P−1, Q−1,−Q−1RQ−1).

Clearly, the elements of the form (P,Q, 0) form a subgroup corresponding to the equiv-
alence relation. Another subgroup is given by elements of the form (I, I,R).
For the study of the orbits of the weak equivalence group, the identity

(P, Q,R) = (P, Q, 0) · (I, I, RQ−1) = (I, I,Q−1R) · (P, Q, 0) (10)

shows that we may restrict our attention to one subgroup at a time.
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5.1.1 Orbit Invariants

The orbits of the weak equivalence group action (9) were studied in [7], in which the authors
exhibited a complete set of invariants. We give an alternative proof here, thereby shedding
some light on the notion of strangeness.

Theorem 5.1. A complete set of invariants for the group action (9) is given by

1. d := dimV ′′,

2. a := dim ker[E] = α1,

3. s := dim ∆V ′′.

The integer s is called “strangeness” in [7].

Proof. 1. First we have to check that the three integers are indeed invariants of the
group action. Clearly, they are invariants by transformations of the form (P,Q, 0),
which are merely equivalent transformation.

Let us examine the case of a transformation

(E,A) = (I, I,R) · (E,A) = (E,ER+ A).

We have
V
′
= EM = EM = V ′,

M
′
:= {x : Ax ∈ EM} = M ′,

so
(E
′
,A
′
) = (E,A)

and
V ′′ = E

′
M ′ = EM ′ = V ′′.

Using (10), this shows that the spaces V ′, V ′′ and M ′ are invariants of all of the
weak equivalence group transformations.

As a result, the spaces ∆V ′′ and the operator [E] are also invariants, so the integers
d, a and s are invariants.

2. Now we show that the integers d, a and s are the only invariants. In order to show
that, we show that a system (E,A) is weakly equivalent to a canonical form that
depends only on those three integers.

In order to achieve this, we decompose M and V using Lemma 4.4.

a) Let us choose an arbitrary decomposition

V ′ = V ′′ ⊕W ′′.

We may now apply Lemma 4.4 to obtain spaces C ′, K ′, D′ and Z ′ equipped with
appropriate bases. Using Remark 4.5 we obtain s = dimW ′′ and a = dimK ′.

b) Finally, define Π as a projector fromM toM ′ along N ′. Let F be a right inverse
for E on V ′ = EM .

Define
R := −FAΠ,
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s

a

s

d

D′

Z ′

C ′ K ′

W ′′

M ′

V ′′

Figure 2: Canonical form of a matrix corresponding to the weak equivalence. The matrix
E is represented in blue, whereas the matrix for A is represented in green. All
such squares are identity matrices. The rest is filled out by zero entries.

so ER + A = 0 on M ′.

As a result, if we define the new system (E,A) by

(E,A) := (E,ER + A),

then the restriction of A on M ′ is zero.

c) Now we may choose a basis of M ′ and of V ′′ = EM ′ such that E is represented
by the identity matrix on M ′.

This provides us with complete basis of M and V such that the matrices E and
A take the form described in Figure 2.

6 Direct Decomposition

6.1 Decomposition Theorem

In Section 2 we showed how to define invariant subspaces M (k) and V (k) for the system
(E,A). In order to obtain a complete decomposition of the spacesM and V , it is necessary
to construct subspaces that bridge the gap between each invariant subspaces M (k) and
V (k). More precisely we construct spaces N (k) and W (k) such that

M (k) = M (k+1) ⊕N (k+1), V (k) = V (k+1) ⊕W (k+1).

In a sense, the subspaces N (k) and W (k) correspond to the spaces ∆M (k) and ∆V (k)

respectively, defined in Definition 3.11.
The construction of those supplementary spaces proceeds backwards, in the direction

opposite to the reduction. One must first totally reduce the system (E,A). Assume that the
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index is n. One then chooses an arbitrary complementary space W (n) such that V (n−1) =
V (n)⊕W (n), and equip that space with an arbitrary basis. The rest is a repeated application
of Lemma 4.4.
We now see how to choose those supplementary spaces N (k) and W (k) so that the

operators E and A are simultaneously decomposed in an advantageous way.

