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High order interpolation of parametric
curves and surfaces in R3

Øystein Tråsdahl

September 13, 2011

In this paper, high order interpolation of parametric curves and surfaces in
R3 is studied. The topic differs from classical interpolation of functions since
any reparametrization of the given curve or surface can be interpolated. This
leads to the question whether there exists an optimal reparametrization that
results in the lowest possible interpolation error. This can also be viewed as
a Kolmogorov n-width problem in terms of polynomial interpolation: how to
best use the available degrees-of-freedom in order to minimize the interpolation
error. Here, this problem is studied numerically, and different interpolation
methods are presented and compared. The methods are introduced in the
context of parametric curves and then extended to parametric surfaces when
possible. The results are relevant for numerical solution of PDEs using high
order methods.

Keywords: Geometric Hermite interpolation, reparametrization, high order polynomi-
als, geometric continuity

1 Introduction

Polynomial interpolation of parametric curves and surfaces is a central part of Computer
Aided Geometric Design (CAGD). The traditional way to interpolate a given parametric
curve f in Rd is to view it as a vector-valued function and interpolate each of the d
components separately. Polynomials of degree N can be made to interpolate the curve in
N +1 points in this way. If f is in Ck (i.e., each component is a Ck function), one can also
choose to interpolate fewer points and instead match both function values and derivatives
in the interpolation points. A polynomial of degree N can interpolate a function and its
k first derivatives at n points if N = n(k + 1) − 1. Common for both approaches is that
the interpolant can be constructed by solving systems of linear equations, and that the
approximation order (as defined for approximation of functions) is N + 1. As an example,
consider cubic spline curves in R2 which can be constructed to interpolate function values
and derivatives at the end points of each curve segment, giving the approximation order
four.
The parametrization of a curve can be thought of as the position vector for a particle

traversing the curve. This implies that the first derivative of f describes its velocity, the
second derivative the acceleration and so forth. If our goal is to approximate the curve
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as a geometric object, these quantities are of little interest. Instead we are interested in
geometric properties of the curve, such as tangent directions, curvature and torsion. It
is possible to construct interpolants based on such quantities, and it can yield a higher
approximation order than classical interpolation. In [5] it was shown that under certain
conditions, cubic polynomial curves in R2 can interpolate both function values, tangent
directions and curvature at the end points, resulting in approximation order six. The price
to pay for the increased accuracy is a system of non-linear equations that must be solved.
The interpolation method was viewed as a generalization of Hermite interpolation based
on geometric quantities and was therefore called geometric Hermite interpolation.

In recent years we have seen a lot of work on geometric Hermite interpolation in the
CAGD community; e.g., see [6, 7, 8, 10, 12, 16, 21, 23, 27]. The work has led to a conjecture
[14] about the highest possible approximation order that can be attained when interpolating
parametric curves in Rd by polynomials of degree N . The conjecture has been confirmed
in some special cases, but it remains unproven. Most of the authors focus on planar curves,
but there has also been some work done on curves in R3: cubic interpolation was studied
in [11, 14], quartic in [4, 26], and quintic in [24].
The concept of geometric Hermite interpolation can also be applied in the context of

parametric surfaces, but the problem is much harder due to the increased number of
unknowns. Mørken [18] gives a detailed discussion of the optimal approximation order
and constructs a quadratic Taylor approximant with approximation order four. Lagrange
interpolation of surfaces with quadratic polynomials is considered in [15].
There has been surprisingly little work done on high order interpolation of parametric

curves and surfaces. In the field of CAGD polynomials of degree N > 5 are not so common
in applications. However, the subject is relevant in the context of solving PDEs in deformed
geometries using high order methods [3, 9]. Here, the accuracy of the numerical solution
is directly influenced by the accuracy of the geometry representation [17]. It is common
to use an isoparametric approach, representing the geometry with the same polynomial
degree as the other field variables. For example, in a Legendre spectral element method,
deformed quadrilaterals or hexahedrons are approximated by tensor-product polynomials,
constructed by interpolating the exact geometry. In this context a reparametrization may
yield a better representation of not only the geometry, but also the primary field variables
[25]. Still, the topic has not been given much attention in the literature.
In the context of high order interpolation the concept of approximation order is not

commonly used since the approximation approach is global and we only use one polyno-
mial curve segment for the entire curve (as opposed to for example a spline approach).
Convergence is rather defined in terms of how the interpolation error, measured in some
appropriate norm, decreases as the polynomial degree N increases. It is well known from
classical interpolation theory that smooth functions can be interpolated by polynomials
to exponential convergence, i.e., the interpolation error decreases faster than any alge-
braic power of N [2]. An optimal interpolation method may thus be defined as one that
yields exponential convergence with the highest possible rate, i.e., with the largest possible
negative exponent. Functions of finite regularity yield algebraic convergence in classical
interpolation, but as we will see, the choice of interpolation points implicitly defines a
reparametrization, which is the function that is actually being interpolated. A good inter-
polation method may give us exponential convergence, even if the given parametrization
is a function of low regularity.
The outline of the paper is a follows. In Section 2 we first present the framework for poly-

nomial interpolation of parametric curves and discuss how the option of reparametrization
makes the subject different from classical interpolation. We then present two interpolation

4



methods that are commonly used in the high order methods community, and we introduce
three new methods: one optimization method aimed at directly minimizing the interpola-
tion error, and two methods in the family of geometric Hermite interpolation. In Section
3 we compare the different methods through several numerical examples. In Section 4 we
discuss how to extend the methods to interpolation of parametric surfaces, and some nu-
merical examples are presented in Section 5. The conclusions of this study are summarized
in Section 6.

