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Abstract
We introduce a general a priori convergence result for the approxi-

mation of parametric derivatives of parametrized functions. We show,
with rather general assumptions on the particular approximation scheme,
that the approximations of parametric derivatives of a given parametrized
function are convergent provided that the approximation to the function
itself is convergent. We present numerical results with one particular
method for the approximation of parametrized functions — the Empirical
Interpolation Method — to illustrate the general theory.

1 Introduction
We consider in this paper the approximation of parametrized functions, i.e.,
functions that in addition to spatial variables depend on one or several scalar
parameters. In particular, we are concerned with the approximation of para-
metric derivatives of such functions, i.e., derivatives of parametrized functions
with respect to the parameters. We develop a new convergence theory that
demonstrates — with rather general assumptions on the particular approxima-
tion scheme — that the approximations of parametric derivatives of a given
parametrized function are convergent provided that the approximation to the
function itself is convergent.

The Empirical Interpolation Method (EIM), introduced in [1, 5], is an inter-
polation method specifically constructed for the approximation of parametrized
functions.1 The main focus of this paper is the EIM approximation of parametric
∗Department of Mathematical Sciences, Norwegian University of Science and Technology,

Trondheim, Norway, eftang@math.ntnu.no
†RWTH Aachen University, Numerical Mathematics, Aachen, Germany
‡Department of Mechanical Engineering, Massachusetts Institute of Technology, Cam-

bridge, MA, USA
§Department of Mathematical Sciences, Norwegian University of Science and Technology,

Trondheim, Norway
1In particular, the EIM serves to construct parametrically affine approximations of pa-

rameter dependent non-affine or non-linear differential operators within the Reduced Basis
(RB) framework for parametric reduced order modelling of partial differential equations [10].
An affine representation (or approximation) of the operator allows an efficient “offline-online”
computational decoupling, which in turn is a crucial ingredient in the RB computational
framework. We refer to [4, 5] for the application of the EIM for RB approximations.
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derivatives of parametrized functions. The new convergence theory is developed
with the EIM in mind, and is discussed and applied within the context of the
EIM.

However, our new theoretical results here also apply to rather general ap-
proximation schemes other than the EIM; in particular, we may consider both
projection-based and interpolation-based approximation. The main limitation
of the theory is related to regularity assumptions in space and parameter on the
parametrized function.

The results in this paper have several useful implications. First, if the EIM
is employed for evaluation of an objective function subject to optimization with
respect to a set of parameters, our theory shows that we may accurately compute
the parametric Jacobian without expensive generation of additional EIM spaces,
or alternatively finite difference Jacobian approximations. Second, the rigorous
a posteriori bounds for the error in the EIM approximation recently introduced
in [3] require computation of the EIM approximation of parametric derivatives at
a finite number of points in the parameter domain; smaller EIM errors associated
with these derivatives imply sharper EIM error bounds. This second point in
particular motivates our work here.

The remainder of the paper is organized as follows. First, in Section 2
we introduce notation and recall some results from polynomial approximation
theory. Next, in Section 3, we present the new general a priori convergence
result. Then, in Section 4 we review the EIM and apply the new convergence
theory in this particular context. Subsequently, in Section 5, we demonstrate
the theory within the context of the EIM through numerical results. Finally, in
Section 6 we provide some concluding remarks.

2 Preliminaries

2.1 Notation
We denote by Ω ⊂ Rd the spatial domain (d = 1, 2, 3); a particular point x ∈ Ω
shall be denoted by x = (x(1), . . . , x(d)). We denote by D ⊂ RP the parameter
domain (P ≥ 1); a particular parameter value µ ∈ D shall be denoted by
µ = (µ(1), . . . , µ(P )).

We introduce a sufficiently smooth function F : Ω × D → R. We sup-
pose that F(·;µ) ∈ L∞(Ω) for all µ ∈ D, and, for purposes of our theoretical
arguments later, that F(x; ·) ∈ C2(D) for all x ∈ Ω. Here, L∞(Ω) = {v :
ess supx∈Ω |v(x)| < ∞} and Cs(O) denotes the space of functions with contin-
uous s-order derivatives over a domain O. We then introduce a multi-index of
dimension P ,

β = (β1, . . . , βP ), (1)

where the entries βi, 1 ≤ i ≤ P , are non-negative integers. We define for any
multi-index β the parametric derivatives of F ,

F (β) =
∂|β|F

∂µβ1

(1) · · · ∂µ
βP
(P )

, (2)

2



where

|β| =
P∑
i=1

βi (3)

is the length of β and hence the differential order. We denote the set of all
distinct multi-indices β of dimension P of length p byMP

p .
For our theoretical arguments in Section 3 we shall write D as the tensor

product D = D(1) × · · · × D(P ), where D(i) ⊂ R, 1 ≤ i ≤ P . We shall further
consider any particular parameter dimension S ≡ Dj , 1 ≤ j ≤ P , and assume
without loss of generality2 that S = [−1, 1]. In this case we fix the P − 1
parameter values µ(i) ∈ D(i), 1 ≤ i ≤ P , i 6= j, and we introduce the function
Jβ,j : Ω× S → R defined for x ∈ Ω and κ ∈ S by

Jβ,j(x;κ) ≡ F (β)
(
x; (µ(1), . . . , µ(j−1), κ, µ(j+1), . . . , µ(P ))

)
. (4)

2.2 Polynomial Approximation
In this section we recall some results from polynomial interpolation theory.
We first describe a general interpolation framework for which we state three
hypotheses. These hypotheses are the key ingredients in the proof of our new
convergence theory in Section 3.

Let Γ = [−1, 1], and let f : Γ → R be a sufficiently smooth function.
We introduce N + 1 distinct interpolation nodes yN,i ∈ Γ, 0 ≤ i ≤ N , and
N + 1 characteristic functions χN,i, 0 ≤ i ≤ N , that satisfy χN,i(yN,j) = δi,j ,
0 ≤ i, j ≤ N . We finally introduce an interpolation operator IN defined by
INf =

∑N
i=0 f(yN,i)χN,i. We may now formally state our three hypotheses.