Theorem 6.1. Consider a system (E,A).
Recall the definitions of the subspaces M (k) and V (k) in (3).
For any integer k ∈ N there exists subspaces N (k+1) ⊂M and W (k+1) ⊂ V such that

M (k) = M (k+1) ⊕N (k+1),

V (k) = V (k+1) ⊕W (k+1),

and for any integer k ≥ 1 there exists subspaces

C(k) ⊂M D(k) ⊂ V,
K(k) ⊂M Z(k) ⊂ V,

such that

N (k) = C(k) ⊕K(k), (11)

W (k) = D(k) ⊕ Z(k). (12)

Those subspaces are such that for any integer k ≥ 1, the following sequences are exact
(see Figure 3):

0 K(k) K(k) ⊕ C(k)︸ ︷︷ ︸
N(k)

W (k+1) 0

0 N (k) D(k) ⊕ Z(k)︸ ︷︷ ︸
W (k)

Z(k) 0

E

A

and such that
AM (k−1) ∩ Z(k) = 0.

Moreover, one may choose basis in the spaces C(k), K(k), D(k) and Z(k) such that the
basis of D(k) is the image by A of the basis of N (k), and the basis on W (k+1) is the image
by E of the basis of C(k).

Remark 6.2. For the reader averse to the language of exact sequences, the fact that the
sequences of Theorem 6.1 are exact means in that case that

EC(k) = W (k+1),

EK(k) = 0,

AN (k) = D(k),

kerA ∩N (k) = 0.
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M (∞)

V (∞)

Z(4)

C ′′′K ′′′

D′′′

Z ′′′

C ′′ K ′′

D′′

Z ′′

C ′ K ′

D′

Z ′

W (4)

N ′′′

W ′′′

N ′′

W ′′

N ′

W ′

A = I, E = 0

E = I, A = 0

E = I,A =?

E = 0,A =?

E = 0, A = 0

E = 0, A = 0

Figure 3: An illustration of the decomposition described in Theorem 6.1. Noticing that no
matter what bases we choose in M (∞) and V (∞) the matrix is block diagonal
(see Corollary 6.4), we may choose those bases in such a way that E is repre-
sented as the identity matrix on that block. Since we now that E(∞) is surjective
(Proposition 2.23), that identity block stretches to fill V (∞).

Remark 6.3. In the same spirit as Remark 4.5, we notice the relation between the dimen-
sions of the various subspaces introduced in Theorem 6.1, and the dimensions of the spaces
defined in Definition 3.11, and to the defects (Definition 3.2). For any integer k ≥ 1, the
relations are given by

dimW (k) = dim ∆V (k) dimZ(k) = αk,

dimN (k) = dim ∆M (k) dimK(k) = β+k .

Proof of Theorem 6.1. We proceed by induction on the index (see Figure 4). If the index
is zero, all the spaces M (k) and V (k) are zero, and there is nothing to prove. Assume now
that the statement holds for systems of index n− 1. Given a system (E,A) of index n, the
reduced system (E′,A′) has index n− 1, so we may apply the induction hypothesis on that
reduced system.
For clarity, let us denote

(E,A) := (E′,A′), M = M ′, V = V ′.

The reduced system (E,A)′ consists of operators operating from M ′ to V ′, so by the
induction hypothesis we obtain a decomposition of the spaces M and V into subspaces
W

(k), N (k) as described in the statement of the theorem.
We have to shift the indices of all the spaces produced for the final statement to hold.

For example, we define for any integer k ≥ 2

W (k) := W
(k−1)

,

so we may write the decomposition of V ′ as

V = V ′ = V (∞) ⊕W (n) ⊕W (n−1) ⊕ · · · ⊕W ′′.
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N ′′′

W ′′′

N ′′

W ′′

M (∞)

V (∞)

M ′

V ′

C ′ K ′

N ′

D′

Z ′

W ′

A = I, E = 0

E = I, A = 0

E = I,A =?

E = 0,A =?