2 Interpolation of parametric curves

Consider a curve C in R3, defined by a given parametrization

f(η) = (f1(η), f2(η), f3(η)), η ∈ [−1, 1]. (1)

The curve is Ck-continuous if each of the parametric functions fi, i = 1, 2, 3, are in Ck.
The problem we set out to solve is how to best interpolate this curve by polynomials, i.e.,
a parametric curve

p(ξ) = (p1(ξ), p2(ξ), p3(ξ)), ξ ∈ [−1, 1], (2)

where pi, i = 1, 2, 3 are functions in PN ([−1, 1]), the (discrete) space of polynomials of
degree less than or equal to N . This problem is different from classical polynomial approx-
imation of functions since C can be reparametrized. Specifically, for all ϕ ∈ W = {ψ ∈
C∞([−1, 1]) | ψ(±1) = ±1, and ψ′ > 0} the function

g(ξ) = f(ϕ(ξ)) (3)

describes the same curve, so interpolation of g instead of f gives an approximation of the
same geometric object. Intuitively, a reparametrization means traversing the curve at a
different speed. There exist infinitely many reparametrizations of any given curve, and
some may be better suited for polynomial interpolation than others. Hence, finding the
best interpolant involves finding the best parametrization, a problem which is very difficult.
From classical interpolation theory we know that for a well chosen set of interpolation

points (e.g., the Gauss points), a scalar function u ∈ Hσ([−1, 1]) can be interpolated by
polynomials INu with an interpolation error [2]

||u− INu||L2 ≤ cN−σ||u||Hσ(Ω), (4)

where c is a constant. If u is analytic, the error will decrease faster than any algebraic
power of N , and we obtain exponential convergence. This also translates to vector-valued
functions.
Let us illustrate the importance of reparametrization with an example. Consider a curve

defined by the parametrization

f1(η) = η + 1,

f2(η) =
√

(η + c)1/3 − 1,

f3(η) = (η + c)2/3 − 1,

(5)

where η ∈ [−1, 1] and c is a constant. For c > 2 the parametric functions are smooth, and
f can be interpolated by polynomials to exponential convergence. However, applying the
particular change of variable

η = ϕ(ξ) =
(
(aξ + b)2 + 1

)3 − c
5



to f , we get the reparametrization

g1(ξ) = ((aξ + b)2 + 1)3 − c+ 1,

g2(ξ) = aξ + b,

g3(ξ) = ((aξ + b)2 + 1)2 − 1,

(6)

where all the parametric functions are polynomials of degree less than or equal to six.
Interpolating this parametrization will result in exact representation of the curve forN ≥ 6,
which is obviously a great improvement.
When using Legendre spectral element methods in deformed hexahedra, the edges are

approximated by parametric curves and the faces are approximated by parametric sur-
faces [9]. The end points of a curve are interpolation points and the interpolation points
are mapped from the Gauss-Lobatto-Legendre (GLL) points ξj , j = 0, . . . , N by the in-
terpolant. We represent such an interpolant using Lagrange interpolation polynomials
through the GLL points,

pi(ξ) =
N∑
j=0

αij`j(ξ), i = 1, 2, 3, (7)

where the coefficients αij are determined by the interpolation conditions. In classical inter-
polation, this means simply evaluating the given parametrization f in the GLL points, i.e.,
αij = fi(ξj). Reparametrizing the curve before interpolating yields αij = gi(ξj), in which
case the interpolation points are no longer mapped from the GLL points by f , but rather
from the points

ηj = ϕ(ξj), j = 0, . . . , N. (8)

Note that due to the nodal representation (7), the interpolant always maps the GLL points
to the interpolation points.
In the current context, the mapping ϕ(ξ) is unknown, since we do not know a priori

which reparametrization is best suited for polynomial interpolation. The ηj , j = 0, . . . , N ,
in (8) can thus be viewed as free variables which can be manipulated subject to certain
restrictions, imposed by W . Specifically, we must require all ηj ∈ [−1, 1], and that they
appear in consecutive order, i.e.,

−1 ≤ η0 < η1 < . . . < ηN ≤ 1. (9)

Interpolation of the end points implies setting η0 = −1 and ηN = 1, and we are left with
N − 1 degrees-of-freedom which can be used to improve the approximation properties of
the interpolant.
The interpolant is uniquely defined by the choice of ηj through the definition

αij = fi(ηj) (10)

of the expansion coefficients in (7). The change of variable ϕ, on the other hand, is only
partially determined by (8). To turn the statement around, one can say that there are
(infinitely) many reparametrizations that, when interpolated in the classical sense, yield
the same interpolant. It will be convenient to choose ϕ to be the polynomial of lowest
degree that satisfies (8). This can be done if the polynomial interpolating η0, . . . , ηN is
monotonic. It is then a (uniquely determined) function in W ∩ PN ([−1, 1]), and we will
refer to it as ϕN .
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2.1 Measuring the interpolation error

It is not trivial to define a norm for the interpolation error in the context of parametric
curves. The norm should measure the distance between the geometric objects represented
by f and p, regardless of the particular parametrizations chosen. One metric satisfying
this requirement is the Hausdorff metric [20]. Unfortunately, this norm is not very well
suited for numerical calculations. Other possibilities are the normal distance proposed by
Degen [6], or the metric proposed by Mørken and Scherer [19].
We will use none of these metrics, but rather the L2-like norm

||f − p|| =
(∫ b

a

3∑
i=2

(
fi(f

−1
1 (x))− pi(p−1

1 (x))
)2

dx
)1/2

, (11)

where a = f1(−1) and b = f1(1). It will be implemented using GLL quadrature with over-
integration to ensure that the quadrature error is sub-dominant. The reason for choosing
this norm is that it makes the interpolation error an explicit function of the free variables
ηj , i = 1, . . . , N − 1. This will enable us to define an interpolation method based on direct
minimization of the interpolation error.
It might not be immediately clear why a norm like

||f − p|| =
(∫ 1

−1

3∑
i=1

(
fi(ϕN (ξ))− pi(ξ)

)2
dξ
)1/2

(12)

is not acceptable. The problem is that basing the norm on an integral over the parametric
domain makes the norm parametrization-dependent. Even though f(ϕN (ξj)) = p(ξj), j =
0, . . . , N (i.e., the reparametrization and the interpolant reach the interpolation points “at
the same time”), it is not given that p(ξ) is the best approximation of f(ϕN (ξ)) for any
other given ξ. After all, ϕN was chosen among all the changes of variable that yield the
interpolant p.
It should be noted that this is mainly a theoretical problem. If f is smooth, then so is

f ◦ϕN , and hence p will approximate it to exponential convergence. This implies that the
curves are being traversed with approximately the same velocity. Moreover, if f1(η) = η,
then (11) and (12) coincide.
The definition of the norm (11) puts a restriction on the curves that can be studied, since

it is only defined when the first parametric function f1(η) is monotonic, i.e., when the curve
can be uniquely determined by specifying its x-coordinate. This restriction on the curves is
not a limitation on the interpolation methods studied here. However, the numerical results
will only include curves from this subset in order to be able to quantitatively compare the
different methods.