Hypothesis 1. The error in the derivative of the interpolant INf satisfies

|f ′(x)− (INf)′(x)| ≤ Gf (N), ∀x ∈ Γ, (5)

where for a given f the function Gf : N→ (0,∞) with Gf (N)→ 0 as N →∞.

Hypothesis 2. The characteristic functions χN,i, 0 ≤ i ≤ N , satisfy

N∑
i=0

|χ′N,i(x)| ≤ D(N), ∀x ∈ Γ, (6)

where the function D : N → (0,∞) is fixed (for a given interpolation scheme)
with D(N)→∞ as N →∞.

Hypothesis 3. Let ε ∈ R+, and consider the equation

Gf (N) = D(N)ε (7)

for the unknown N as ε → 0. Equation (7) has a solution N = N(ε) ≥ 0 that
satisfies

εD
(
N(ε)

)
→ 0 (8)

as ε→ 0.
2We may always transform our parameter dependent function such that the parameters

reside in the hypercube [−1, 1]P .
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We next consider several interpolation schemes and in each case confirm the
corresponding instantiations of our hypotheses under suitable regularity condi-
tions. First, we assume f ∈ C2(Γ) and consider piecewise linear interpolation
over equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . In
this case the characteristic functions χN,i are continuous and piecewise linear
“hat functions” with support only on the interval [yN,0, yN,1] for i = 0, only
on the interval [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1, and only on the interval
[yN,N−1, yN,N ] for i = N . For piecewise linear interpolation Hypothesis 1 and
Hypothesis 2 obtain for

Gf (N) = 2N−1‖f ′′‖L∞(Γ), (9)
D(N) = N, (10)

respectively. In this case (6) in Hypothesis 2 obtains with equality. We include
the proofs in Appendix A.1. It is straightforward to demonstrate Hypothesis 3:
we note that

N−1 = Nε (11)

has the solution N(ε) = ε−1/2 and that ε−1/2ε→ 0 as ε→ 0.
Next, we assume f ∈ C3(Γ) and consider piecewise quadratic interpolation

over equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We as-
sume that N is even such that we may divide Γ into N/2 intervals [yN,i, yN,i+2],
for i = 0, 2, 4, . . . , N − 2. The characteristic functions are for x ∈ [yN,i, yN,i+2]
then given as

χN,i(x) =
(x− yN,i+1)(x− yN,i+2)

2h2
, (12)

χN,i+1(x) =
(x− yN,i)(x− yN,i+2)

−h2
, (13)

χN,i+2(x) =
(x− yN,i)(x− yN,i+1)

2h2
, (14)

for i = 0, 2, 4, . . . , N − 2, where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1. For
piecewise quadratic interpolation Hypothesis 1 and Hypothesis 2 obtain for

Gf (N) = const ·N−2‖f ′′′‖L∞(Γ), (15)

D(N) =
5

2
N, (16)

respectively. We include the proofs in Appendix A.2. It is straightforward to
demonstrate Hypothesis 3: we note that

N−2 = Nε (17)

has the solution N(ε) = ε−1/3 and that ε−1/3ε→ 0 as ε→ 0.
Finally, we assume that f is analytic in Γ and consider standard Chebyshev

interpolation over the usual Chebyshev-nodes yN,i = − cos(iπ/N), 0 ≤ i ≤ N .
The characteristic functions are in this case the Lagrange polynomials χN,i ∈
PN (Γ) that satisfy χN,i(yN,j) = δij , 0 ≤ i, j ≤ N . For Chebyshev interpolation
Hypothesis 1 and Hypothesis 2 obtain for

Gf (N) = cfNe
−N log(ρf ), (18)

D(N) = N2, (19)
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respectively, where cf > 0 and ρf > 1 depend only on f . In this case (6)
in Hypothesis 2 obtains with equality. We refer to Reddy and Weideman [8]
for a proof of (18) and to Rivlin [9, pp. 119–121] for a proof of (19). We
finally demonstrate Hypothesis 3: we let η = log(ρf ) > 0 and we note that the
transcendental equation

Ne−Nη = N2ε. (20)

admits the solution

N(ε) =
1

η
W
(η
ε

)
, (21)

where W denotes the LambertW function(s) defined by ξ =W(ξ)eW(ξ) for any
ξ ∈ C. As ξ → ∞, ξ ∈ R, it can be shown [2] that W(ξ) < log(ξ). Thus, as
ε→ 0, we obtain

N(ε) <
1

η
log
(η
ε

)
=

1

η

(
log(η) + log(1/ε)

)
≤ A log(1/ε) (22)

for some sufficiently large constant A. We now consider the product ε(N(ε))2

as ε → 0. By application of L’Hôpital’s rule twice (Eqs. (25) and (27) below)
we obtain

lim
ε→0

ε(N(ε))2 ≤ A2 lim
ε→0

ε(log(1/ε))2 (23)

= A2 lim
ε→0

(
log(ε)

)2
1/ε

(24)

= A2 lim
ε→0

2 log(ε)/ε

−1/ε2
(25)

= 2A2 lim
ε→0

log(ε)

−1/ε
(26)

= 2A2 lim
ε→0

1/ε

1/ε2
(27)

= 2A2 lim
ε→0

ε = 0. (28)

Hypothesis 3 thus holds.

3 A General Convergence Result
We introduce an approximation space WM ≡ WM (Ω) of finite dimension M .
For any µ ∈ D, our approximation to the function F(·;µ) : Ω → R shall reside
in WM ; the particular approximation procedure invoked is not relevant for our
theoretical results in this section. We show here that if, for any µ ∈ D, the error
in the best L∞(Ω) approximation to F(·;µ) in WM goes to zero as M → ∞,
then, for any multi-index β, |β| ≥ 0, the error in the best L∞(Ω) approximation
to F (β)(·;µ) inWM also goes to zero asM →∞. Of course, only modestM are
of interest in practice: the computational cost associated with the approximation
is M -dependent. However, our theoretical results in this section provide some
promise that we may in practice invoke the “original” approximation space and
approximation procedure also for the approximation of parametric derivatives.
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We introduce, for any fixed p ≥ 0 and any M ≥ 1,

epM ≡ max
β∈MP

p

max
µ∈D

inf
w∈WM

‖F (β)(·;µ)− w‖L∞(Ω). (29)

We then recall the definition of Jβ,j from (4), and state

Proposition 1. Let p be a fixed non-negative integer. Assume that Hypotheses
1, 2, and 3 hold for f = Jβ,j(x; ·), 1 ≤ j ≤ P , for all x ∈ Ω, and for all
β ∈MP

p . In this case, if epM → 0 as M →∞, then

ep+1
M → 0 (30)

as M →∞.

