NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Parameter multi-domain "hp" empirical interpolation

by

Jens L. Eftang and Benjamin Stamm

PREPRINT NUMERICS NO. 3/2011

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/numerics/2011/N3-2011.pdf Address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.

Parameter multi-domain "hp" empirical interpolation

Jens L. Eftang and Benjamin Stamm

February 8, 2011

In this paper, we introduce two parameter multi-domain "hp" techniques for the empirical interpolation method (EIM). In both approaches, we construct a partition of the original parameter domain into parameter subdomains: hrefinement. We apply the standard EIM independently within each subdomain to yield local (in parameter) approximation spaces: p-refinement. Further, for a particularly simple case we introduce *a priori* convergence theory for the partition procedure. We show through two numerical examples that our approaches provide significant reduction in the EIM approximation space dimension, and thus significantly reduce the computational cost associated with EIM approximations.

Keywords: empirical interpolation method; hp-EIM; hp-convergence

1 Introduction

The Empirical Interpolation Method (EIM) was first introduced in [1, 7] as a tool within the Reduced Basis (RB) framework [11] for parametrized partial differential equations (PDEs). The EIM serves to construct "affine" (more precisely, affine in functions of the parameter) approximations of non-affine parametrized differential operators. This approximation is achieved through an affine approximation of the coefficient function which separates the parameter and spatial dependence. An affine decomposition of the differential operator is necessary to enable efficient RB offline-online computational procedures. The EIM thus expands the class of PDEs amenable to RB treatment; other applications of the EIM include rapid numerical approximation of parametrized integrals and are discussed in [9].

Given "any" parametrized function, the EIM precomputation (henceforth *offline*) stage serves to construct an approximation space spanned by "snapshots" of this function for judiciously chosen parameter values from a predefined parameter domain *and* a set of judiciously chosen spatial interpolation nodes from the spatial domain. In the EIM online stage, given *any* new parameter value from the parameter domain, the EIM approximation to the original function is the particular linear combination of the EIM basis functions that interpolates the original function at the spatial interpolation nodes.

Submitted to International Journal for Numerical Methods in Engineering, February 2011. Correspondence to eftang@math.ntnu.no.

Under the assumption that the function under consideration depends sufficiently smoothly on the parameters, the EIM typically provides exponential convergence [9]. However, for many problems in which the function exhibits large (albeit smooth) variations with the parameters, a snapshot from one region of the parameter domain contributes little to the approximation of the function associated with a parameter value from another region of the parameter domain. The global (in parameter, but of course also space) EIM approximation space is thus in some sense unnecessed and consequently the online computation of the EIM approximation is unnecessed with expensive.

In this paper, we introduce two approaches that both serve to reduce the dimension of the EIM approximation space. Both approaches share the same underlying idea: an adaptive partition of the parameter domain into parameter subdomains — h-refinement — and construction of standard EIM approximation spaces and associated EIM interpolation nodes restricted to each of these parameter subdomains — p-refinement. This parameter multi-domain, or hp, strategy provides significant dimension reduction since the smaller local (in parameter) EIM approximation spaces are optimized with respect to the parametric variations within each subdomain; the online evaluation of the EIM interpolant is thus much faster.

Our first approach is the *anchor point* (AP) splitting scheme. This method is an adaption of the hp-RB method introduced in [4] to the context of the EIM. The parameter subdomains are hierarchically defined based on proximity to "anchor points" identified by the EIM Greedy sampling procedure within each subdomain at each level of h-refinement; subsequently, in the p-refinement stage, the standard EIM is applied within each subdomain. Our second approach is the *gravity center* (GC) splitting scheme. The parameter subdomains are hierarchically defined based on the "gravity center" of a cloud of points identified by the EIM Greedy sampling procedure at each level of concurrent h- and p-refinement.

We provide in the next section the problem statement along with notation required later. We then review in Section 3 the standard EIM applied to the entire parameter domain \mathcal{D} . Then, we present in Section 4 and Section 5 the AP and GC splitting procedures, respectively. In Section 6 we discuss the computational cost associated with both methods. In Section 7 we compare our two approaches relative to the standard EIM through two model problems. Finally, we provide some concluding remarks in Section 8.

2 Problem Statement

We introduce a spatial domain $\Omega \subset \mathbb{R}^d$ for some integer d > 0; we shall denote a particular spatial point $x \in \Omega$ as $x = (x_{(1)}, \ldots, x_{(d)})$. We next introduce a parameter domain $\mathcal{D} \subset \mathbb{R}^P$; we shall denote a particular parameter value $\mu \in \mathcal{D}$ as $(\mu_{(1)}, \ldots, \mu_{(P)})$. We then introduce a (given) parametrized function $\mathcal{G} : \Omega \times \mathcal{D} \to \mathbb{R}$ such that $\mathcal{G}(\cdot; \mu) \in L^{\infty}(\Omega)$ for all $\mu \in \mathcal{D}$; here $L^{\infty}(\Omega) = \{v : \operatorname{ess\,sup}_{x \in \Omega} |v(x)| < \infty\}$. We finally introduce a triangulation $\mathcal{T}^{\mathcal{N}}(\Omega)$ with \mathcal{N} vertices over which we shall in practice realize $\mathcal{G}(\cdot; \mu), \mu \in \mathcal{D}$, as a piecewise linear function.¹

For any $\mu \in \mathcal{D}$, we consider the construction of an approximation $\mathcal{G}_M(\cdot; \mu) \approx \mathcal{G}(\cdot; \mu)$, where $\mathcal{G}_M(\cdot; \mu)$ resides in a parameter-independent *M*-dimensional linear approximation space W_M , $M < \infty$. The problem is thus twofold: *i*) the construction of a good *M*dimensional approximation space $W_M = \text{span}\{q_1, \ldots, q_M\}$ and *ii*) given any $\mu \in \mathcal{D}$ and the space W_M , the computation of parameter dependent coefficients $\varphi_1(\mu), \ldots, \varphi_M(\mu)$ such

¹We emphasize that the EIM is not restricted to functions that are piecewise linear; however, for the computational procedures involved, a finite-dimensional representation of $\mathcal{G}(\cdot; \mu), \mu \in \mathcal{D}$, is required.

that

$$\mathcal{G}_M(\cdot;\mu) = \sum_{i=1}^{M} \varphi_i(\mu) q_i \approx \mathcal{G}(\cdot;\mu) \tag{1}$$

is a good approximation. Clearly, classical polynomial interpolation procedures may be considered for this problem; however in our context here standard polynomial approximation spaces are far too general and hence the required dimension M is too large to accomodate efficient online evaluation of $\varphi_1(\mu), \ldots, \varphi_M(\mu)$. In contrast, the EIM provides a much smaller approximation space specifically targeted at the parametrized function at hand.

The following simple problem illustrates how the EIM may be invoked in practice. Consider the integral

$$F(\mu) = \int_{\Omega} f(\cdot; \mu) u, \qquad (2)$$

where $f: \Omega \times \mathcal{D} \to \mathbb{R}$ with $f(\cdot; \mu) \in L^{\infty}(\Omega)$ for any $\mu \in \mathcal{D}$ and $u: \Omega \to \mathbb{R}$ is a parameter independent function (we assume that the product $f(\cdot; \mu)u$ is integrable). In general, evaluation of $F(\mu)$ with standard quadrature rules may be expensive; in particular, the evaluation cost may be prohibitive when $F(\mu)$ has to be computed for many $\mu \in \mathcal{D}$ or in real time. The EIM serves to construct an approximation $f_M(\cdot; \mu) = \sum_{m=1}^M \varphi_m(\mu)q_m$ to $f(\cdot; \mu)$ such that

$$F_M(\mu) \equiv \int_{\Omega} f_M(\cdot;\mu) u = \sum_{m=1}^M \varphi_m(\mu) \int_{\Omega} q_m u$$
(3)

is a good approximation to $F(\mu)$. The key point is that the separation provided by the EIM allows precomputation of the integrals in (3) (by for example standard quadrature rules). Hence subsequent evaluation $\mu \to F_M(\mu)$ may be performed very fast.