2.2 Interpolation methods

As already mentioned, the simplest way to interpolate a parametric curve f is to view it as
a vector-valued function and let αij = fi(ξj), j = 0, . . . , N . This may be satisfactory if we
know fi, i = 1, 2, 3 to be smooth functions, but in other cases it may be far from optimal.
In the high order methods community there are two common interpolation methods that

are independent of the parametrization [9]. Both rely in some way on an affine mapping
of the GLL points from the parametric variable to the physical domain.
The first interpolation method considered here, referred to as the chord method, is defined

by first mapping the GLL points affinely to the chord between the two end points of the
curve, and then letting the interpolation points be the intersection between the exact curve
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and the normal planes to the chord at these affinely mapped points (Figure 1a). Finding
these intersection points requires an iterative procedure like Newton’s method. The chord
method obviously does not work for closed curves, and it also fails in cases where the the
curve intersects a normal plane to the chord in more than one point. However, this is
not a significant limitation in the context of high order methods for solving PDEs. The
chord method will yield (rapid) exponential convergence if the curve can be described by a
smooth function in a rotated coordinate system where the abscissa is parallel to the chord.

xy

z

(a) Chord method

xy

z

s

(b) Arc-length method

Figure 1: Two common methods for choosing interpolation points. Both methods involve an affine
mapping of the GLL points: the chord method along the chord between the end points,
the arc-length method in the arc-length variable s.

The second method is based on a GLL distribution in the arc-length variable s, and
is called the arc-length method. On a curve of length L, construct the affine mapping
s(ξ) = L

2 (ξ + 1), ξ ∈ [−1, 1], and define the values sj = s(ξj), j = 0, . . . , N , associated
with the GLL points ξj . Each value sj corresponds to a unique point along the curve with
coordinates (xj , yj , zj), which is then defined as an interpolation point (Figure 1b). Again,
an iterative procedure such as Newton’s method is required.
The arc-length method is equivalent to interpolating a reparametrization g with constant

Jacobian

J(ξ) =

(
3∑
i=1

g′i(ξ)
2

)1/2

.

This, of course, does not guarantee that the parametric functions are smooth.
In the example with the curve parametrized by (5) and (6), none of these two interpo-

lation methods correspond to classical interpolation of f or g.

2.3 The L2-method

A good interpolant should yield a small interpolation error, measured in the norm (11).
The norm was chosen because it enables us to explicitly evaluate the measured interpola-
tion error as a function of the free variables η1, . . . , ηN−1 (when approximated with GLL
quadrature). This makes it possible to define an interpolation method based on direct
minimization of the measured interpolation error, using a (global) optimization algorithm.
We will use the objective function

Λ(η1, . . . , ηN−1) = ||f − p||2, (13)
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and the method will be referred to as the L2-method.
In order to avoid the evaluation of the inverses of f1 and p1, we only consider parametriza-

tions f where the first component f1(η) is linear. All curves that can be measured by the
norm (11) can be reparametrized this way. We then have

f1(ϕN (ξ)) = p1(ξ), (14)

which allows a change of variable x = f1(ϕN (ξ)), and the norm can be rewritten as

||f − p|| =
(∫ 1

−1

3∑
i=2

(fi(ϕN (ξ))− pi(ξ))2 p′1(ξ) dξ
)1/2

, (15)

Here, all terms can be evaluated explicitly; GLL quadrature will be used to evaluate the
integrals.
The minimization is implemented using Newton’s method, which requires the first and

second order partial derivatives of Λ w.r.t. η1, . . . , ηN−1. These can be found explicitly
from the formulation (15) when the change of variable ϕN is viewed as a function of both
ξ and η1, . . . , ηN−1. It is represented using a standard linear combination of N -th order
Lagrangian interpolants

ϕN (ξ; η1, . . . , ηN−1) =

N∑
j=0

ηj`j(ξ). (16)

Similarly, the components of the polynomial interpolant are defined as

pi(ξ; η1, . . . , ηN−1) =

N∑
j=0

fi(ηj)`j(ξ). (17)

The first partial derivatives of (13) with respect to the ηj are then given by

∂Λ

∂ηj
=

∫ 1

−1

3∑
i=2

2
(
fi(ϕN (ξ))− pi(ξ)

)(
f ′i(ϕN (ξ))

∂ϕN
∂ηj

(ξ)− ∂pi
∂ηj

(ξ)
)
p′1(ξ)

+
(
fi(ϕN (ξ))− pi(ξ)

)2∂p′1
∂ηj

(ξ) dξ,

where the simplified notation p′1(ξ) is used to remind the reader that p1 is originally a
function of ξ, even though it also depends on the parameters η1, . . . , ηN−1. The second
order partial derivatives ∂2Λ

∂ηj∂ηk
are easily derived by repeated partial differentiation, and we

do not write them out here. They include terms with the first and second derivatives of f2

and f3, so these need to be known explicitly. The remaining functions can be differentiated
numerically without error by means of differentiation matrices, since all of the functions
are polynomials.
The L2-method should, by construction, give the best interpolant in terms of the mea-

sured interpolation error. However, it is based on a very hard global minimization problem.
The objective function Λ is almost never globally convex, and its complexity increases as the
polynomial degree N increases. This is connected to the global interpolation approach:
moving just one interpolation point (locally) changes the entire interpolant (globally).
Newton’s method is a local minimization algorithm and can not be expected to find the
global minimum. Some measures will be taken to make the method more robust (see
Section 2.7), but the increasing complexity will be reflected in the numerical results; see
Section 3.
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2.4 Geometric interpolation

From classical interpolation theory we know that interpolation of a smooth function in
N + 1 points yields approximation order N + 1. This is an incentive for using the available
degrees-of-freedom in curve interpolation to increase the number of interpolation points.