Proof. For each x ∈ Ω, we introduce the interpolant JN,β,j(x; ·) ≡ INJβ,j(x; ·) ∈
PN (S) given by

JN,β,j(x; ·) ≡ INJβ,j(x; ·) =

N∑
i=0

Jβ,j(x; yN,i)χN,i(·); (31)

recall that here, χN,i : S → R, 0 ≤ i ≤ N , are characteristic functions that
satisfy χN,i(yN,j) = δi,j , 0 ≤ i, j ≤ N .

Let ′ denote differentiation with respect to the variable κ in (4). For each x ∈
Ω we consider an approximation to J ′β,j(x; ·) which we write as

∑N
i=0 χ

′
N,iwi(x),

where wi ∈WM , 1 ≤ i ≤ N . We note that
∑N
i=0 χ

′
N,i(κ)wi ∈WM for all κ ∈ S

(we define the wi shortly; however we note that in general Jβ,j(·; yN,i) /∈ WM ,
1 ≤ i ≤ N , are not valid choices). For the error in this approximation we note
by the triangle inequality that (for any wi ∈WM , 1 ≤ i ≤ N)

∥∥∥J ′β,j − N∑
i=0

χ′N,iwi

∥∥∥
L∞(Ω×S)

=
∥∥∥J ′N,β,j − N∑

i=0

χ′N,iwi +J ′β,j −J ′N,β,j
∥∥∥
L∞(Ω×S)

≤
∥∥∥J ′N,β,j − N∑

i=0

χ′N,iwi

∥∥∥
L∞(Ω×S)

+
∥∥∥J ′β,j − J ′N,β,j∥∥∥

L∞(Ω×S)
. (32)

Here, J ′N,β,j ≡ (JN,β,j)′ =
∑N
i=0 Jβ,j(·; yN,i)χ′N,i(·).

In our approximation, we use as coefficient functions χ′N,i (and not, for
example, χN,i). With this choice and the definition of J ′β,j , we may relate the
error in our approximation to the error in the approximation of Jβ,j , which is
our ultimate goal. For the first term on the right hand side of (32) we first
invoke (31), then the triangle inequality, and finally Hypothesis 2 to obtain

∥∥∥J ′N,β,j − N∑
i=0

χ′N,iwi

∥∥∥
L∞(Ω×S)

=
∥∥∥ N∑
i=0

(Jβ,j(·; yN,i)− wi)χ′N,i
∥∥∥
L∞(Ω×S)

≤
∥∥∥ N∑
i=0

|χ′N,i||Jβ,j(·; yN,i)− wi|
∥∥∥
L∞(Ω×S)

≤
∥∥∥ max

0≤i≤N
|Jβ,j(·; yN,i)− wi|

N∑
j=0

|χ′N,j |
∥∥∥
L∞(Ω×S)

≤ D(N) max
0≤i≤N

‖Jβ,j(·; yN,i)− wi‖L∞(Ω). (33)
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Next, for any κ ∈ S we introduce the functions

w∗β,j(·;κ) ≡ arg inf
w∈WM

‖Jβ,j(·;κ)− w‖L∞(Ω). (34)

We then consider (33) for wi = w∗β,j(·; yN,i) and note that

∥∥∥J ′N,β,j − N∑
i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ D(N) max
0≤i≤N

‖Jβ,j(·; yN,i)− w∗β,j(·; yN,i)‖L∞(Ω)

≤ D(N) max
κ∈S
‖Jβ,j(·;κ)− w∗β,j(·;κ)‖L∞(Ω)

= D(N) max
κ∈S

inf
w∈WM

‖Jβ,j(·;κ)− w‖L∞(Ω) ≤ D(N)epM , (35)

where the last step follows from the definition of epM in (29).
For the second term on the right hand side of (32) we invoke Hypothesis 1

for f = f̃β,j ≡ Jβ,j(x̃β,j ; ·) to obtain

‖J ′β,j − J ′N,β,j‖L∞(Ω×S) ≤ Gf̃β,j (N); (36)

here x̃β,j ∈ Ω is the particular point in Ω such that for given β and j, f̃β,j yields
the “worst” behavior of the right-hand-side.

We now combine (32) for wi = w∗β,j(·; yN,i) with (35) and (36) to obtain

∥∥∥J ′β,j − N∑
i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ Gf̃β,j (N) +D(N)epM . (37)

We then introduce β+
j = β + ej where ej is the canonical unit vector with the

j’th entry equal to unity; we recall that β has length |β| = p and hence β+
j

has length |β+
j | = p+ 1. We note that the multi-index β, the parameter values

µ(i) ∈ D(i), 1 ≤ i ≤ P , i 6= j, as well as the dimension j, were chosen arbitrarily
above. We may thus conclude

max
β∈MP

p

max
1≤j≤P

max
µ∈D

∥∥∥F (β+
j )(·;µ)−

N∑
i=0

χ′N,i(µ(j))w
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω)

≤ Gf̂ (N) +D(N)epM (38)

(recall above we wrote κ = µ(j) for each fixed j); here, f̂ = Jβ̃,j̃(x̃β̃,j̃ ; ·), where
1 ≤ j̃ ≤ P and β̃ ∈MP

p are the particular indices that yield the “worst” behavior
of the right-hand-side.