3 The Empirical Interpolation Method

The EIM was originally proposed in [1] (see also [7] for a more elaborate presentation). In this paper however we shall employ the particular version of the EIM introduced in [9], which invokes the less expensive interpolation error rather than the more expensive projection error as a tool in the offline construction of the EIM approximation space. We now briefly review the EIM applied to the entire parameter domain \mathcal{D} ; in the next sections we then consider the EIM within the hp context.

We first introduce the empirical interpolation of a function $\mathcal{G}: \Omega \times \mathcal{D} \to \mathbb{R}$; we require that $\mathcal{G}(\cdot;\mu) \in L^{\infty}(\Omega)$ for all $\mu \in \mathcal{D}$. We introduce the EIM space $W_M = \operatorname{span}\{q_m\}_{m=1}^M$ of dimension M and the M EIM interpolation nodes $t_1, \ldots, t_M \in \Omega$ (the EIM basis functions $q_m, 1 \leq m \leq M$, and interpolation nodes will be defined shortly). We may now define, for any $\mu \in \mathcal{D}$, the empirical interpolation $\mathcal{G}_M(\cdot;\mu) \approx \mathcal{G}(\cdot;\mu)$, as the particular function in W_M that interpolates $G(\cdot;\mu)$ at the M interpolation nodes:

$$\mathcal{G}_M(\cdot;\mu) = \sum_{i=1}^M \varphi_i(\mu) q_i,\tag{4}$$

where the coefficients $\varphi_i(\mu)$, $1 \le i \le M$, solve the linear system

$$\sum_{j=1}^{M} \varphi_j(\mu) q_j(t_i) = \mathcal{G}(t_i; \mu), \quad 1 \le i \le M.$$
(5)

It is easy to see that $\mathcal{G}_M(t_i;\mu) = \mathcal{G}(t_i;\mu), 1 \le i \le M$, for all $\mu \in \mathcal{D}$.

We now define the EIM basis functions and the EIM interpolation nodes recursively through a Greedy sampling algorithm. To this end we require a (typically rich) training set $\Xi_{\text{train}} \subset \mathcal{D}$ of finite size $|\Xi_{\text{train}}|$ which shall serve as our computational surrogate for \mathcal{D} . First, for M = 1, we choose (randomly, say) an initial parameter value $\mu_1 \in \mathcal{D}$; the first EIM interpolation node is then $t_1 \equiv \arg \sup_{x \in \Omega} |\mathcal{G}(x; \mu_M)|$;² the first EIM basis function is $q_M \equiv \mathcal{G}(\cdot; \mu_M)/\mathcal{G}(t_M; \mu_M)$. Then, for $2 \leq M \leq M_{\text{max}} < \infty$, we compute for all $\mu \in \Xi_{\text{train}} \subset \mathcal{D}$ the empirical interpolation $\mathcal{G}_{M-1}(\cdot; \mu) \approx \mathcal{G}(\cdot; \mu)$; the next parameter is then chosen as the maximizer of the $L^{\infty}(\Omega)$ interpolation error over Ξ_{train} :

$$\mu_M \equiv \arg \max_{\mu \in \Xi_{\text{train}}} \|\mathcal{G}_{M-1}(\cdot;\mu) - \mathcal{G}(\cdot;\mu)\|_{L^{\infty}}.$$
(6)

We define $r_M \equiv \mathcal{G}_{M-1}(\cdot; \mu_M) - \mathcal{G}(\cdot; \mu_M)$ and choose the next EIM interpolation node as

$$t_M \equiv \arg \sup_{x \in \Omega} |r_M(x)|. \tag{7}$$

We may now finally define the next EIM basis function as

$$q_M \equiv \frac{r_M}{r_M(t_M)}.$$
(8)

We have thus obtained M_{max} basis functions and M_{max} interpolation nodes. We note that by construction $r_M(t_i) = 0$ for $1 \le i \le M - 1$; hence $q_M(t_i) = 0$ for $1 \le i \le M - 1$ and $q_M(t_M) = 1$ thanks to the normalization (8). The matrix $\{q_j(t_i)\}_{ij}$ in (5) is thus lower triangular with unity diagonal; as a result, for any $\mu \in \mathcal{D}$, the cost associated with the computation of the coefficients $\varphi_j(\mu), 1 \le j \le M$, is $\mathcal{O}(M^2)$.

For $1 \leq M \leq M_{\text{max}}$, we define the "Lebesgue constant" [10]

$$\Lambda_M \equiv \sup_{x \in \Omega} \sum_{m=1}^M |V_m^M(x)|, \tag{9}$$

where $V_m^M \in W_M$, $1 \le m \le M$, are the "characteristic functions" of W_M , which satisfy $V_m^M(t_n) = \delta_{mn}$; here δ_{mn} is the Kronecker delta symbol. It can be proven [1, 7] that the EIM approximation error satisfies

$$\|\mathcal{G}(\cdot;\mu) - \mathcal{G}_M(\cdot;\mu)\|_{L^{\infty}} \le (1+\Lambda_M) \inf_{z \in W_M} \|\mathcal{G}(\cdot;\mu) - z\|_{L^{\infty}}, \quad 1 \le M \le M_{\max},$$
(10)

Furthermore, it can be proven that $\Lambda_M \leq 2^M - 1$; however in actual practice the behavior of Λ_M is much better [1, 7, 9].

²Note that $\sup_{x \in \Omega} |\mathcal{G}(x;\mu)|$ is in practice realized as the maximum of $|\mathcal{G}(x;\mu)|$ over the \mathcal{N} vertices of $\mathcal{T}^{\mathcal{N}}(\Omega)$.

4 An Anchor Point Splitting Scheme

4.1 Procedure

In this section we introduce the anchor point (AP) splitting procedure for the partition of the parameter domain; this procedure is an adaption of the approach introduced for the hp reduced basis method in [4, 2]. We shall require a *distance function* $d : \mathcal{D} \times \mathcal{D} \to \mathbb{R}$, which we choose in this paper as the Euclidean distance between the two arguments; however, other distance functions may be considered.