By construction, the points p(ξj), j = 0, . . . , N are always interpolation points. To
achieve interpolation in one additional point, we need p to satisfy the interpolation condi-
tion

f(ϕN (ξ∗)) = p(ξ∗) (18)

for a ξ∗ that is not a GLL point. Equation (18) represents a system of three (non-linear)
equations, and ξ∗ is a free variable. This means that we need two more degrees-of-freedom
to find a solution in the general case. Since we have N − 1 free variables η1, . . . , ηN−1, it
is in principle possible to achieve a total of N + 1 + b(N − 1)/2c interpolation points.
This argumentation can also be applied to interpolation of curves in Rd. In this case we

still have N − 1 free variables, but now an additional interpolation point requires d − 1
degrees-of-freedom. Assuming that the system of non-linear equations always has a solution
leads to the following conjecture [19]:

Conjecture 2.1. Let C be a curve in Rd. A polynomial curve of degree N can be made
to interpolate C at

m = N + 1 +

⌊
N − 1

d− 1

⌋
(19)

points.

The conjecture also applies to Hermite interpolation if one defines interpolation of k
coalescing interpolation points as interpolation of a (yet unknown) reparametrization g
and its k − 1 first derivatives. For the first derivative, this means that we do not have
to require f ′(ϕ(ξ∗)) = p′(ξ∗), only that they point in the same direction. This kind of
requirement can be expressed in terms of geometric continuity. A curve C is said to be Gk-
continuous if its arc-length parametrization is Ck-continuous [1]. An equivalent definition
can be found in [8]. In terms of interpolation we say that two curves have contact order k
if the left segment of the interpolant meets the right segment of the exact curve with Gk-
continuity, and vice-versa. First order contact means a common tangent direction, while
second order contact additionally requires common curvature and coinciding osculating
planes.
With this definition, coalescing interpolation points means increased contact order. In-

terpolation in the conjectured maximum number of interpolation points, but with some
points coalescing, is exactly the same as geometric Hermite interpolation that was de-
scribed in the introduction. Consider for example cubic polynomial curves in R2, which
can interpolate a given curve in six points, according to the conjecture. If three interpola-
tion points coalesce at each end point, the contact order is raised to two, and we have the
same interpolation conditions as in [5].
In the extreme case where all interpolation points coalesce to one point we get a Taylor

approximation of f . For a planar parametric curve f(η) = (η, y(η)) one can easily show
[21] that a one-point Gk-interpolant coincides with the k + 1 first terms of the Taylor
expansion of y. Hence, one-point Gk-interpolation in R2 yields approximation order k+ 1.
The argument can be extended to general curves in Rd; see [19] for definitions of norms
and approximation order. Then, according to the conjecture, (19) is the highest attainable
approximation order for curve interpolation in Rd at a given N . Some authors [14, 21]
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have actually formulated the conjecture in terms of approximation order, stating that the
approximation order (19) can be attained for any curve C in Rd.

The conjecture has turned out to be very difficult to prove. Since the subject has
been studied mostly within the CAGD community, most authors are concerned with low
polynomial degrees (N ≤ 5). Of more general results, we mention Rababah [21, 22] who
showed that curves in Rd can be interpolated by one-point interpolation to approximation
order 4N/3 for arbitrary N , and Floater [12] who showed optimal approximation order 2N
for conic sections.

2.5 The extra-points method

We propose an interpolation method based on Conjecture 2.1, which we will refer to as the
extra-points method.
Assuming that f1 is invertible, the interpolation condition (18) can be reduced to a

system of two equations by choosing a specific ξ∗ and defining x∗ = f1(ϕN (ξ∗)) = p1(ξ∗).
Interpolation at x∗ then requires the two equations

fi(f
−1
1 (x∗)) = pi(p

−1
1 (x∗)), i = 2, 3

to be solved. Furthermore, when f1 is linear then (14) holds, and the inverses can be
eliminated. The extra-points method can then be defined as finding a root of the vector-
valued function Ψ with components

Ψi
k(η1, . . . , ηN−1) = fi(ϕN (ξ∗k))− pi(ξ∗k), i = 2, 3, (20)

where ξ∗k, k = 1, . . . , b(N − 1)/2c are pre-defined values in [−1, 1]. The dependency of
Ψi
k on ηj , j = 1, . . . , N − 1 is explicit in the representations (16) and (17) of ϕN and pi,

respectively. Note that for odd N there is one more degree-of-freedom than the number of
equations to be solved, so we are left with one “unused” degree-of-freedom.
Applying Newton’s method to solve (20) requires the partial derivatives of Ψi

k, which
are given by

∂Ψi
k

∂ηj
= f ′i(ϕN (ξ∗k))

∂ϕN
∂ηj

(ξ∗k)− ∂pi
∂ηj

(ξ∗k).

The derivatives of the parametric functions fi(η) must be known; the rest are computed
numerically with differentiation matrices.
The solution obtained depends on the choice of the values ξ∗k. Numerical experiments

show that the best results are usually obtained when the ξ∗k are close to a subset of the
GLL points. In the limit when the points coalesce, the proposed method becomes useless
because (20) is always satisfied. According to the previous discussion, one should instead
raise the contact order at the coalescing points. This leads to the next proposed method.

2.6 The equal-tangents method

Two coalescing interpolation points should yield first order contact (common tangent di-
rections) between the exact curve and the interpolant. Common tangent directions implies
that a tangent vector tN to the interpolant is orthogonal to all vectors in the normal plane
of the exact curve, i.e.,

tN · n = 0 ∀n such that t · n = 0,

where t is a tangent vector to the exact curve. The space of normal vectors to a curve
in R3 is two-dimensional, so we must use two linearly independent normal vectors and
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make both dot products zero. The tangent vector is easily found by differentiating the
parametrization,

tN =

p′1(η)
p′2(η)
p′3(η)

 .
It does not have to be normalized for our application, which is an advantage, since it would
have resulted in more complicated non-linear equations. We then choose the two normal
vectors

n1 =

 f ′2(η)
−f ′1(η)

0

 and n2 =

 f ′3(η)
0

−f ′1(η)

 .
Again, this is a choice to ease the implementation. It clearly would not work for curves
where f ′1(η) can be zero, since the two vectors then become linearly dependent, but we
have already excluded such curves from the current study for the definition of the norm
(11).
The number of degrees-of-freedom allowsG1-interpolation in b(N−1)/2c (unique) points.