We note that
∑N
i=0 χ

′
N,i(µ(j))w

∗
β,j(·; yN,i) is a particular member of WM for

any β ∈MP
p , any µ(j) ∈ D(j), and any 1 ≤ j ≤ P . We thus obtain

ep+1
M = max

β∈MP
p+1

max
µ∈D

inf
w∈WM

‖F (β)(·;µ)− w‖L∞(Ω) ≤ Gf̂ (N) +D(N)epM . (39)

The final step is to bound the right-hand side of (39) in terms of epM . To
this end we note that we may choose N freely. In particular we may choose N
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as the minimizer N = Nmin(epM ) > 0 of the right hand side of (39); however for
simplicity we shall make a different choice for N . Let Nbal(e

p
M ) denote the value

of N that balances the two terms on the right hand side of (39); by Hypothesis
3 Nbal(e

p
M ) exists for sufficiently small epM . We then choose N = Nbal(e

p
M ) in

(39) to obtain

ep+1
M ≤ 2D(Nbal(e

p
M ))epM , (40)

where ep+1
M → 0 as epM → 0 by Hypothesis 3.

We now provide three lemmas. The first lemma quantifies the convergence
in Proposition 1 in the case that F(x, ·) ∈ C2(D) for all x ∈ Ω.

Lemma 1. Assume F(x, ·) ∈ C2(D) for any x ∈ Ω. If for any fixed p ≥ 0
epM → 0 as M →∞, then there is a constant Cp+1 > 0 such that

ep+1
M ≤ Cp+1

√
epM (41)

as M →∞.

Proof. In this case we may invoke piecewise linear interpolation as our inter-
polation system in the proof of Proposition 1. By (9) and (10) we obtain
Nbal(e

p
M ) = (2‖f̂ ′′‖L∞(Γ)/e

p
M )1/2 and hence (40) forD(N) = N becomes ep+1

M ≤
2(2‖f̂ ′′‖L∞(Γ)/e

p
M )1/2epM . The result follows for Cp+1 = 2(2‖f̂ ′′‖L∞(Γ))

1/2.

The next lemma quantifies the convergence in Proposition 1 in the case that
F(x, ·) ∈ C3(D) for all x ∈ Ω.

Lemma 2. Assume F(x, ·) ∈ C3(D) for any x ∈ Ω. If for any fixed p ≥ 0
epM → 0 as M →∞, then there is a constant Cp+1 > 0 such that

ep+1
M ≤ Cp+1(epM )2/3 (42)

as M →∞.

Proof. In this case we may invoke piecewise quadratic interpolation as our in-
terpolation system in the proof of Proposition 1. By (15) and (16) we obtain,
for a positive constant c̃, Nbal(e

p
M ) = c̃(‖f̂ ′′′‖L∞(Γ)/e

p
M )1/3 and hence (40) for

D(N) = 5N/2 becomes ep+1
M ≤ 5c̃(‖f̂ ′′′‖L∞(Γ)/e

p
M ))1/3epM . The result follows

for Cp+1 = 5c̃‖f̂ ′′′‖1/3L∞(Γ).

We make the following remark concerning Lemma 1 and Lemma 2 in the
case of algebraic convergence.

Remark 1. Let |β| = p, and assume that F (β)(x, ·) ∈ Cqp(D), qp > 0, for all
x ∈ Ω. Assume that epM ∼M−rp , rp > 0, as M →∞; here the convergence rate
rp typically depends on the regularity qp. For qp = 2 we may invoke Lemma 1
to obtain

ep+1
M ≤ Cp+1(epM )1/2 ∼M−rp/2 ∼M1−rp+(rp/2−1) ∼M1+(rp/2−1)epM . (43)

Similarly, for qp = 3 we may invoke Lemma 2 to obtain

ep+1
M ≤ Cp+1(epM )2/3 ∼M−2rp/3 ∼M1−rp+(rp/3−1) ∼M1+(rp/3−1)epM . (44)
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More generally, with higher-regularity versions of Lemma 1 and Lemma 2, we
expect for any qp > 0 that

ep+1
M ≤ Cp+1(epM )1−1/qp ∼M−rp(1−1/qp) ∼M1−rp+(rp/qp−1) ∼M1+(rp/qp−1)epM .

(45)

for any qp > 0. We shall comment on these estimates further in our discussion
of numerical results in Section 5.

The third lemma quantifies the convergence in Proposition 1 in the case that
F(x, ·) is analytic over D.

Lemma 3. Assume F(x, ·) : D → R is analytic over D for any x ∈ Ω. If for
any fixed p ≥ 0 epM → 0 as M → ∞, then there is a constant Cp+1 > 0 such
that

ep+1
M ≤ Cp+1(log(epM ))2epM (46)

as M →∞. In particular, if for some p

epM ∼M
σe−γM (47)

as M → ∞, where σ is a non-negative constant and γ is a positive constant,
then there is a constant Cp+1 such that

ep+1
M ≤ Cp+1M

σ+2e−γM (48)

as M →∞.

Proof. In this case we may invoke Chebyshev interpolation as our interpola-
tion system in the proof of Proposition 1. By (18), (19), and (22) we ob-
tain Nbal(e

p
M ) < ĉ log(1/epM ) for a sufficiently large constant ĉ. Hence, with

D(N) = N2 and (40), we obtain ep+1
M ≤ 2ĉ2(log(1/epM ))2epM . The result (46)

follows for Cp+1 = 2ĉ2 since (log(1/ePM ))2 = (log(ePM ))2. The result (48) follows
under the additional assumption (47) since in this case there is a constant B
such that

Nbal(e
p
M ) ≤ B log

( 1

Mσe−γM

)
= B(−σ logM + γM) < BγM, (49)

and D(Nbal(e
p
M )) ≤ (BγM)2.

Remark 2. Note that, in Lemma 3, we can not obtain an explicit expression
for the convergence rate of derivatives of order larger than p+1 (by for example
an induction argument) since the result (48) is not sharp; an asymptotic lower
bound for ep+1

M is required to explicitly bound Nbal(e
p+1
M ) as M → ∞. Hence,

we invoke an exact asymptotic relation in the assumption (47) in order to bound
the convergence of the “next” derivative approximation based on the “current”
derivative approximation.