We first describe the splitting of an arbitrary subdomain $\mathcal{V} \subseteq \mathcal{D}$ into two distinct subdomains $\mathcal{V}_0 \subset \mathcal{V}$ and $\mathcal{V}_1 \subset \mathcal{V}$; the application of this splitting step to the construction of a partition of \mathcal{D} is straightforward and is discussed shortly. We assume that \mathcal{V} is equipped with a sufficiently dense training set $\Xi^{\mathcal{V}}_{\text{train}} \subset \mathcal{V}$. Given an *anchor point* $\mu_0^* \in \mathcal{V}$, we set $\mu_1 = \mu_0^*$; we then compute $\mathcal{G}(\cdot; \mu_1)$, $t_1 = \arg \sup_{x \in \Omega} |\mathcal{G}(x; \mu_1)|$, and perform one iteration of the standard EIM Greedy procedure restricted to $\Xi^{\mathcal{V}}_{\text{train}}$ (hence $M_{\text{max}} = 2$). We then define $\mu_1^* \equiv \mu_2$ and we denote the maximum interpolation error over $\Xi^{\mathcal{V}}_{\text{train}}$ by

$$\epsilon^{\mathcal{V}} \equiv \max_{\mu \in \Xi_{\text{train}}^{\mathcal{V}}} \|\mathcal{G}_1(\cdot;\mu) - \mathcal{G}(\cdot;\mu)\|_{L^{\infty}}.$$
 (11)

We can now define two distinct subdomains $\mathcal{V}_0 \subset \mathcal{V}$ and $\mathcal{V}_1 \subset \mathcal{V}$ based on proximity to the two points μ_0^* and μ_1^* as

$$\mathcal{V}_0 = \{ \mu \in \mathcal{V} : d(\mu, \mu_0^*) < d(\mu, \mu_1^*) \},$$
(12)

$$\mathcal{V}_1 = \{ \mu \in \mathcal{V} : d(\mu, \mu_1^*) \le d(\mu, \mu_0^*) \}.$$
(13)

We say that μ_0^* is to the anchor point of \mathcal{V}_0 and that μ_1^* is the anchor point of \mathcal{V}_1 .

We apply this "*h*-refinement" splitting scheme in a recursive manner in order to construct a hierarchical partition of the entire domain \mathcal{D} : we first choose the initial anchor point—typically a corner of \mathcal{D} —and split \mathcal{D} into two new subdomains. We then apply the splitting scheme within each of the two generated subdomains. We continue recursively until convergence: we split a subdomain \mathcal{V} as long as the maximum error $\epsilon^{\mathcal{V}}$ in (11) is larger than a prescribed tolerance $\epsilon_{\text{tol}}^h > 0$. If $\epsilon^{\mathcal{V}} < \epsilon_{\text{tol}}^h$ we stop the splitting process. We note that each subdomain (except the "root" \mathcal{D}) has a single "parent" and one "sibling." Thanks to this structure we may organize the splitting procedure in a binary tree as illustrated in Figure 1.

When the tolerance ϵ_{tol}^h is satisfied over $\Xi_{train}^{\mathcal{V}}$, we perform "*p*-refinement" within \mathcal{V} : application of the standard EIM to \mathcal{V} for specified $M_{max} > 1$ and target tolerance $\epsilon_{tol}^p < \epsilon_{tol}^h$. If the target tolerance ϵ_{tol}^p is not satisfied after *p*-refinement (for M_{max} basis functions), we successively perform additional "*h*" and "*p*" refinement steps until the tolerance is satisfied for at most M_{max} EIM basis functions. Our procedure thus enables simultaneous control over the EIM error (over the training set) and the EIM space dimension (and thus online cost).

This hp-EIM anchor point refinement procedure results in a finite number K of parameter subdomains, which we label $\mathcal{V}_1, \ldots, \mathcal{V}_K$. Each of these subdomains has an associated nested set of EIM approximation spaces, $W_M^k = \text{span}\{q_m^k\}_{m=1}^M$, $1 \leq M \leq M_{\max}^k$, $1 \leq k \leq K$, and an associated set of nested EIM interpolation nodes $T_M^k = \{t_1^k, \ldots, t_M^k\}$, $1 \leq M \leq M_{\max}^k$, $1 \leq k \leq K$. Here, the q_m^k denote the EIM basis functions, and M_{\max}^k denotes the space dimension required in order to reach the target tolerance for subdomain k. Note that the M_{\max}^k , $1 \leq k \leq K$, are in general different but bounded by M_{\max} .

Given the partition of \mathcal{D} into K subdomains with associated EIM approximation spaces and interpolation nodes, we now define the AP hp-EIM interpolant. Given any $\mu \in \mathcal{D}$, we

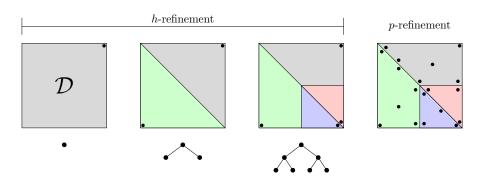


Figure 1: Two levels of h-refinement and subsequent p-refinement for the anchor point splitting procedure.

first determine $k^* = k^*(\mu)$ such that $\mu \in \mathcal{V}_{k^*}$. Note that thanks to the binary tree structure of the partition, determination of k^* is an efficient binary search. We then compute the EIM approximation as

$$\mathcal{G}_{M,K}(\cdot;\mu) \equiv \mathcal{G}_{M,K}^{k^*}(\cdot;\mu) = \sum_{i=1}^{M} \varphi_{M,i}^{k^*}(\mu) q_i^{k^*}, \qquad (14)$$

where the coefficients $\varphi_{M,i}^{k^*}(\mu)$, $1 \leq i \leq M$, solve the linear system

$$\sum_{j=1}^{M} \varphi_{M,j}^{k^*}(\mu) q_j^{k^*}(t_i^{k^*}) = \mathcal{G}(t_i^{k^*};\mu), \quad 1 \le i \le M,$$
(15)

Remark 1. We note that the partition of \mathcal{D} can be organized in a binary tree as indicated in Figure 1 regardless of the parameter dimension P, since we always subdivide a subdomain into two new subdomains at each level of refinement. The method thus allows the partition to reflect anisotropy in the underlying parameter dependence of $\mathcal{G}(\cdot; \mu)$.

4.2 An a priori convergence theory for the AP procedure

We present here an *a priori* theory for the convergence of the initial partition algorithm (*h*-refinement) presented above. The theory does not consider the subsequent *p*-refinements however this step will ultimately (trivially) converge since the training sets are of finite size. Our interest is not in the asymptotic convergence of the partition procedure *per se*, since in practice we will always invoke an *hp*-type approximation rather than a pure *h*-type approximation. However, the theory suggests that our procedure generates a meaningful partition, and furthermore guarantees that the partition procedure does in fact terminate for specified ϵ_{tol}^h . We consider the case with P = 1 parameter for simplicity.

Proposition 1. Let $\mathcal{D} \subset \mathbb{R}$ and let $|\mathcal{D}|$ denote the length of \mathcal{D} . Suppose that $\mathcal{G}(\cdot; \mu)$ is Lipschitz-contunuous in μ with Lipschitz constant $L < \infty$: for any $\mu_1 \in \mathcal{D}$, $\mu_2 \in \mathcal{D}$,

$$\|\mathcal{G}(\cdot;\mu_1) - \mathcal{G}(\cdot;\mu_2)\|_{L^{\infty}} \le L|\mu_1 - \mu_2|.$$
(16)

For any specified $\epsilon_{tol}^h > 0$, the AP splitting procedure is then convergent for $K = K(\epsilon_{tol}^h)$ subdomains; moreover, the convergence is first order in the sense that

$$K(\epsilon_{\rm tol}^h) \le \max\left\{1, \frac{4L|\mathcal{D}|}{\epsilon_{\rm tol}^h}\right\},\tag{17}$$

where $|\mathcal{D}|$ is the length of \mathcal{D} .

Proof: We consider our splitting procedure after generation of \tilde{K} subdomains. Either we obtain convergence for $\tilde{K} = 1$ (i.e., K = 1) — in which case the proof is complete — or $\tilde{K} > 1$. We henceforth consider the case $\tilde{K} > 1$.