By construction we have interpolation in N + 1 points, so a subset of the interpolation
points must be chosen; we choose the set of internal points ξk with odd indices k. The
interpolation conditions can then be expressed as a system of equations

Θi
k(η1, . . . , ηN−1) = f ′1(ϕN (ξk)) p

′
i(ξk)− f ′i(ϕN (ξk)) p

′
1(ξk) = 0, i = 2, 3. (21)

Again Newton’s method is used for finding a solution of the non-linear system. This
requires us to differentiate (21) with respect to the independent variables η1, . . . , ηN−1.
The partial derivatives can be written out explicitly as

∂Θi
k

∂ηj
= f ′′1 (ϕN (ξk))

∂ϕN
∂ηj

(ξk) p
′
i(ξk) + f ′1(ϕN (ξk))

∂p′i
∂ηj

(ξk)

− f ′′i (ϕN (ξk))
∂ϕN
∂ηj

(ξk) p
′
1(ξk)− f ′i(ϕN (ξk))

∂p′1
∂ηj

(ξk).

Note again that for odd N we have one more degree-of-freedom than the number of equa-
tions.

2.7 Implementation

The three interpolation methods proposed here (the L2-method, the extra-points method
and the equal-tangents method) are based on quite simple criteria, but their implementa-
tions are challenging. We mention a few aspects here that are important in order for the
methods to work well in practice.
As mentioned previously, the extra-points method depends on the choice of ξ∗k; letting

these parameters be close to some of the GLL points is often a good choice. In all the
numerical experiments here ξ∗k = ξ2k−1 + ε for k = 1, . . . , b(N − 1)/2c and ε = 10−2.

All the proposed methods are highly dependent on a good set of initial values ηj for the
Newton iterations. For the L2-method, this is connected to the fact that we are trying to
solve a global minimization problem with a local minimization algorithm. For the extra-
points and equal-tangents methods, it is due to the fact that non-linear functions may
have several roots. The conjecture says nothing about the uniqueness of the solution, and
numerical experiments have confirmed the existence of several solutions in many cases.
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We want the solution with the smallest interpolation error, which we will refer to as the
optimal solution for the given interpolation method.
We have made the observation that when we are able to find the optimal solution (or

something close to optimal), the reparametrization seems to converge to a particular func-
tion as the polynomial degree increases. In other words, for a given (high) N , the functions
pi(ξ), i = 1, 2, 3 are very similar to the corresponding functions at N − 1. This leads us
toward the idea of a bootstrapping algorithm, in which we use the solution from N − 1
as the initial guess by evaluating ϕN−1(ξ) in the current N + 1 GLL points. Starting all
the way from a polynomial degree of one, such a bootstrapping approach implies an added
computational cost. However, the improved robustness has been more important in the
current study.
The bootstrapping approach often yields good initial guesses, but not always. Newton’s

method may not succeed, or it may find a non-optimal solution (we can usually recognize
non-optimal solutions from a sudden change in the convergence rate as N increases). In
such cases it may help to use other initial guesses, e.g., perturbations of the bootstrapping
solution, or the solutions found with the chord or arc-length methods. Here, we use
such additional initial values to increase the robustness of the methods. When different
initial values yield different solutions after the Newton iterations, the interpolation error
is compared and the solution with the smallest interpolation error is chosen.
One can also add to the robustness by making sure that the solution never violates the

restriction (9) imposed by W during the Newton iterations. Experience shows that the
extra-points and equal-tangents methods sometimes find “illegal solutions”. To avoid this,
we limit the step sizes in the Newton iterations, and we also explicitly check the condition
(9).

3 Numerical Results

We now present a series of numerical tests to illuminate the challenges of reparametrization
and to illustrate the performance of the various methods in different situations. All the
parametrizations are defined on the interval [−1, 1].

Case 1

Consider one and a half rotations of a helix, which is most naturally parametrized by

f1(η) =
3

2
πη,

f2(η) = sin(
3

2
πη),

f3(η) = cos(
3

2
πη).

This particular parametrization yields a constant Jacobian J = 3π/
√

2, so the arc-length
method corresponds to interpolating f in the GLL points. Due to the regularity of the
given parametric functions, it gives rapid exponential convergence; see Figure 2. The chord
method also yields exponential convergence, but much slower than the arc-length method.
To reach the same level of interpolation error, approximately three times the polynomial
degree N is needed with the chord method. In the context of solving PDEs using high
order methods, this has a huge impact on the computation time.
The extra-points and equal-tangents methods give almost exactly the same interpolation

error; in fact, the solutions are almost exactly the same. This is due to our choice of ξ∗k
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in the extra-points method. Both methods converge quite a bit faster than the arc-length
method, reaching machine precision at N = 15.

By construction, the L2-method should give the optimal solution. However, experience
shows that the L2-method usually finds the optimal solution (or something very close) for
small N when the objective function is easier to minimize globally. If an interpolation
method is able follow and maintain this convergence rate for higher N , it is a strong
indication that it is able to yield a solution which is close to optimal. This is what we
observe in this case, strongly suggesting that the extra-points and equal-tangents methods
yield close to the optimal solution.
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Figure 2: Interpolation error for Case 1, the helix, measured in a discrete version of the norm
(11). Note the large difference in convergence rate between the chord method and the
arc-length method. The latter is usually considered optimal for this particular case,
but the new methods show that it is possible to do better.

Case 2

The curve defined by the parametrization (5) is designed in such a way that we know
that there exists a reparametrization (6) by low order polynomials. However, none of
the interpolation methods get this reparametrization as an initial value for their iterative
procedures.

The chord method and the arc-length method both converge exponentially; see Figure
3. Note that this could not be foreseen from the given parametrizations, as these methods
do not correspond to interpolating any of them. We also see that the new methods give
considerably better results, although none of them give exact representation of the curve at
N = 6. The extra-points and equal-tangents methods are very close, with error on machine
level precision from N = 7. The L2-method also yields good results, reaching machine level
precision at N = 14. It does, however, display the weakness that is characteristic for this
method: the functional to be minimized becomes increasingly complicated as N increases,
with many local minima, and our simple minimization algorithm has difficulty finding a
global minimum. The result is a convergence rate that decreases as N increases.
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Figure 3: Interpolation error for Case 2, measured in the same norm as before. The reparametriza-
tion (6) shows that exact representation of the curve is possible at N = 6. None of
the methods achieve this, but the extra-points and equal-tangents methods yield rapid
convergence, representing the curve to machine precision at N = 7. The chord method
and the arc-length method both converge exponentially, but much slower than the new
methods.