We also note that if the bound (48) were sharp, we could invoke the argument
recursively to obtain an estimate of the form εpM ∼Mσ+2pe−γM .
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4 The Empirical Interpolation Method
In this section we first recall the empirical interpolation method (EIM) [1, 5, 6]
and then consider the convergence theory of the previous section applied to the
EIM. The EIM approximation space is spanned by precomputed snapshots of
a parameter dependent “generating function” for judicuosly chosen parameter
values from a predefined parameter domain. Given any new parameter value in
this parameter domain, we can construct an approximation to the generating
function at this new parameter value — or in fact an approximation to any
function defined over the same spatial domain — as a linear combination of the
EIM basis functions. The particular linear combination is determined through
interpolation at judiciuosly chosen points in the spatial domain. For paramet-
rically smooth functions, the EIM approximation to the generating function
yields rapid, typically exponential, convergence.

4.1 Procedure
We introduce the generating function G : Ω × D → R such that for all µ ∈ D,
G(·;µ) ∈ L∞(Ω). We introduce a training set Ξtrain ⊂ D of finite cardinality
|Ξtrain| which shall serve as our computational surrogate for D. We also intro-
duce a triangulation TN (Ω) of Ω with N vertices over which we shall in practice,
for any µ ∈ D, realize G(·;µ) as a piecewise linear function.

Now, for 1 ≤ M ≤ Mmax < ∞, we define the EIM approximation space
WGM and the EIM interpolation nodes TGM associated with G; here, Mmax is
a specified maximum EIM appproximation space dimension. We first choose
(randomly, say) an initial parameter value µ1 ∈ D; we then determine the first
EIM interpolation node as t1 = arg supx∈Ω |G(x;µ1)|; we next define the first
EIM basis function as q1 = G(·;µ1)/G(t1;µ1). We can then, for M = 1, define
WGM = span{q1} and TGM = {t1}. We also define a nodal value matrix B1 with
(a single) element B1

1,1 = q1(t1) = 1.
Next, for 2 ≤ M ≤ Mmax, we first compute the empirical interpolation of

G(·;µ) for all µ ∈ Ξtrain: we solve the linear system

M−1∑
j=1

φM−1
j (µ)BM−1

i,j = G(ti;µ), 1 ≤ i ≤M − 1, (50)

and compute the empirical interpolation GM−1(·;µ) ∈WGM−1 as

GM−1(·;µ) =

M−1∑
i=1

φM−1
i (µ)qi, (51)

for all µ ∈ Ξtrain. We then choose the next parameter µM ∈ D as the maximizer
of the EIM interpolation error over the training set,

µM = arg max
µ∈Ξtrain

‖GM−1(·;µ)− G(·;µ)‖L∞(Ω); (52)

note that thanks to our piecewise linear realization of G(·;µ), the norm eval-
uation is a simple comparison of function values at the N vertices of TN (Ω).
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We now choose the next EIM interpolation node as the point in Ω at which the
EIM error associated with GM−1(µM ) is largest,

tM = arg sup
x∈Ω
|GM−1(x;µM )− G(x;µM )|. (53)

The next EIM basis function is then

qM =
GM−1(·;µM )− G(·;µM )

GM−1(tM ;µM )− G(tM ;µM )
. (54)

We finally enrich the EIM space: WGM = span{q1, . . . , qM}; expand the set of
nodes: TGM = {t1, . . . , tM}; and expand the nodal value matrix: BMi,j = qj(ti),
1 ≤ i, j ≤M .

Now, given any function F : Ω × D → R (in particular, we shall consider
F = G(β)), we define for any µ ∈ D and for 1 ≤ M ≤ Mmax the empirical
interpolation of F(·;µ) in the space WGM (the space generated by G) as

FGM (·;µ) =

M∑
i=1

φMi (µ)qi, (55)

where the coefficients φMi (µ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

φMj (µ)BMi,j = F(ti;µ), 1 ≤ i ≤M. (56)

We note that by construction the matrices BM ∈ RM×M , 1 ≤ M ≤ Mmax,
are lower triangular: by (50), GM−1(tj ;µM ) = G(tj ;µM ) for j < M . As a result,
computation of the EIM coefficients φMj , 1 ≤ j ≤M , in (56) and (50) areO(M2)
operations. We emphasize that the computational cost associated with the EIM
approximation (55)–(56) (after snapshot precomputation), is independent of the
number N of vertices in the triangulation TN (Ω). We may thus choose N
conservatively.

We next note that, for any multi-index β,

(FGM )(β) =
( M∑
i=1

φMi (µ)qi

)(β)

=

M∑
i=1

ϕMi (µ)qi, (57)

where ϕMi (µ) = (φMi )(β)(µ), 1 ≤ i ≤M , solve the linear system (recall that the
matrix BM is µ-independent)

M∑
j=1

ϕMj (µ)BMi,j = F (β)(ti;µ), 1 ≤ i ≤M. (58)

Hence,

(FGM )(β) = (F (β))GM , (59)

that is, the parametric derivative of the approximation is equivalent to the
approximation of the parametric derivative. We note that this equivalence holds
since we invoke the same approximation spaceWGM for both EIM approximations
FGM and (F (β))GM .
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4.2 Convergence theory applied to the EIM
We introduce the Lebesgue constants [7]

ΛM = sup
x∈Ω

M∑
i=1

|VMi (x)|, 1 ≤M ≤Mmax, (60)

where VMi ∈WGM are the characteristic functions associated with WGM and TGM :
VMi (tj) = δij , 1 ≤ i, j ≤M , where δ is the Kroenecker delta symbol. It can be
proven [1, 5] that the EIM error satisfies

‖F(·;µ)−FGM (·;µ)‖L∞(Ω) ≤ (1 + ΛM ) inf
w∈WGM

‖F(·;µ)− w‖L∞(Ω), (61)

for 1 ≤M ≤Mmax. It can furthermore be proven that ΛM < 2M − 1; however,
in actual practice the growth of ΛM is much slower, as we shall observe below
(see also results in [1, 5, 6]).