We consider the splitting of an arbitrary subdomain $\mathcal{V} \subset \mathcal{D}$ into distinct subdomains $\mathcal{V}_0 \subset \mathcal{V}$ and $\mathcal{V}_1 \subset \mathcal{V}$ as discussed in the previous subsection. We assume that the error tolerance ϵ_{tol}^h is not satisfied, hence $\epsilon^{\mathcal{V}} > \epsilon_{\text{tol}}^h$. Let $\mu_0^* \in \mathcal{V}$ denote the anchor point associated with \mathcal{V} . We then consider the empirical interpolation $\tilde{\mathcal{G}}(\cdot;\mu) = \tilde{\varphi}(\mu)\mathcal{G}(\cdot;\mu_0^*) \approx \mathcal{G}(\cdot;\mu)$ for any $\mu \in \mathcal{V}$. For the error in this approximation we obtain

$$\begin{aligned} \|\mathcal{G}(\cdot;\mu) - \tilde{\mathcal{G}}(\cdot;\mu)\|_{L^{\infty}} &\leq (1 + \Lambda_{(M=1)}) \inf_{z \in \operatorname{span}\{G(\cdot;\mu_{0}^{*})\}} \|\mathcal{G}(\cdot;\mu) - z\|_{L^{\infty}} \\ &\leq 2\|\mathcal{G}(\cdot;\mu) - \mathcal{G}(\cdot;\mu_{0}^{*})\|_{L^{\infty}} \\ &\leq 2L|\mu - \mu_{0}^{*}|, \end{aligned}$$
(18)

where we first invoke (10), then choose $z = \mathcal{G}(\cdot; \mu_0^*)$, and finally invoke (16). Note that it follows from the definition of Λ_1 (Eq. (9)) and the characteristic function V_1^1 that $\Lambda_1 = 1$.

We now let $\mu = \mu_1^*$ denote the anchor point associated with \mathcal{V}_1 , identified by the single EIM Greedy iteration over \mathcal{V} . Eq. (18) then yields

$$\|\mathcal{G}(\cdot;\mu) - \mathcal{G}(\cdot;\mu)\|_{L^{\infty}} \le 2L|\mu_1^* - \mu_0^*|.$$
(19)

Since the error tolerance is not satisfied over \mathcal{V} , we have $\epsilon^{\mathcal{V}} = \|\mathcal{G}(\cdot; \mu_1^*) - \mathcal{G}_1(\cdot; \mu_1^*)\|_{L^{\infty}} > \epsilon_{\text{tol}}^h$. Hence

$$\epsilon_{\rm tol}^h < 2L|\mu_1^* - \mu_0^*|.$$
 (20)

We split \mathcal{V} into $\mathcal{V}_0 \subset \mathcal{V}$, $\mathcal{V}_1 \subset \mathcal{V}$ based on Euclidian distance to the two anchor points. It is clear that the length of each subdomain, $|\mathcal{V}_0|$ and $|\mathcal{V}_1|$, is at least as large as half the distance between the anchor points. We thus obtain

$$|\mathcal{V}_i| \ge \frac{|\mu_1^* - \mu_0^*|}{2} > \frac{\epsilon_{\text{tol}}^h}{4L}, \qquad i = 0, 1.$$
(21)

We denote the \tilde{K} subdomains generated by the algorithm so far by $\mathcal{S}_k \subset \mathcal{D}$, $1 \leq k \leq \tilde{K}$; we denote the length of \mathcal{S}_k by $|\mathcal{S}_k|$. Each of these subdomains results from a splitting of a subdomain $\tilde{\mathcal{S}}_k \supset \mathcal{S}_k$ one level further up in the tree. Since \mathcal{V} above was arbitrary, we can for any $k, 1 \leq k \leq \tilde{K}$, set $\mathcal{V} = \tilde{\mathcal{S}}_k$ and conclude that

$$|\mathcal{S}_k| > \frac{\epsilon_{\text{tol}}^h}{4L}, \qquad 1 \le k \le \tilde{K}.$$
(22)

We define the length of the smallest subdomain as $\delta_{\tilde{K}} \equiv \min_{1 \leq k \leq \tilde{K}} |\mathcal{S}_k|$, and hence in particular $\delta_{\tilde{K}} > \epsilon_{\text{tol}}^h/(4L)$.

We complete the proof by a contradiction argument. Assume that $\tilde{K} > C/\epsilon_{\text{tol}}^h$. In this case

$$\tilde{K}\delta_{\tilde{K}} > \frac{4L|\mathcal{D}|}{\epsilon_{\text{tol}}^{h}}\delta_{\tilde{K}} > \frac{4L|\mathcal{D}|}{\epsilon_{\text{tol}}^{h}} \cdot \frac{\epsilon_{\text{tol}}^{h}}{4L} = |\mathcal{D}|.$$
(23)

On the other hand, it is clear that $\tilde{K}\delta_{\tilde{K}} \leq |\mathcal{D}|$ for \tilde{K} subdomains. We have thus reached a contradiction, and we conclude that the algorithm can not generate $\tilde{K} > 4L|\mathcal{D}|/\epsilon_{\text{tol}}^h$ subdomains as long as the error tolerance is not satisfied. Hence the error tolerence be satisfied for, and thus the algorithm must terminate for, some $K \leq 4L|\mathcal{D}|/\epsilon_{\text{tol}}^h$. \Box

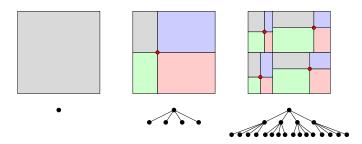


Figure 2: Two levels of parameter domain splitting for the gravity center procedure.

5 A Gravity Center Splitting Scheme

5.1 Procedure

In this section we introduce the gravity center (GC) splitting procedure. The GC procedure is similar to the AP procedure of the previous section: both approaches invoke the standard EIM greedy sampling procedure in a recursive way in order to generate hierarchical partitions. However the GC procedures also differs significantly from the AP procedure in several ways: the GC procedure splits a given subdomain in a structured way based on the location of the gravity center of M > 2 parameter values. Hence the GC splitting procedure also involves higher order approximation terms and, in contrast to the AP splitting, leads to a tensorized partition structure. Below, we shall require an operation op(i, j)defined as

$$op(i,j) = \begin{cases} \leq & \text{if} \quad bin(i-1)_{(j)} = 0\\ > & \text{if} \quad bin(i-1)_{(j)} = 1 \end{cases}$$
(24)

where bin(i) is the binary representation of i as a vector in $\{0, 1\}^P$.

We first describe the splitting of an "arbitrary" subdomain $\mathcal{V} = [a_{(1)}, b_{(1)}] \times \ldots \times [a_{(P)}, b_{(P)}] \subset \mathcal{D}$ into 2^P distinct subdomains $\mathcal{V}_i \subset \mathcal{V}, 1 \leq i \leq 2^P$, each of which may be written on tensor-product form $\mathcal{V}_i = [a_{(1)}^i, b_{(1)}^i] \times \ldots \times [a_{(P)}^i, b_{(P)}^i]$. The application of this splitting step to the construction of a partition of \mathcal{D} is discussed shortly.