Case 3

The parametric curve

f1(η) = −5

2
+

7

4
(η + 1),

f2(η) =
1

2
sin

(
3πη

2

)
+

9

8
(η + 1)2 − 9

4
(η + 1),

f3(η) =
1

2
cos(πη),

(22)

has only analytic components, so a classical approach, simply interpolating the given func-
tions in the GLL points, will give (rapid) exponential convergence. However, the chord
method and the arc-length method both yield very slow (although still exponential) con-
vergence; see Figure 4. Hence, neither of them correspond to classical interpolation.
The new methods all give vastly better performance (and better than classical interpola-

tion of (22)). They converge at approximately the same rate and reach machine precision
between N = 15 and N = 20. Compared to the two traditional methods, only a small
fraction of the polynomial degree is needed to reach the same level of accuracy.

Case 4

The parametric curve
f1(η) = η + 1,

f2(η) = sin(π(η + 1)),

f3(η) = sin(2πη),

bears some resemblance to the parametrization of the helix, except that the trigonometric
functions are phase-shifted and have different periods. Interestingly, comparing the Figures
2 and 5, we see that the relative performance of the chord method and the arc-length
method are opposite. In the current case, the chord method is vastly better than the
arc-length method, which converges extremely slowly and is rather useless.
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Figure 4: Interpolation error for Case 3. The given parametrization (22) consists of smooth
functions, so classical interpolation results in rapid exponential convergence. Neither
the chord method nor the arc-length method corresponds to classical interpolation of
(22), and both methods yield very low convergence rate.

Again, the new methods outperform the traditional ones. The extra-points and equal-
tangents methods give very similar results and converge very fast, and the L2-method is
almost as good.
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Figure 5: Interpolation error for Case 4. The results are similar to Case 3, except that the chord
method is now efficient, while the arc-length method is useless.

Case 5

Consider the parametric curve
f1(η) = η,

f2(η) = |η − 1

2
|,

f3(η) = |η +
1

2
|.

Again the Jacobian J =
√

3 is constant, so classical interpolation of f corresponds to the
arc length method. The curve is G0, i.e., it has break points, and f has two C0 components.
Such a curve is normally considered unsuited for classical high order interpolation, and
indeed the arc-length method gives low order algebraic convergence. So does the chord
method, as Figure 6 shows.
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The new methods, on the other hand, give exponential convergence. The interpolation
points are clustered close to the break points, so the implicitly defined reparametrization
is almost stationary at these points.
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Figure 6: Interpolation error for Case 5. The chord and arc-length methods yield low order
algebraic convergence, whereas the new methods converge exponentially, except for
some instability for large N .

Case 6

The parametric curve
f1(η) = η,

f2(η) =
1

1 + 16η2
,

f3(η) =
1

1 + 16(η + 1)2
,

is difficult to interpolate since two of its components are Runge functions. It was shown
in [25] that the Runge function can be very well approximated (without oscillations) when
viewed as a planar parametric curve. Here, one of the functions is shifted along the x-axis
so that the curve is not equivalent to the standard Runge function.
The chord method and the arc-length method both result in very low convergence rates;

see Figure 7. The chord method yields unwanted oscillations in the solution, whereas
the arc-length method method results in a poor approximation of f2(η) around η = 0.
The three new methods converge fast in comparison, reaching machine precision around
N = 30. These methods yield practically no unwanted oscillations.

4 Interpolation of parametric surfaces

Let f be a parametric surface in R3, described in a Cartesian coordinate system byxy
z

 =

f1(η1, η2)
f2(η1, η2)
f3(η1, η2)

 = f(η1, η2), η1, η2 ∈ [−1, 1]. (23)

The parametrization can be viewed as mapping f from a reference domain Ω̂ = [−1, 1]×
[−1, 1] ⊂ R2 to a physical domain Ω ∈ R3. A reparametrization of the surface can be
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Figure 7: Interpolation error for Case 6. The chord and arc-length methods yield very slow
convergence. Again there is a huge gap in performance between these methods and the
three new methods.

found by a change of variables: for all bijective maps ϕ from Ω̂ onto itself, the function

g(ξ1, ξ2) = f(ϕ(ξ1, ξ2)) = f(η1, η2)

describes the same surface. Note that ξ1 and ξ2 here represent two independent variables
and not two GLL points; it should be clear from the context what is meant. Different
parametrizations can consist of functions of different regularity, and this will affect the
convergence rate in polynomial interpolation.
The interpolant is a parametric surface p described by

p(ξ1, ξ2) =

p1(ξ1, ξ2)
p2(ξ1, ξ2)
p3(ξ1, ξ2)

 , ξ1, ξ2 ∈ [−1, 1],

where each component pi is a polynomial of degree less than or equal to N in each reference
variable. It is conveniently represented by sums of Lagrangian interpolants in the tensor-
product GLL points, i.e.,

pi(ξ1, ξ2) =
N∑
m=0

N∑
n=0

αimn`m(ξ1)`n(ξ2), i = 1, 2, 3. (24)

We note that, for a given ξ1, p is a parametric curve when viewed as a function of ξ2, and
vice versa. Hence, the rectilinear mesh that is made up by the interpolation points in Ω̂ is
mapped to a curvilinear mesh on Ω; see Figure 8.
The expansion coefficients are determined by letting them be points somewhere on the

exact surface, i.e., αimn = fi(η1,mn, η2,mn). The coordinates η1,mn and η2,mn in Ω̂ can be
viewed as free parameters that implicitly determine the change of variable ϕN , a polynomial
of degree N in ξ1 and ξ2 such that (η1,mn, η2,mn) = ϕN (ξm, ξn), 0 ≤ m,n ≤ N , i.e.,
(η1,mn, η2,mn) are the images of the tensor-product GLL points. There are 2(N + 1)2

values to be interpolated; hence the dimension of the discrete space is 2(N + 1)2.
We want the interpolation methods described in this paper to be applicable in the

context of high order methods for solving PDEs in deformed hexahedra. The construction
of a numerical approximation of the hexahedron often starts with an interpolation of the
six faces, followed by a transfinite interpolation method to patch them together. For the
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f