Our theory of Section 3 considers the convergence in the best approximation
error. In the following remark we apply Lemma 3 within the context of the
EIM.

Remark 3. It can be shown [1, 5] that the error in the EIM derivative approx-
imation satisfies

‖F (β)(·;µ)− (F (β))GM (·;µ)‖L∞(Ω)

≤ (1 + ΛM ) inf
w∈WGM

‖F (β)(·;µ)− w‖L∞(Ω), (62)

for any µ ∈ D and any multi-index β. Assume that the best approximation error

epM = max
µ∈D

inf
w∈WGM

‖F (β)(·;µ)− w‖L∞(Ω) → 0 (63)

as M → ∞ for all µ ∈ D and any multi-index β such that |β| = p is a non-
negative integer. We may then conclude from Lemma 3 and (62) that

max
µ∈D
‖F (β′)(·;µ)− (F (β′))GM (·;µ)‖L∞(Ω) ≤ (1 + ΛM )ep+1

M

≤ (1 + ΛM )Cp+1(log(epM ))2epM , (64)

for any multi-index β′ such that |β′| = p+ 1.
The term epM → 0 as M →∞ by assumption and thus ep+1

M → 0 as M →∞
by Proposition 1. Hence, the convergence of the EIM derivative approximation
associated with derivatives of order p+ 1 depends on the growth of the Lebesgue
constant; precisely, we must require

ΛMe
p+1
M → 0 (65)

as M →∞. We recall that the Lebesgue constant typically grows only modestly
and thus we expect in practice convergence of the EIM derivative approximation.

Clearly, if the EIM approximation associated with derivatives of order p con-
verges, then the best approximation associated with derivatives of order p con-
verges as well. Hence covergence of the EIM approximation associated with
derivatives of order p implies convergence of the EIM approximation associated
with derivatives of order p+ 1 provided the Lebesgue constant grows sufficiently
modestly.
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We expect that Remark 1, Remark 2, and Remark 3 may be applied (non-
rigorously) to EIM convergence if the growth of the Lebesgue constant is modest,
since then the convergence rates associated with the best approximation and
EIM approximation can not be very different.

For any p ≥ 0 we introduce the maximum EIM error over E ⊆ D

εpM,max(E) ≡ max
µ∈E

max
β∈MP

p

‖F (β)(·;µ)− (F (β))GM (·;µ)‖L∞(Ω) (66)

for |β| = p and 1 ≤ M ≤ Mmax. We also introduce a function RM : D → R
such that

‖F (β)(·;µ)− (F (β))GM (·;µ)‖L∞(Ω) = RM (µ) inf
w∈WGM

‖F (β)(·;µ)− w‖L∞(Ω) (67)

for 1 ≤M ≤Mmax. We note that by (62) 1 ≤ RM (µ) ≤ 1 + ΛM for all µ ∈ D.
With (66) and (67) we then obtain, for any p ≥ 0,

εpM,max(E) = max
µ∈E

max
β∈MP

p

‖F (β)(·;µ)− (F (β))GM (·;µ)‖L∞(Ω)

= max
µ∈E

max
β∈MP

p

(
RM (µ) inf

w∈WGM
‖F (β)(·;µ)− w‖L∞(Ω)

)
= RM (µ̂p)e

p
M (68)

for a particular µ̂p ∈ E . We now introduce the EIM error degradation factor

ρM,p(E) ≡
εpM,max(E)

ε0M,max(E)
, (69)

and note that

ρM,p(E) =
RM (µ̂p)e

p
M

RM (µ̂0)e0
M

≤ (1 + ΛM )
epM
e0
M

. (70)

We make two observations. First, the EIM error degradation factor is similar
(for fixed p as a function of M) to the best approximation error degradation
factor ρ∗M,p ≡ epM/e

0
M if the Lebesgue constant grows slowly. Second, if the

ratio RM (µ̂p)/RM (µ̂0) ∼ 1 as M → ∞, then ρM,p(E) will be similar to ρ∗M,p

independent of the Lebesgue constant.
In our discussion of each of our numerical examples in the next section

we plausibly assume that the Lebesgue constant grows only modestly, and in
particular that ρM,p(E) is similar to ρ∗M,p. We confirm this assumption with
explicit calculation of the Lebesgue constant.

The following remark is particularly relevant in our subsequent discussion of
the sharpness of our theoretical results.

Remark 4. Assume that the Lebesgue constant grows slowly and thus that
the convergence rate associated with the EIM approximation is similar to the
convergence rate associated with the best approximation. Consider the case of
exponential convergence and assume that the bound provided by Lemma 3 is
sharp. If ε0M,max(D) ∼ Mσe−γM for σ, γ > 0, we expect that εpM,max(D) ∼
Mσ+2pe−γM , and thus an EIM error degradation factor ρM,p ∼ (M2p). As we
shall observe shortly for our numerical results this estimate for the degradation
factor is not quite sharp.
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Figure 1: The maximum EIM error over the test set εpM,max(Ξtest) for 0 ≤ p ≤ 3
for Example 1.

We may obtain an expression for the EIM error degradation factor also in
the case of algebraic convergence. However, the relation between the regularity
of the function (qp in Remark 1) and the convergence (rp in Remark 1) is not a
priori known for the EIM (or best) approximation. We thus save the discussion
of the EIM error degradation factor in the case of algebraic convergence for our
numerical results section, in which we compute the relation between qp and rp a
posteriori.

5 Numerical Results

5.1 Example 1: Parametrically smooth Gaussian surface
We introduce the spatial domain Ω = [0, 1]2 and the parameter domain D =
[0.4, 0.6]2. We consider the 2D Gaussian F : Ω×D → R defined by

F(x;µ) = exp

(
−(x(1) − µ(1))

2 − (x(2) − µ(2))
2

2σ2

)
(71)

for x ∈ Ω, µ ∈ D, and σ ≡ 0.1. This function is thus parametrized by the
location of the maximum of the Gaussian surface. We note that for all x ∈ Ω
the function F(x; ·) ∈ C∞(D); we may thus invoke Lemma 3.