First, we perform a standard EIM procedure within \mathcal{V} for a target tolerance ϵ_{tol}^p and a maximum EIM space dimension M_{max} . If the target tolerance is satisfied over \mathcal{V} , i.e., $\epsilon^{\mathcal{V}} < \epsilon_{tol}^p$, we terminate the procedure since further splitting of \mathcal{V} domain is not required. If the target tolerance is *not* satisfied over \mathcal{V} , we obtain M_{max} parameter values $\{\mu_1, \ldots, \mu_{M_{max}}\}$ from the EIM greedy procedure. We then define the gravity point of the point cloud $\{\mu_i\}_{i=1}^{M_{max}}$ by

$$g = \frac{1}{M_{\text{max}}} \sum_{i=1}^{M_{\text{max}}} \mu_i.$$
 (25)

The *i*th subdomain \mathcal{V}_i is defined by

$$\mathcal{V}_i = \{ \mu \in \mathcal{V} : \mu_{(j)} \text{ op}(i,j) \ g_{(j)}, \forall 1 \le j \le P \};$$

$$(26)$$

where $\mu_{(j)}$ and $g_{(j)}$ represents the *j*th element of μ and *g*, respectively,

As with the AP procedure, we apply the GC splitting scheme recursively in order to construct a hierarchical partition of the original domain \mathcal{D} : we start with a standard EIM greedy procedure within \mathcal{D} , and split \mathcal{D} into 2^P new subdomains. We then apply the GC scheme within each of these subdomains, and continue the procedure recursively until

convergence: the target tolerance is achieved over each subdomains with maximum EIM space dimension $M_{\rm max}$.

This hp-EIM refinement procedure results in K parameter subdomains, which we label $\mathcal{V}_1, \ldots, \mathcal{V}_K$. Each of these subdomains has an associated nested set of EIM approximation spaces, $W_M^k = \operatorname{span}\{q_m^k\}_{m=1}^M$, $1 \leq M \leq M_{\max}^k$, $1 \leq k \leq K$, and an associated set of nested EIM interpolation nodes $T_M^k = \{t_1^k, \ldots, t_M^k\}$, $1 \leq M \leq M_{\max}^k$, $1 \leq k \leq K$; as before M_{\max}^k denotes the space dimension required in order to satisfy the target tolerance $\epsilon_{\operatorname{tol}}^p$ for subdomain k.³

Given the partition of \mathcal{D} into K subdomains with associated EIM approximation spaces and interpolation nodes, we now define the GC hp-EIM approximation. Given any $\mu \in \mathcal{D}$, we first determine $k^* = k^*(\mu)$ such that $\mu \in \mathcal{V}_{k^*}$. Note that thanks to the hierarchical structure of the partition, determination of k^* is an efficient 2^P -order search. We then compute the EIM approximation as

$$\mathcal{G}_{M,K}(\cdot;\mu) \equiv \mathcal{G}_{M,K}^{k^*}(\cdot;\mu) = \sum_{i=1}^{M} \varphi_{M,i}^{k^*}(\mu) q_i^{k^*}, \qquad (27)$$

where the coefficients $\varphi_{M,i}^{k^*}(\mu)$, $1 \leq i \leq M$, solve the linear system

$$\sum_{j=1}^{M} \varphi_{M,j}^{k^*}(\cdot;\mu) q_j^{k^*}(t_i^{k^*}) = \mathcal{G}(t_i^{k^*};\mu), \quad 1 \le i \le M.$$
(28)

Remark 2. We note that the partition of \mathcal{D} can be organized in a 2^P order tree as indicated in Figure 2, since at each level of refinement we subdivide a subdomain into 2^P new subdomains. As a result, the scheme does only take anisotropy in the underlying parameter dependence into account in a weak manner, and as a consequence may construct more subdomains than required. We provide further comments on this issue in Section 7.

5.2 An a priori convergence theory for the GC procedure

We present here an *a priori* theory for the convergence of the GC partition algorithm. The theory ensures that the algorithm does in fact terminate for specified ϵ_{tol}^p and M_{max} . We consider the case with P = 1 parameter for simplicity.

Proposition 2. Let $\mathcal{D} \subset \mathbb{R}$ and let $|\mathcal{D}|$ denote the length of \mathcal{D} . Suppose that $\mathcal{G}(\cdot; \mu)$ is Lipschitz-continuous in μ with Lipschitz constant $L < \infty$: for any $\mu_1 \in \mathcal{D}$, $\mu_2 \in \mathcal{D}$,

$$\|\mathcal{G}(\cdot;\mu_1) - \mathcal{G}(\cdot;\mu_2)\|_{L^{\infty}} \le L|\mu_1 - \mu_2|.$$
(29)

For any specified $\epsilon_{tol}^p > 0$ and $M_{max} \ge 1$, the "gravity center" splitting procedure is then convergent for $K = K(\epsilon_{tol}^p)$ subdomains; moreover, the convergence is first order in the sense that

$$K(\epsilon_{\rm tol}^h) \le \max\left\{1, \frac{(1 + \Lambda_{M_{\rm max}})L|\mathcal{D}|}{\epsilon_{\rm tol}^p}\right\},\tag{30}$$

where $|\mathcal{D}|$ is the length of \mathcal{D} .

³Strictly speaking, we should here introduce separate notatition for the AP and GC splitting procedures. In particular, the number of subdomains K as well as entities associated with each subdomain (such as W_M^k, T_M^k, M_{\max}^k) should bear subscripts AP and GC. However, we omit these subscripts for simplicity of notation. When we later compare the two approches in terms of numerical results, we introduce separate notation only as necessary.

Proof: We demonstrate here only a lower bound for the length of a subdomain (analogously to (21)). The remainder of the proof is then identical to the proof of Proposition 1.

We consider the splitting of an arbitrary subdomain $\mathcal{V} = [a, b] \subset \mathcal{D}$ into distinct subdomains \mathcal{V}_0 and \mathcal{V}_1 as discussed in the previous subsection. We assume that the error tolerance ϵ_{tol}^p is not satisfied. In \mathcal{V} we choose by virtue of the standard EIM procedure M_{max} parameter values μ_m , $1 \leq m \leq M_{\text{max}}$, and compute the associated snapshots $\mathcal{G}(\cdot;\mu_m)$, $1 \leq m \leq M_{\text{max}}$. For any $\mu \in \mathcal{V}$ we consider the empirical interpolation $\tilde{\mathcal{G}}(\cdot;\mu) = \sum_{m=1}^{M_{\text{max}}} \tilde{\varphi}_m(\mu) \mathcal{G}(\cdot;\mu_m) \approx \mathcal{G}(\cdot;\mu)$. Let $\tilde{W} = \text{span}{\mathcal{G}(\cdot;\mu_m)}_{m=1}^{M_{\text{max}}}$. For the EIM approximation error we obtain

$$\|\mathcal{G}(\cdot;\mu) - \tilde{G}(\cdot;\mu)\|_{L^{\infty}} \le (1 + \Lambda_{M_{\max}}) \inf_{z \in \tilde{W}} \|\mathcal{G}(\cdot;\mu) - z\|_{L^{\infty}}$$
(31)

$$\leq (1 + \Lambda_{M_{\max}}) \| \mathcal{G}(\cdot; \mu) - \mathcal{G}(\cdot; \mu_m) \|_{L^{\infty}}$$
(32)

$$\leq (1 + \Lambda_{M_{\text{max}}})L|\mu - \mu_m| \tag{33}$$

for any $\mu \in \mathcal{D}$ and $1 \leq m \leq M_{\text{max}}$. Since the error tolerance is not satisfied we thus obtain

$$|\mu - \mu_m| \ge \frac{\epsilon_{\text{tol}}^p}{(1 + \Lambda_{M_{\text{max}}})L} \tag{34}$$

for any $\mu \in \mathcal{V}$ and $1 \leq m \leq M_{\max}$.