E = 0, A = 0

E = 0, A = 0

Figure 4: An illustration of Theorem 6.1 and Lemma 4.4 on an index three system. The
grey shaded part pictures the previous step of the recursion. Starting with W ′′,
one constructs the space C ′ such that EC ′ = W ′′, and a subspace K ′ such that
K ′ ⊂ kerE using Lemma 4.2, and defines N ′ := C ′ ⊕K ′. One then constructs
Z ′ such that V = V ′ ⊕ AN ′ ⊕ Z ′. This in turn defines W ′ := AN ′ ⊕ Z ′.

The reduced operators E′ and A′ being restrictions of E and A, the statements obtained
from the induction hypothesis apply to the operators E and A.
Applying Lemma 4.4 yields the desired result.

6.2 Decomposition in invariant subspaces

A crucial consequence of Theorem 6.1 is that it provides us with decompositions of M and
V such that E and A may be restricted on those subspaces:

Corollary 6.4. Given the decomposition provided by Theorem 6.1, and defining M and V
by

M :=
⊕
k

N (k), V :=
⊕
k

W (k),

then, by construction,

M = M (∞) ⊕M, V = V (∞) ⊕ V ,

and we have

(i)
EM (∞) = V (∞) AM (∞) ⊂ V (∞)

(ii)
EM ⊂ V AM ⊂ V
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Proof. The fact that EM ⊂ V and AM ⊂ V follows from

EN (k) ⊂W (k+1) ⊂ V

and
AN (k) ⊂W (k) ⊂ V .

7 Dual Decomposition

7.1 Dual space decomposition

Assume that a finite dimensional vector space M is decomposed in a direct sum of sub-
spaces, i.e.,

M = M1 ⊕M2 ⊕ · · · ⊕Mn.

This decomposition induces the dual space decomposition

(Mk)∗ :=
(⊕
j 6=k

Mj

)⊥
=
{
ϕ ∈M∗ : 〈ϕ, x〉 = 0 ∀x ∈

⊕
j 6=k

Mj

}
.

Although it is not reflected by the notation, it is clear that (Mk)∗ actually depends not
only on Mk but on all the other spaces of the decomposition. It is a generalization of the
notion of dual basis.
Assume further that M is equipped with a basis. We say that this basis is compatible

with the decomposition if each subspace is the span of a subset of the basis.
If M is equipped with a basis B compatible with a subspace decomposition, then the

dual basis is compatible with the dual space decomposition.
Indeed, consider a subspaceMk of the decomposition. Since the basis is compatible with

the decomposition, that subspace is spanned by a subset of the basis B, say SMk
⊂ B, i.e.,

Mk = spanSMk
.

The dual decomposition is such that the associated subspace (Mk)∗ is the span of the dual
basis with the same subset SMk

, i.e.,

(Mk)∗ = span
{
e∗ : e ∈ SMk

}
.

Here the covector e∗ is the element of the dual basis of B corresponding to e, i.e., such that

〈e∗, f〉 =

{
0 if f 6= e

1 if f = e

Lemma 7.1. Assume that A and B are subspaces of M that are part of a subspace decom-
position of M , and that C is a subspace of V that is part of a subspace decomposition of V .
Assume further thatM and V are equipped with bases compatible with their decompositions.
Take an operator S operating from M to V .
The following two statements are equivalent:

(i) The following sequence is exact:
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0 A A⊕B C 0
S

Moreover, the operator S sends the basis of B on the basis of C.

(ii) The following “dual” sequence is exact:

0 C∗ A∗ ⊕B∗ A∗ 0
S∗

and
S∗V ∗ ∩ A∗ = 0.

Moreover, the operator S∗ sends the basis of C∗ on the basis of B∗.

Proof. Denote the basis on M and V by B(M) and B(V ) respectively. Clearly, for any
e ∈ B(M) and f ∈ B(V ), we have

〈f∗,Se〉 = 〈S∗f∗, e〉 = 〈(e∗)∗, S∗f∗〉

where (e∗)∗ is the dual basis of the dual basis of B.
The proof is now a simple verification by expressing each of the statements in terms of

the bases. For example, SA = 0 may be written as

〈f∗,Se〉 = 0 ∀e ∈ SA f ∈ B(V ),

so one obtains
〈(e∗)∗, S∗f∗〉 = 0 ∀e ∈ SA f ∈ B(V ),

which means that SA = 0 ⇐⇒ S∗V ∗ ∩ A∗ = 0. The other statements are verified in the
same fashion.