We introduce a triangulation TN (Ω) with N = 2601 vertices; we introduce
an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 900 = 30 × 30.
We then pursue the EIM with G = F for Mmax = 130.

We now introduce a uniformly distributed random test set Ξtest ⊂ D of
size 1000. In Figure 1 we show the maximum interpolation errors εpM,max(Ξtest)
for p = 0, 1, 2, 3; the convergence is exponential (note the lin-log scaling of
the axes). We note that for large M , the rate of convergence associated with
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Figure 2: EIM error degradation factors ρM,p(Ξtest), p = 1, 2, 3, for Example 1.
The shorter solid gray lines represent exact rates Mp.

the derivatives (p > 1) is close to the rate of convergence associated with the
generating function (p = 0).

In Figure 2 we show the EIM error degradation factors ρM,p(Ξtest) for
p = 1, 2, 3 as functions of M . We observe that the degradation factors behave
approximately as Mp: there is an Mp degradation of the convergence associ-
ated with the derivative approximation for p > 0 compared to the convergence
associated with the original function.

From Remark 4 we recall that we would have expected ρM,p(Ξtest) ∼M2p if
our theoretical result (48) were sharp. Since in practice we observe ρM,p(Ξtest) ∼
Mp, we conclude that the result (48) is not in general sharp. We also note
that the factor M2 in (48) originates from the sharp result (19); hence with our
present strategy for the proof of Proposition 1 it is not clear how to sharpen (48).
However, we note that our theory captures the correct qualitative behavior: a
degradation by an algebraic factor for the derivative approximation.

Finally, in Figure 3, we report the Lebesgue constant ΛM . We note that the
growth of the Lebesgue constant is only modest. The EIM derivative approxi-
mation is thus close to the best L∞(Ω) approximation in the space WFM .

5.2 Example 2: A parametrically singular function
We introduce the spatial domain Ω = [−1, 1] and the parameter domain D =
[−1, 1]. We consider the function F : Ω×D → R defined by

F(x;µ) = |x− µ|5 (72)

for x ∈ Ω and µ ∈ D. The function thus has a singularity at x = µ for any
µ ∈ D. For any x ∈ Ω we have F(x; ·) ∈ C4(D). More generally, for any x ∈ Ω
and p = 0, 1, 2, 3, we have F (p)(x; ·) ∈ Cqp(D) for qp = 4− p.

We introduce a triangulation TN (Ω) with N = 1000 vertices; we introduce
an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 1000. We then
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Figure 3: The Lebesgue constant ΛM for Example 1.
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Figure 4: The maximum EIM error over the test set εpM,max(Ξtest) for 0 ≤ p ≤ 3

for Example 2. The shorter gray lines represent exact rates M−5+p.
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Figure 5: EIM error degradation factors ρM,p(Ξtest), p = 1, 2, 3, for Example 2.
The shorter solid gray lines represent exact rates Mp.

pursue the EIM with G = F for Mmax = 420.
We now introduce a uniformly distributed random test set Ξtest ⊂ D of size

1000. In Figure 4 we show the maximum interpolation errors εpM,max(Ξtest) for
p = 0, 1, 2, 3; we observe for the convergence εpM,max(Ξtest) ∼ M−5+p. These
results suggest that, in general, if F (p) ∈ Cqp(D), then epM ∼ M−qp−1, which
corresponds to rp = qp + 1 in Remark 1.

In Figure 5 we show the EIM error degradation factors ρM,p(Ξtest) for p =
1, 2, 3 as functions of M . As for Example 1, we note that ρM,p(Ξtest) ∼Mp (of
course this factor may in this case be interpreted directly from Figure 4).

With rp = qp + 1 in Remark 1, the estimate (45) in Remark 1 becomes

ep+1
M ≤M1+ 1

qp epM = M1+ 1
4−p epM . (73)

If this is a sharp estimate, we expect for our example with qp = 4− p

e1
M ∼M1+ 1

4 e0
M , (74)

e2
M ∼M1+ 1

3 e1
M ∼M2+ 1

3 + 1
4 e0
M , (75)

e3
M ∼M1+ 1

2 e2
M ∼M3+ 1

2 + 1
3 + 1

4 e0
M . (76)

From these estimates we may expect EIM error degradation factors

ρM,p(Ξtrain) ∼Mp+
∑p−1
j=0

1
4−j , p = 1, 2, 3. (77)

However, from our computations we see that this is not the case in practice: our
results show ρM,p(Ξtest) ∼ Mp. We thus conclude that our theoretical results
in Lemma 1 and Lemma 2 (and higher order versions of these as indicated in
Remark 1) are not sharp. The bounds predict ep+1

M ≤ Cp+1M
1+1/qpepM for

F (p)(x; ·) ∈ Cqp(D): a non-optimality of a factor M1/qp . We note that for
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Figure 6: The Lebesgue constant ΛM for Example 2.

functions with high regularity — large qp — the sharpness of the bounds will
improve since ep+1

M ≤M1+1/qpepM →MepM as qp →∞.
Finally, in Figure 6 we report the Lebesgue constant ΛM ; any growth of the

Lebesgue constant is hardly present. The EIM derivative approximation is thus
close to the best L∞(Ω) approximation in the space WFM .

6 Concluding remarks
We have introduced new a priori convergence theory for the approximation
of parametric derivatives by a general approximation scheme. In particular,
we have focused on approximation by the EIM both in our discussion and for
our numerical results. The results suggest that the EIM may be invoked in
practice for the approximation of parametric derivatives without construction of
additional EIM spaces with the parametric derivatives as generating functions,
or alternatively enrichment of the original space with parametric derivatives.

There are several opportunities for improvements of the theory. First, our
numerical results suggest that it should be possible to sharpen the theoretical
bounds. We note in our numerical results an EIM error degradation factor Mp

for the convergence associated with the approximation of p’th order derivatives
for both parametrically analytic and parametrically non-analytic functions. In
contrast, our theory and remarks predict a degradation factorM2p for paramet-
rically analytic functions, and a degradation factor Mp+

∑p−1
j=0

1
s−j for paramet-

rically non-analytic functions when the original function resides in Cs(D) (but
not in Cs+α(D) for arbitrarily small α > 0).