The subdomain \mathcal{V} is split at its gravity center g defined in (25): $\mathcal{V}_0 = [a, g]$ and $\mathcal{V}_1 = (g, b]$. We now bound g away from a and b, and thus obtain a lower bound for $|\mathcal{V}_0| = |g-a|$ and $|\mathcal{V}_1| = |g-b|$. If a and b, respectively, are equal to μ_m for some $m, 1 \leq m \leq M_{\text{max}}$ we obtain

$$|V_i| \ge \frac{\epsilon_{\text{tol}}^p}{(1 + \Lambda_{M_{\text{max}}})L}, \quad i = 0, 1,$$
(35)

directly from (34). If a is not equal to μ_m for $1 \le m \le M_{\text{max}}$ it is clear that for some $m, n, 1 \le m, n \le M_{\text{max}}$, we must have $\mu_n < g < \mu_m$, and hence in particular $|a - \mu_m| > |a - g|$ since a is the left boundary point of the domain; the argument for |b - g| is analogous. Hence (35) still holds.

The remainder of the argument is now identical to the argument for the proof of Proposition 1. \Box

6 Computational Cost

We now discuss the computational cost associated with the hp-EIM approaches presented above. We discuss the cost for the two methods concurrently since the separation of the computations in offline and online stages is very similar.

In the *hp*-EIM offline stage, we perform *h*- and *p*-refinement: parameter domain partition and construction of EIM spaces and EIM interpolation nodes restricted to each parameter subdomain. The offline stage is expensive, since the cost depends on the (typically large) number \mathcal{N} of vertices in the triangulation $\mathcal{T}^{\mathcal{N}}(\Omega)$. In particular, if we assume that the generated partition has K subdomains, we must perform $KM\mathcal{N}$ function evaluations in order to construct an EIM space of dimension M associated with each subdomain. For the GC approach, we must also perform $M\mathcal{N}$ function evaluations for each intermediate space associated with an intermediate subdomain; for this reason we expect the GC approach to be more expensive than the AP approach in the offline stage. In the hp-EIM online stage, given any new parameter value $\mu \in \mathcal{D}$, we first determine to which subdomain $\mathcal{V}_{k^*} \subset \mathcal{D}$ the new parameter value belongs. For the AP approach this search can be performed at cost $\mathcal{O}(\log_2(K))$ for K subdomains since the subdomains can be organized in a binary tree: at each level in the tree a comparison between the distances from μ to two anchor points determines whether to proceed to the left or to the right branch. For the GC approach this search can be performed at cost $\mathcal{O}(\log_{2^P}(K))$ since the subdomains can be organized in a tree of order 2^P : at each level in the tree an elementwise comparison between μ and the gravity center g determines to which of the 2^P branches to proceed at the next level. We note that for the same number of subdomains and for P > 1 parameters, we expect that the GC approach yields the more efficient search since the tree has fewer levels and the cost at each level is roughly the same $-\mathcal{O}(P)$ for both approaches. However the cost of this search is in any event typically negligible.

Once the correct subdomain \mathcal{V}_{k^*} that contains the given parameter value μ has been determined, we perform the standard EIM online stage: we solve a system of the form (5) at cost $\mathcal{O}(M^2)$. The key point is that function evaluations of $\mathcal{G}(\cdot;\mu)$ are required only at the M spatial interpolation nodes in T^{k^*} . Of course, if we wish to additionally visualize $\mathcal{G}_M(x;\mu)$ for all $x \in \Omega$, the cost becomes \mathcal{N} -dependent.

We emphasize that our hp-EIM procedures provide a reduction in the $\mathcal{O}(M^2)$ online computational cost through reduction in the number of EIM basis functions, M. A smaller M requires a larger number of subdomains, K. However, the reduction in M does not balance the increase in K: the product KM increases with K. As a result the hp-EIM offline stage is more expensive than the standard EIM offline stage.

We finally note that an alternative "discretely orthogonal" basis for W_M is $\{V_m^M, 1 \le m \le M\}$. This basis enables $\mathcal{O}(M)$ -complexity computation of the EIM approximation since $q_j(t_i)$ in (5) is in this case replaced by δ_{ji} . However, this basis is not hierarchical since $\{V_m^{M-1}, 1 \le m \le M - 1\} \notin \{V_m^M, 1 \le m \le M\}$ and hence the computation of the characteristic functions would have to be computed as an additional final step in the EIM precomputation procedure. In any event, when the EIM is applied within the reduced basis framework, the computational cost of the RB online stage scales as M^2 independent of the choice of the EIM basis [7]. For this reason, and for similcity of exposition, we consider in this paper the standard EIM basis functions $q_m, 1 \le m \le M$.

7 Numerical Results

We present in this section numerical results for our two hp-EIM approaches applied to two model problems. In all cases, the hp-EIM yields signifact (online) speedup compared to the standard EIM.

7.1 Example 1: 2D Gaussian surface

We define the spatial domain $\Omega \equiv (0,1) \times (0,1) \subset \mathbb{R}^2$, and we introduce a triangulation $\mathcal{T}^{\mathcal{N}}(\Omega)$ with $\mathcal{N} = 2601$ vertices. We define the parameter domain $\mathcal{D} \equiv [0.3, 0.7] \times [0.3, 0.7] \subset \mathbb{R}^2$, and we introdue a "tensor-product" train sample $\Xi_{\text{train}} \subset \mathcal{D}$ of size 1600. We consider the Gaussian function

$$\mathcal{G}(x;\mu) \equiv \exp\left(-\frac{(x_{(1)}-\mu_{(1)})^2}{0.02} - \frac{(x_{(2)}-\mu_{(2)})^2}{0.02}\right),\tag{36}$$

for $x = (x_{(1)}, x_{(2)}) \in \Omega$ and $\mu = (\mu_{(1)}, \mu_{(2)}) \in \mathcal{D}$. The function \mathcal{G} is thus parametrized by the location of the Gaussian source.

	$M_{\rm max}$	$\epsilon^h_{ m tol}$	$K(M_{\max}, \epsilon_{tol}^h)$
Computation 1	143	1	2
Computation 2	77	0.99	12
Computation 3	40	0.8	55
Computation 4	30	0.6	106

Table 1: Specified M_{max} and ϵ_{tol}^h , and the required number of subdomains $K(M_{\text{max}}, \epsilon_{\text{tol}}^h)$ for the anchor point procedure applied to Example 1.

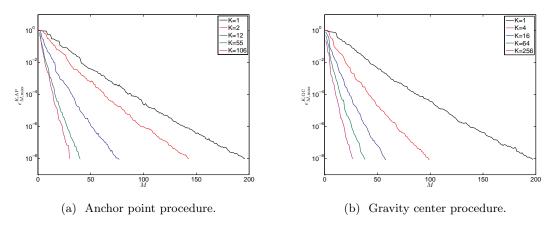


Figure 3: Convergence for Example 1.

Clearly, \mathcal{G} is particularly well suited for hp-adaptivity: snapshots associated with μ in one region of \mathcal{D} do not provide a good approximation for functions associated with μ in another region of \mathcal{D} . We thus expect an hp-EIM procedure to provide significant reduction in M for this example.

To obtain a benchmark for comparison, we first pursue the standard EIM with $M_{\text{max}} = 196$, which corresponds to a tolerance 10^{-8} satisfied over Ξ_{train} . We note that the standard EIM is a special case both of the AP procedure and of the GC procedure for K = 1 subdomain.