7.2 Conjugate Decomposition

Consider a finite dimensional linear system (E,A) and its dual (E∗,A∗). The corresponding
domain and codomain are denoted by

M := M(E,A)∗ = V ∗,

V := V(E,A)∗ = M∗.

By applying Theorem 6.1 on the dual system (E∗,A∗) one obtains a decomposition of
M and V as

M = M
(∞) ⊕K ′ ⊕ C ′ ⊕ · · · ,

V = V
(∞) ⊕ Z ′ ⊕D′ ⊕ · · · .

Moreover, all those subspaces are equipped with a suitable basis. By choosing a basis
for the spaces M (∞) and V (∞) we obtain compatible bases B(M) and B(V ) of M and V
respectively.
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Theorem 7.2. Consider the decompositions produced by Theorem 6.1 for the dual system
(E,A)∗. The dual decompositions induce decompositions of the spaces M and V by the
canonical isomorphism between a space and its bidual.
For any integer k ∈ N we have

M
(k)
∗ = M

(k+1)
∗ ⊕N (k+1)

∗

V
(k)
∗ = V

(k+1)
∗ ⊕W (k+1)

∗ ,

Those subspaces are such that the following sequences are exact (see Figure 3):

0 W
(k+1)
∗ K

(k)
∗ ⊕ C(k)

∗︸ ︷︷ ︸
N

(k)
∗

K
(k)
∗ 0

0 Z
(k)
∗ D

(k)
∗ ⊕ Z(k)

∗︸ ︷︷ ︸
W

(k)
∗

N
(k)
∗ 0

E

A

Moreover, the basis of C(k)
∗ , K(k)

∗ , D(k)
∗ and Z(k)

∗ are such that the basis of N (k)
∗ is the

image by A of the basis of D(k)
∗ , and the basis of C(k)

∗ is the image by E of the basis of
W

(k+1)
∗ .

Proof. It is a direct application of Lemma 7.1.

Remark 7.3. The exact sequences of Theorem 6.1 are the same as those of Theorem 7.2
but with flipped arrows. It just reflects how the block structure of a matrix is related to
the block structure of the transposed matrix.

7.3 Second sweep of the decomposition

Remember that the constraint defects of the adjoint of the totally reduced system (E(∞)∗,A(∞)∗)
are zero (Proposition 3.6). Along with Remark 6.3, we conclude that the corresponding
subspaces K(k) produced in Theorem 6.1 are zero.
Now, using Corollary 6.4, we are in a position to use the decomposition of Theorem 6.1

for the dual system (E(∞)∗,A(∞)∗) and obtain a decomposition of M (∞)∗ and V (∞)∗.

Theorem 7.4. In addition to the decomposition given by Theorem 6.1, the spaces M (∞)

and V (∞) may now be decomposed as (see Figure 5):

0 Z(k) Z(k) ⊕D(k)︸ ︷︷ ︸
W (k)

N (k) 0

0 W (k+1) Z(k) 0

A

E

Proof.

Remark 7.5. The various defects defined in Definition 3.2 and Definition 3.7 may now be
pictured clearly using the Theorem 7.4; see Figure 6.
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N ′′′

W ′′′

N ′′

W ′′

N ′

W ′

W
(∞)∗(4)
∗

N
(∞)∗′′′
∗

W
(∞)∗′′′
∗

N
(∞)∗′′
∗

W
(∞)∗′′
∗

N
(∞)∗′
∗

W
(∞)∗′
∗V (∞)∗(∞)

M (∞)∗(∞)

A = I, E = 0

E = I, A = 0

E = I,A =?

E = 0,A =?