Second, we would like to extend the validity of the theory to other (e.g.
Sobolev) norms; in this case we may for example consider reduced basis [10] ap-
proximations to parametric derivatives of solutions to partial differential equa-
tions.
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A Proofs for Hypotheses 1 and 2

A.1 Piecewise linear interpolation
We consider piecewise linear interpolation over the equidistant interpolation
nodes yN,i = (2i/N−1) ∈ Γ = [−1, 1], 0 ≤ i ≤ N . In this case the characteristic
functions χN,i are continuous and piecewise linear “hat functions” with support
only on the interval [yN,0, yN,1] for i = 0, on [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1,
and on [yN,N−1, yN,N ] for i = N .

We recall the results (9) and (10) from Section 2.2. Let f : Γ → R with
f ∈ C2(Γ). We then have, for any x ∈ Γ,

|f ′(x)− (INf)′(x)| ≤ 2N−1‖f ′′‖L∞(Γ) (78)

as N →∞. Further, for all x ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N ,
satisfy

N∑
i=0

|χ′N,i(x)| = N. (79)

We first demonstrate (78) (and hence (9)). For x ∈ [yN,i, yN,i+1], 0 ≤ i ≤
N − 1, we have

(INf)′(x) =
1

h

(
f(yN,i+1)− f(yN,i)

)
, (80)

where h = 2/N . We next write f(yN,i) and f(yN,i+1) as Taylor series around x
as

f(yN,i) =

1∑
j=0

f (j)(x)

j!
(yN,i − x)j +

∫ yN,i

x

f ′′(t)(yN,i − t) dt, (81)

f(yN,i+1) =

1∑
j=0

f (j)(x)

j!
(yN,i+1 − x)j +

∫ yN,i+1

x

f ′′(t)(yN,i+1 − t) dt, (82)

which we then insert in the expression (80) for (INf)′ to obtain

(INf)′(x)−f ′(x) =
1

h

∫ yN,i+1

x

f ′′(t)(yN,i+1− t) dt−
1

h

∫ yN,i

x

f ′′(t)(yN,i− t) dt

≤ 1

h
‖f ′′‖L∞(Γ) max

x∈[yN,i,yN,i+1]

(
|yN,i+1 − x|2 + |yN,i − x|2

)
≤ h‖f ′′‖L∞(Γ) = 2N−1‖f ′′‖L∞(Γ). (83)

We next demonstrate (79) (and hence (10)). It suffices to consider x ∈
[yN,i, yN,i+1] for 0 ≤ i ≤ N − 1. On [yN,i, yN,i+1] only |χ′N,i(x)| and |χ′N,i+1(x)|
contribute to the sum; furthermore we have |χ′N,i(x)| = |χ′N,i+1(x)| = 1/h =
N/2, from where the result (79) follows.

A.2 Piecewise quadratic interpolation
We consider piecewise quadratic interpolation over equidistant interpolation
nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We consider N equal such that
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we may divide Γ into N/2 intervals [yN,i, yN,i+2], for i = 0, 2, 4, . . . , N − 2. The
characteristic functions χN,i are for x ∈ [yN,i, yN,i+2] given as

χN,i(x) =
(x− yN,i+1)(x− yN,i+2)

2h2
, (84)

χN,i+1(x) =
(x− yN,i)(x− yN,i+2)

−h2
, (85)

χN,i+2(x) =
(x− yN,i)(x− yN,i+1)

2h2
, (86)

for i = 0, 2, 4, . . . , N .
We recall the results (15) and (16) from Section 2.2. Let f : Γ → R with

f ∈ C3(Γ). We then have, for any x ∈ Γ,

|f ′(x)− (INf)′(x)| = O(N−2) (87)

as N →∞. Further, for all x ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N ,
satisfy

N∑
i=0

|χ′N,i(x)| = 5

2
N. (88)

We first demonstrate (87). It suffices to consider the interpolant INf(x) for
x ∈ [yN,i, yN,i+2], in which case

INf(x) = f(yN,i)χN,i(x) + f(yN,i+1)χN,i+1(x) + f(yN,i+2)χN,i+2(x). (89)

Insertion of (84)–(86) and differentiation yields

(INf)′(x) =
1

2h2

(
f(yN,i)(2x− yN,i+1 − yN,i+2)

− 2f(yN,i+1)(2x− yN,i − yN,i+2) + f(yN,i+2)(2x− yN,i − yN,i+1)
)
. (90)

We next write f(yN,i), f(yN,i+1), and f(yN,i+2) as Taylor series around x as

f(yN,i) =

3∑
j=0

f (j)(x)

j!
(yN,i − x)j +O(h4), (91)

f(yN,i+1) =

3∑
j=0

f (j)(x)

j!
(yN,i+1 − x)j +O(h4), (92)

f(yN,i+2) =

3∑
j=0

f (j)(x)

j!
(yN,i+2 − x)j +O(h4), (93)

where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1. We may then insert the
expressions (91)–(93) into (90) to obtain

(INf)′(x) = f ′(x) +O(h2). (94)

(For j = 0 and j = 2 the terms on the right-hand-side of (90) cancel. For j = 1
we obtain f ′(x) and for j = 3 we obtain O(h2).)
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We next demonstrate (88). It suffices to consider x ∈ Γi ≡ [yN,i, yN,i+2].
On Γi only χ′N,i(x), χ′N,i+1(x), and χ′N,i+2(x) contribute to the sum. With
h = 2/N = yj+1 − yj , 0 ≤ j ≤ N − 1, we have

max
x∈Γi
|χ′N,i(x)| = N2

8
max
x∈Γi
|2x− yN,i+1 − yN,i+2| =

3

4
N, (95)

max
x∈Γi
|χ′N,i+1(x)| = N2

4
max
x∈Γi
|2x− yN,i − yN,i+2| = N, (96)

max
x∈Γi
|χ′N,i+2(x)| = N2

8
max
x∈Γi
|2x− yN,i − yN,i+1| =

3

4
N. (97)

The result then follows.
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