We next pursue the AP splitting procedure. We specify $\epsilon_{tol}^p = 10^{-8}$ as the tolerance to be satisfied over the training set on each subdomain. We then perform four computations for different M_{max} and ϵ_{tol}^h and obtain partitions with $K(M_{\text{max}}, \epsilon_{tol}^h)$ subdomains as listed in Table 1. In Figure 3a we show the maximum error during each of the four computations,

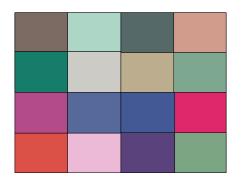
$$\epsilon_{M\max}^{K,\mathrm{AP}} = \max_{\mu \in \tilde{\Xi}_{\mathrm{train}}^{\mathrm{AP}}} \|\mathcal{G}_{M,K}^{\mathrm{AP}}(\cdot;\mu) - \mathcal{G}(\cdot;\mu)\|_{L^{\infty}},\tag{37}$$

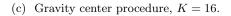
for K = 2, 12, 55, 106; here $\tilde{\Xi}_{\text{train}}^{\text{AP}}$ denotes the union of the train samples over each of the subdomains (we also show in Figure 3a the benchmark convergence for the case K = 1). In Figures 4a and 4b we show the partitions of \mathcal{D} with K = 12 and K = 55 subdomains, respectively. We note that the size of the subdomains is rather uniform over \mathcal{D} , which reflects the uniform parameter dependence of \mathcal{G} , as expected.

We then pursue the GC splitting procedure. We specify $\epsilon_{tol}^p = 10^{-8}$ as the tolerance to be satisfied over the training set on each subdomain. We then perform four computations for different M_{max} and obtain partitions with $K(M_{\text{max}})$ subdomains as listed in Table 2. In Figure 3b we show the maximum error during each of the four computations,

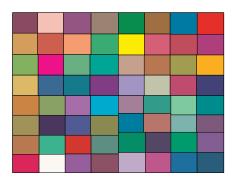
$$\epsilon_{M,\max}^{K,\mathrm{GC}} = \max_{\mu \in \tilde{\Xi}_{\mathrm{train}}^{\mathrm{GC}}} \|\mathcal{G}_{M,K}^{\mathrm{GC}}(\cdot;\mu) - \mathcal{G}(\cdot;\mu)\|_{L^{\infty}},\tag{38}$$

(a) Anchor point procedure, K = 12.





(b) Anchor point procedure, K = 55.



(d) Gravity center procedure, K = 64.

Figure 4: Parameter domain partitions for Example 1.

	$M_{\rm max}$	$K(M_{\rm max})$
Computation 1	99	4
Computation 2	58	16
Computation 3	38	64
Computation 4	27	256

Table 2: Specified M_{max} and the required number of subdomains $K(M_{\text{max}})$ for the gravity center procedure applied to Example 1.

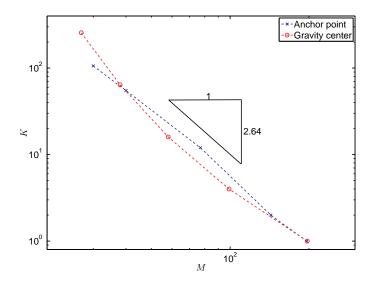


Figure 5: The number of required subdomains K as a function of specified M_{max} for a given satisfied tolerance ϵ_{tol}^p .

for K = 4, 16, 64, 256; here $\tilde{\Xi}_{\text{train}}^{\text{GC}}$ denotes the union of the train samples over each of the subdomains. In Figures 4c and 4d we show the partitions of \mathcal{D} with K = 16 and K = 64 subdomains, respectively. We note that the size of the subdomains is uniform.

We finally compare in Figure 5 our two approaches in terms of the number of required subdomains K for specified M_{max} such that $\epsilon_{\text{tol}}^p = 10^{-8}$ is satisfied over train samples over all subdomains. We note that there is an algebraic relationship between K and M_{max} , and that for Example 1 the two approaches perform very similarly in terms of the number of subdomains required for a specified tolerance. We further note that the product KM_{max} increases with K, and thus a smaller M_{max} yields larger offline cost. However, we would expect less steep curves in Figure 5 had we decreased the half-width of the Gaussian: a narrower Gaussian would have even more local parameter dependence and hence benefit more from hp-treatment.

7.2 Example 2: 3D wave function with near-singularity

Denote by $B_R(\mathcal{O})$ a ball in \mathbb{R}^3 with radius R and centred at the origin \mathcal{O} . Then, consider the scalar function

$$\mathcal{G}(x;\mu) = \frac{\cos\left(k|x-c(\mu)|\right)}{k|x-c(\mu)|}, \qquad x = (x_{(1)}, x_{(2)}, x_{(3)}) \in \Omega = B_1(\mathcal{O}), \tag{39}$$

with $\mu = (k, r, \theta, \varphi) \in \mathcal{D}$ and $c(\mu) = r(\sin(\theta)\cos(\varphi), \sin(\theta)\sin(\varphi), \cos(\theta)) \in \mathbb{R}^3$. The parameter domain \mathcal{D} is defined by $\mathcal{D} = [1, 10] \times [1.1, 20] \times [0, \pi/2] \times [0, \pi/2]$. The spatial domain Ω and the parameter domain \mathcal{D} are discretized by $15 \times 15 \times 15$ and $8 \times 8 \times 8 \times 8$ tensorized grids, respectively, leading to discrete versions of Ω and Ξ_{train} , respectively.

We note that \mathcal{G} is particularly well suited for hp-adaptivity: the function has a very different structure for different wave numbers k and different locations of the pulse $c \in \mathbb{R}^3$. Snapshots with rapid and slow oscillations have little in common, and thus snapshots associated with k large contribute little to approximations of functions associated with k small, and vice versa. Similarly, snapshots with the singularity at c (outside but) close to Ω have high amplitude close to c and moderate amplitude elsewhere; such functions

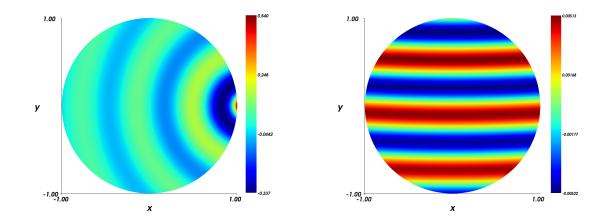


Figure 6: Example of the 3D wave function for a fixed z = 0 and parameter values k = 10, c = (1.1, 0, 0) (left) and k = 10, c = (0, 20, 0) (right).

	$M_{\rm max}$	$\epsilon^h_{ m tol}$	$K(M_{\max}, \epsilon_{\mathrm{tol}}^h)$
Computation 1	286	8	6
Computation 2	191	5	17
Computation 3	100	4	206

Table 3: Specified M_{max} and ϵ_{tol}^h , and the required number of subdomains $K(M_{\text{max}}, \epsilon_{\text{tol}}^h)$ for the anchor point procedure applied to Example 2.

contribute little to the approximation of functions associated with c far from Ω , which have almost constant amplitude. Two examples of \mathcal{G} for fixed $x_{(3)} = 0$ and parameter values k = 10, c = (1.1, 0, 0) and k = 10, c = (0, 20, 0) are shown in Figure 6; we note in particular the effect of c on the amplitude of the function.

To obtain a benchmark for comparison, we first pursue the standard EIM with $M_{\text{max}} = 420$, which corresponds to a tolerance 10^{-3} satisfied over Ξ_{train} .

We next pursue the AP splitting procedure. We specify $\epsilon_{\rm tol}^p = 10^{-3}$ as the tolerance to be satisfied over the training set on each subdomain. We then perform three computations for three different $M_{\rm max}$ and $\epsilon_{\rm tol}^h$ and obtain partitions with $K(M_{\rm max}, \epsilon_{\rm tol}^h)$ subdomains as listed in Table 3. In Figure 7a we show the maximum error during each of the three computations, $\epsilon_{M,\rm max}^{K,\rm AP}$ for K = 6, 17, 206.