E = 0, A = 0

E = 0, A = 0

Figure 5: An illustration of the full decomposition of Theorem 7.4. The first decomposi-
tion leads to M ′′ and the corresponding space V ′′′ = EM ′′, at which point the
algorithm stalls. The second step consists in transposing the reduced operators
E(∞) and A(∞) (indicated by the bold red frame on the figure), running the same
algorithm, and transposing back again. The upper left checkered area denotes
the identity for E, and a non specific matrix for A. Notice that this block is com-
pletely separated from the rest, so one may now reduce the A to Jordan blocks
by a similarity transformation.
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8 Kronecker Indices

8.1 Basis Arrangement

In this section we prove a result on the basis obtained in Theorem 6.1, which will be useful
to determine the relation with the Kronecker decomposition theorem.

Definition 8.1. For k ∈ N, k ≥ 1, we define a Nk-sequence to be a sequence

mj ∈M 1 ≤ j ≤ k

of k independent vectors in M , and a sequence

vj ∈ V 1 ≤ j ≤ k

of k independent vectors in V such that Amj = vj for 1 ≤ j ≤ k, Emj = vj−1 for 2 ≤ j ≤ k,
Em1 = 0 and vk 6∈ ImE, which is summarized in the following diagram.

0 m1 v1 · · · mk vk 6∈ ImE
E A E AE

Similarly, for k ∈ N, k ≥ 1, we define a Lk-sequence to be a sequence

mj ∈M 1 ≤ j ≤ k − 1

of k − 1 independent vectors and a sequence

vj ∈ V 1 ≤ j ≤ k

of k independent vectors which fulfill the conditions summarized in the following diagram.

ImA 63 v1 m1 · · · mk−1 vk 6∈ ImE
E A E A

Theorem 8.2. Theorem 6.1 produces bases such that there are αk Nk-sequences, and β+k
Lk-sequences. Moreover, the end vectors v constitute a basis of W ′.

Proof. 1. We proceed by induction on the index. Assume that the result holds for the
reduced system (E′,A′).

2. The basis of C ′ is precisely such that Emk+1 = vk. Besides, the basis of AC ′ is chosen
such that vn+1 = Amk+1, so each Lk and Nk sequence is extended with two elements,
meaning that they build now Lk+1 and Nk+1 sequences.

3. Each element m of the basis of K ′ produces a new N1 sequence (m,Av), since Em = 0
and Am = v 6∈ ImE:

0 m v 6∈ ImE
E A

The dimension of K ′ being α1, we produce α1 such sequences.

4. Each element v of the basis Z ′ qualifies as a L0 sequence, since v 6∈ ImE and v 6∈ ImA,
so

ImA 63 v 6∈ ImE.

Since the dimension of Z ′ is β+1 , we produce β+1 such sequences.

5. We conclude using Definition 3.3
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8.2 Kronecker Decomposition

The Kronecker canonical form makes use of special blocks, each of which having a variant
for the matrices E and A.

Definition 8.3. The rectangular bidiagonal blocks LEkE part of the Kronecker L-blocks
and LAkA part of the Kronecker L-blocks defined by

LEk :=


1
0 1

. . . . . .
0 1

0




k, LAk :=


0
1 0

. . . . . .
1 0

1




k.

The nilpotent blocks NE
kE part of the nilpotent blocks and NA

kA part of the nilpotent
blocks defined by

NE
k :=


0 1

0 1
. . . . . .

0 1
0




k, NA

k :=


1 0

1 0
. . . . . .

1 0
1




k.

Definition 8.4. A Kronecker decomposition of the system (E,A) is a choice of basis
of M and V such that E and A are decomposed in blocks of the same size

E =

[
I 0

0 E

]
, A =

[
J 0

0 A

]
,

where J is a diagonal block of Jordan blocks, and E and A are in diagonal block form

E = diag(NE
k1 , . . . ,N

E
km , L

E
k1 , . . . , L

E
kp , (L

E
k1)T, . . . , (LEkq)T),

A = diag(NA
k1 , . . . ,N

A
km , L

A
k1 , . . . , L

A
kp , (L

A
k1)T, . . . , (LAkq)T),

where the blocks of E and A have the same size.

Theorem 8.5. A decomposition with defects α, β+, β−, produces a Kronecker decompo-
sition which for all integer k ≥ 1 contains

• αk block of type Nk,

• β+k blocks of type Lk,

• β−k blocks of type LTk.