We then pursue the GC splitting procedure. We specify $\epsilon_{tol}^p = 10^{-3}$ as the tolerance to be satisfied over the training set on each subdomain. We then perform three computations for four different M_{max} and obtain partitions with $K(M_{\text{max}})$ subdomains as listed in Table

	$M_{\rm max}$	$K(M_{\rm max})$
Computation 1	301	16
Computation 2	238	76
Computation 3	200	151
Computation 4	146	676

Table 4: Specified M_{max} and the required number of subdomains $K(M_{\text{max}})$ for the gravity center procedure applied to Example 2.

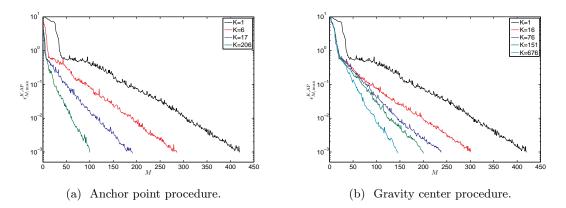


Figure 7: Convergence for Example 2.

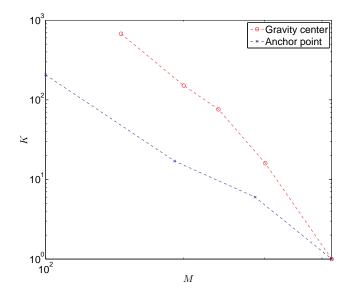


Figure 8: The number of required subdomains K as a function of specified M_{max} for a given satisfied tolerance ϵ_{tol}^p .

4. In Figure 7b we show the maximum error during each of the four computations, $\epsilon_{M,\max}^{K,\text{GC}}$ for K = 16, 76, 151, 676.

We finally compare in Figure 8 our two approaches in terms of the number of required subdomains K for specified M_{max} such that $\epsilon_{\text{tol}}^p = 10^{-3}$ is satisfied over the training sample on each subdomain. We note that there is an algebraic relationship between K and M, and that for Example 2 the AP approach seems to provide the somewhat more optimal partition.

8 Closing Remarks

The *hp*-EIM procedures derived in this paper provide a partition of the full parameter domain into parameter subdomains; a standard EIM approximation is pursued on each subdomain in order to satisfy a specified tolerance ϵ_{tol}^p for a specified maximum number M_{max} of EIM basis functions. Two different approaches are discussed. The first approach — the anchor point splitting procedure — is based on the first two modes associated

with a standard EIM approximation: a given parameter (sub)domain is split into two new subdomains by a hyperplane equidistant from the the first two parameter values identified by the standard EIM Greedy sampling procedure. The second approach — the gravity center splitting procedure — is based on all M_{max} modes associated with a standard EIM approximation: a given parameter (sub)domain is split into 2^P tensorized new subdomains at the gravity center of the M_{max} parameter values identified by the EIM Greedy sampling procedure (recall that P is the dimension of the parameter domain). For both approaches, *a priori* convergence theory guarantees successfull termination of the partition process.

Through two numerical examples we demonstrate that both the AP and GC approaches provide significant computational speedup (approximation space dimension reduction) in the EIM online stage through reduction in the required EIM space dimension. Admittedly, our two examples are particularly well suited for hp-treatment. Functions with very smooth parameter dependence will be less suited for hp-treatment. In this case we expect that the required number of subdomains for specified dimension reduction (and specified tolerance) is large, and hence the offline cost might be large.

The AP approach seems to be somewhat better suited for higher dimensional parameter domains in particular when the parameter dependence of the function under consideration is anisotropic: only two new subdomains are introduced for each splitting. The GC approach is on the other hand arguably simpler in terms of implementation; in particular, the tensorized subdomain structure enables explicit construction of the parameter training sets associated with each subdomain.

A straightforward application of the hp-EIM procedures is within the reduced basis (RB) framework for order reduction of non-affine parametrized partial differential equations. In this context, the (hp-EIM or) EIM accomodates efficient offline-online computational procedures through affine approximations of the non-affine differential operator [1, 7, 6, 12, 8]. The cost of the RB online stage grows quadratically with the number of terms in the affine approximation of the operator (M) and hence the hp-EIM approach will reduce the RB online cost. Similarly, the hp-EIM approach may be applied within the related hp-RB framework [4]. In [5] the gravity center approach discussed in this paper is applied within an RB framework for the electric field integral equation.

The hp-EIM method may also provide an improvement of the rigorous *a posteriori* error bounds recently introduced for the EIM [3]. Currently these bounds are global in parameter, and the hp-EIM thus provides a natural way of localizing, and hence in effect sharpen, the bounds.

Acknowledgements

We are grateful for many fruitful discussions with Prof. Anthony T. Patera and Prof. Martin A. Grepl. This work has been supported by the Norwegian University of Science and Technology, University of California, Berkeley, Lawrence Berkeley National Laboratory, and OSD/AFOSR Grant Number FA9550-09-1-0613.

References

- M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris, 339(9):667–672, 2004.
- [2] J. L. Eftang, D. J. Knezevic, and A. T Patera. An hp certified reduced basis method

for parametrized parabolic partial differential equations. To appear in Mathematical and Computer Modelling of Dynamical Systems, 2011. http://augustine.mit.edu/methodology/papers/atp_MCMDS_revised_Jul2010.pdf.

- [3] Jens L. Eftang, Martin A. Grepl, and Anthony T. Patera. A posteriori error bounds for the empirical interpolation method. C. R. Math. Acad. Sci. Paris, 348(9-10):575–579, 2010.
- [4] Jens L. Eftang, Anthony T. Patera, and Einar M. Rønquist. An "hp" certified reduced basis method for parametrized elliptic partial differential equations. SIAM Journal on Scientific Computing, 32(6):3170–3200, 2010.
- [5] M. Fares, J. Hesthaven, Y. Maday, and B. Stamm. Reduced basis method for the parametrized electric field integral equation. J. Comput. Physics. Submitted, 2010.
- [6] M. Grepl. A Posteriori Error Bounds for Reduced-Basis Approximations of Nonaffine and Nonlinear Parabolic Partial Differential Equations. Mathematical Models and Methods in Applied Sciences (M3AS), submitted, 2010.
- [7] M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. *M2AN Math. Model. Numer. Anal.*, 41(3):575–605, 2007.
- [8] A. E. Løvgren, Y. Maday, and E. M. Rønquist. The reduced basis element method: Offline-online decomposition in the nonconforming, nonaffine case. In Timothy J. Barth, Michael Griebel, David E. Keyes, Risto M. Nieminen, Dirk Roose, Tamar Schlick, Jan S. Hesthaven, and Einar M. Rønquist, editors, Spectral and High Order Methods for Partial Differential Equations, volume 76 of Lecture Notes in Computational Science and Engineering, pages 247–254. Springer Berlin Heidelberg, 2011.
- [9] Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, and George S. H. Pau. A general multipurpose interpolation procedure: The magic points. *Communications in pure and applied mathematics*, 8:383–404, 2009.
- [10] A. Quarteroni, R. Sacco, and F Saleri. Numerical Mathematics, volume 37. Springer, New York, 1991.
- [11] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced Basis Approximation and a posteriori Error Estimation for Affinely Parametrized Elliptic Coercive Partial Differential Equations. Archives of Computational Methods in Engineering, 15(3):229–275, 2008.
- [12] Gianluigi Rozza. Reduced basis methods for stokes equations in domains with nonaffine parameter dependence. *Computing and Visualization in Science*, 12:23–35, 2009.