Proof. Recall the definition of Lk and Nk sequences in Definition 8.1. By regrouping the
elements of an Lk sequence, one obtains a representation of E and A as a Lk-block, and
similarly, by regrouping the elements of a Nk-sequence, one obtains a Nk block. Applying
Theorem 8.2, and regrouping the basis elements stemming from the sequences Lk and Nk

we obtain αk Nk-blocks and β+k Lk-blocks, for k ≥ 1.
Now the basis on the sub-block M (∞), V (∞) are obtained by transposing the decompo-

sition given by Theorem 6.1. Using the previous step and Proposition 3.6, we obtain β−k
transpose of Lk-blocks, for k ≥ 1.
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δ

δ

3 3
3

3
3

2

3
3

2
2

3
3

2
2

1

4 4
4

3
4

3
4

3
2

4
3

2

α3

β+
3

α2

β+
2

α1

β+
1

β−4 β−3 β−2 β−1

A = I, E = 0

E = I, A = 0

E = I,A =?

E = 0,A =?

E = 0, A = 0

E = 0, A = 0

Figure 6: An illustration of the defects α, β+ and β− and of the Kronecker decomposition
described in Theorem 8.5. The difference of size of the squares is exactly given by
the defects α, β+ and β−. The dark squares bearing the number j represent all
the nilpotent blocks Nj ; there are αj such blocks. The light squares in the lower-
right part bearing the number j represent the L-blocks Lj . There are β+j such
blocks. The light squares in the upper-left part bearing the number j represent
the L-blocks LTj . There are β−j such blocks. This figure also allows to check the
formulae of Proposition 3.15.

Remark 8.6. It is remarkable that the decomposition obtained in Theorem 7.4 produces
basis vectors which are the same as for a Kronecker decomposition, only ordered differently.
The necessary permutations may be visualised on Figure 6.

8.3 Conjugate Decomposition

We may now show the relation between the defects α, β+ and β− of a system (E,A) and
the defects of the adjoint system (E∗,A∗). It turns out that the constraint defects are the
same and that the observation defects β+ and the control defects β− are just switched.
This fact would have been very difficult to prove from the results of Section 3 alone, so we
need the full power of Theorem 7.4 and of its consequence, Theorem 8.5.

Theorem 8.7. The conjugate decomposition switches the defects β+ and β−, i.e., it pro-
duces the defects

α(E∗,A∗) = α(E,A),

β+(E∗,A∗) = β−(E,A),

β−(E∗,A∗) = β+(E,A).

Proof. It is a consequence of Theorem 8.5, for when putting the system in Kronecker form
Definition 8.4 and transposing, the system is still in Kronecker form, but the bidiagonal
blocks L and (L)T are switched.
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8.4 Weierstraß decomposition

In the case of regular pencils (see subsection 3.8), the Kronecker decomposition is called the
Weierstraß decomposition ([16, 1]) and is such that E and A take the matrix representation

E =

[
I 0
0 N

]
, A =

[
C 0
0 I

]
,

where C may be in Jordan normal form and N is a block diagonal matrix of blocks of type
NEk .
The matrix block NMatrix of nilpotent blocks is a diagonal block matrix

N = diag
(
NEk1(0),NEk2(0), . . . ,NEkm(0)

)
where the blocks (NEk1(0) are the nilpotent blocks defined in Definition 8.3.

Corollary 8.8. The Weierstraß decomposition is such that for any integer k ≥ 1 it contains
αk blocks NE

k .

Proof. It is just a special case of Theorem 8.5 using Proposition 3.20.

9 Conclusions

We have defined the notion of defects and have related them to existing concepts, such
as the regular pencil condition, the dimension of the reduced subspaces, or the notion of
strangeness. We also showed how the defects define a normal form, and how that normal
form relates to the existing one of Kronecker.
Note that some results, as Theorem 8.7, would be difficult to prove without using the

canonical form. Nevertheless, we tried to wring the most out of the invariant objects
defined in Section 3.
The advantage of such an approach is that it is extensible to nearby cases such as the

parameter dependent case, or the infinite dimensional case (see [15]).
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