Figure 8: The surface is mapped from a reference domain Ω̂ = [−1, 1]×[−1, 1] by the parametriza-
tion f . The interpolation points are mapped from the tensor-product GLL points.

latter to be possible, a consistent representation of the shared edges is necessary. This
puts a few restrictions on the choice of η1,mn and η2,mn. In particular, we require that the
interpolation points that are mapped from the boundary of Ω̂ interpolate the boundary of
Ω, and that the corner points map to the corner points. This leaves N − 1 free parameters
on each of the four boundary curves of an individual face. Together with the 2(N − 1)2

free parameters in the interior of Ω, we have a total of

2(N − 1)2 + 4(N − 1) = 2N2 − 2

degrees-of-freedom.
When each boundary curve is considered separately, these requirements are in essence

the same as the requirements that we made for the curve interpolants in Section 2. This
enables us to use the interpolation methods from Section 2 on each of the four boundary
curves of Ω.

4.1 Interpolation error and approximation order

In order to be able to measure the interpolation error in a parametrization-independent
norm, we will consider surfaces that can be represented as functions

z = h(x, y),

in a Cartesian coordinate system. This allows the use of the L2-norm

||f − p|| =
(∫∫

ΠΩ

(
h(x, y)− hN (x, y)

)2
dx dy

)1/2
, (25)

where ΠΩ is the projection of Ω to the xy-plane and hN (x, y) is a parametrization-
independent representation of the interpolant. The latter is not always readily available
from the parametric description of the interpolant. However, in the case where f1 and f2

are affine in both variables the norm can (without error) be transformed to an integral
over the reference domain Ω̂,

||f − p|| =
(∫ 1

−1

∫ 1

−1

(
f3(ϕN (ξ1, ξ2))− p3(ξ1, ξ2)

)2
J dξ1 dξ2

)1/2
, (26)

where
J =

∂f1

∂η1

∂f2

∂η2
− ∂f2

∂η1

∂f1

∂η2
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is the Jacobian of the mapping f . To keep the evaluation of the norm simple, we restrict
our investigation to parametric surfaces that fit this requirement. Note again that this
is not a restriction for the interpolation methods. The error norm is implemented as a
discrete version of (26), based on GLL quadrature with overintegration.
In the context of interpolation using a fixed polynomial degree N (and possibly using

several patches to represent the entire surface), the concept of approximation order is
relevant. With traditional interpolation methods, interpolation by polynomials of degree
N gives approximation order N + 1. For example, bicubic Bézier patches give fourth order
convergence as the size of the patch decreases.
The conjectured optimal approximation order in curve interpolation was based on count-

ing the number of equations that must be solved and comparing it with the number of free
parameters. The same can be done in the context of interpolation of surfaces. Mørken
[18] did it by counting the number of (non-linear) equations that must be solved in or-
der to reduce the degree of a classical bivariate Taylor approximant without reducing the
approximation order. He showed that the approximation order k is bounded by

k ≤
√

3N2 + 9N − 23/4− 1

2
,

which means that one theoretically can achieve approximation order k = 2N for N < 7.
However, the asymptotically optimal approximation order as N increases is approximately
k =
√

3N .
As before, in the context of high order interpolation, convergence is more conveniently

evaluated in terms of how the interpolation error decreases as a function ofN . Interpolating
a parametric surface f where all the components fi are analytic will give exponential
convergence, while low order components will give algebraic convergence. Again, the goal
is exponential convergence with the highest possible rate for all surfaces. The note on
approximation order serves only as indication of the possible improvement when the free
parameters are chosen in a clever way.

4.2 Interpolation methods

Classical interpolation of the parametric surface f means discarding the possibility of
reparametrization and setting αimn = fi(ξm, ξn). This corresponds to interpolation of the
vector-valued function f in the tensor-product GLL points.
A simple, parametrization-independent alternative is to apply one of the curve interpo-

lation method from Section 2 to the boundary curves of the surface, and then to find the
internal points by a method for transfinite interpolation, e.g., the Gordon-Hall algorithm
[13]. However, relying only on a transfinite interpolation method can yield a very crude
approximation of the interior of the surface. If all three components of the interpolant
are determined by the Gordon-Hall algorithm, the interior points will in general not be
interpolation points. We therefore add a third step to make sure that all the coefficients
in (24) are interpolation points. This will be our basic interpolation procedure:

1. Interpolate the boundary as four separate space curves.

2. Use Gordon-Hall transfinite interpolation for x and y.

3. Find z by function evaluation h(x, y) at the internal interpolation points.
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If the function h(x, y) is not known, the last step would require an iterative procedure to
find η1 and η2 from the system

x = f1(η1, η2)

y = f2(η1, η2)

in each internal interpolation point. The z-coordinate could then be found by evaluating
z = f3(η1, η2).
This algorithm will be the basis for our extension of the chord method and the arc-length

method to interpolation of surfaces. Hence, they are only applied to the boundary curves;
the interpolation points in the interior are determined by steps 2 and 3. Since there is no
natural way to define the chord or the arc-length across a surface, this is in fact the most
natural way to extend the methods to surface interpolation.
Since the Gordon-Hall algorithm in principle represents the interior as a weighted sum of

the boundaries, it is clear that given a smooth boundary representation, we get a smooth
representation of the interior. However, we have no way of knowing if this will be an
optimal representation of the interior. Hence, we add another step in the algorithm:

4. Apply a surface interpolation algorithm to improve the distribution of interpolation
points in the interior.

There are two main reasons why we do not skip the first three steps and go directly to
a surface interpolation algorithm for the entire surface. First, experience from numerical
experiments have shown that a good representation of the boundary is sometimes the
single most important factor in achieving a good representation of the surface. Secondly,
the restriction we have made on the interpolation points on the boundary means that
there is a difference between the boundary and the interior in the number of degrees-of-
freedom associated with each interpolation point. Hence, a boundary point cannot be
treated exactly like an interior point. This does not prohibit us from interpolating the
entire surface simultaneously, but it makes it more natural to treat them separately.
The L2-method can be defined as the optimization procedure to find the interpolant

that minimizes the functional
J = ||f − p||2, (27)

where || · || is the norm (25). For parametric surfaces f where f1 and f2 are affine, the
method can be implemented based on the simpler form (26). Viewing the functional (27) as
a function of the 2N2− 2 independent variables η1,mn and η2,mn, it is in principle possible
to minimize it with Newton’s method in the same way as was done for curves in Section
2.3. One can do this for the entire surface simultaneously, using all the free parameters, or
one can apply it as step 4 in the algorithm, using only the free parameters in the interior.
Based on our experience with interpolation of parametrized curves, it should not come

as a surprise that (27) is very hard to minimize. The rapidly increasing number of free
parameters makes the method infeasible, and it will not be implemented here.
The extra-points method can also be extended to interpolation of surfaces. Due to the

similarity between this method and the equal-tangents method, we choose to focus on only
one of these methods in the context of surface interpolation. To avoid the dependence of
the method on a choice of extra interpolation points, the equal-tangents method is chosen.

4.3 The equal-tangents method

When it comes to tangent and normal vectors, the situation for surfaces in R3 is in a
sense opposite to the curve case: there is one unique surface normal and a two-dimensional
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tangent plane. The equal-tangents method must therefore be based on requiring equal
tangent spaces or, equivalently, equal normal vectors. This can be achieved by making a
normal vector to the exact surface orthogonal to two linearly independent tangent vectors
to the interpolant at the chosen interpolation points. The normal vector is given by

n =
(∂f2

∂η1

∂f3

∂η2
− ∂f3

∂η1

∂f2

∂η2
,
∂f3

∂η1

∂f1

∂η2
− ∂f1

∂η1

∂f3

∂η2
,
∂f1

∂η1

∂f2

∂η2
− ∂f2

∂η1

∂f1

∂η2

)T
, (28)

and the natural choice of tangent vectors is

tN1 =
(∂p1

∂ξ1
,
∂p2

∂ξ1
,
∂p3

∂ξ1

)T and tN2 =
(∂p1

∂ξ2
,
∂p2

∂ξ2
,
∂p3

∂ξ2

)T
. (29)

Equal tangent spaces is achieved when

n · tNi = 0, i = 1, 2. (30)

Just as in the case of curve interpolation, this means two equations have to be solved for
equal tangents in one interpolation point. However, each interpolation point in the interior
of Ω is associated with two degrees-of-freedom, as opposed to points on curves that only
yield one degree-of-freedom. Hence, if we are able to solve the resulting system of non-
linear equations, equal tangents should be possible in all the internal interpolation points.
The boundary curves, on the other hand, can be interpolated with equal tangents in only
b(N − 1)/2c the points.
The equal-tangents method can be implemented either according to the four-step algo-

rithm or as a method for the entire surface. In order to study the importance of a good
representation of the boundary, we implement the method according to the four-step al-
gorithm, and consider the solution before and after the last step. We will refer to the first
as equal-tangents boundary and the second as equal-tangents surface.
All the systems of non-linear equations are solved with Newton’s method, and the re-

marks from Section 2.7 still apply. Most importantly, the dependency on good initial
guesses is important to achieve the best solution in the interior of Ω, and a bootstrapping
method will be applied.

5 Numerical Results

Case 1

For surfaces that can be described by functions on the form

h(x, y) = f(x) + g(y), a ≤ x ≤ b, c ≤ y ≤ d,

the Gordon-Hall method should be sufficient for an optimal representation of the entire sur-
face, given that we are able to find an optimal representation of the boundary. The reason
for this is that for a fixed x∗, the curve described by h(x∗, y) is the same as the boundary
curves h(a, y) and h(b, y), only shifted vertically. Hence, the optimal set of interpolation
points is the same. For example, consider the surface described by the function

h(x, y) =
√
x+ 2 +

1

2
arctan(y), −1 ≤ x, y ≤ 1. (31)

The interpolation methods considered here are all based on a parametric description of the
surface. This is trivial to find from the function description, using affine mappings f1 and
f2.
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Figure 9 shows that applying step 4 in the interpolation process, i.e., enforcing equal
tangents also in the interior, makes no difference in the convergence rate. It is the repre-
sentation of the boundary that separates the two equal-tangents methods from the other
two methods.

0 5 10 15 20
10

−15

10
−10

10
−5

10
0

N

||
f 

−
 p

||

 

 

chord

arc length

eqtan boundary

eqtan surface

Figure 9: The interpolation error in Case 1, measured in the discrete L2-norm. The surface can be
described by a function of the form h(x, y) = f(x) + g(y). With a good representation
of the boundary, the Gordon-Hall algorithm is sufficient for a good representation of
the entire surface.

Case 2

Consider the surface given by

h(x, y) =
3

2
+

3

10

(3

2
− y
)

sin
(π

3
x
)

+
3

10
y cos

(4

3
πx
)
, 0 ≤ x, y ≤ 3

2
. (32)

Figure 10 shows that there is a vast difference between the chord method and the arc-length
method in the convergence rate. Applying the equal-tangents method on the boundary
gives only a slight improvement compared to the chord method, whereas the equal-tangents
surface method gives a significant improvement. However, at N = 9 the latter seems to
lose track of the optimal solution, and the convergence rate decreases dramatically. This
is most likely due to a failure of Newton’s method to find a solution to the equal-tangents
problem in the interior. After all, at N = 9 there are 2(N − 1)2 = 128 free parameters in
the interior, far more than what we ever encountered in curve interpolation.

Case 3

Consider now a surface described by a function of low regularity,

h(x, y) = (x2 + y2)3/2, −1 ≤ x, y ≤ 1. (33)

Affine mappings f1 and f2 will make f3 a function of low regularity in both η1 and η2, and
classical interpolation will give low order algebraic convergence. In fact, the chord method
corresponds to the classical interpolant, and Figure 11 confirms the poor convergence rate.
The arc-length method works even worse for this surface.
The reason for the low regularity of f3 is a singularity in the third partial derivatives

at the origin. The boundary curves, on the other hand, are smooth functions that can be
interpolated by high order polynomials to exponential convergence. This is a problem for
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Figure 10: The interpolation error in Case 2. The surface is described by a smooth function,
but the arc-length method results in a very low convergence rate. The equal-tangents
surface method shows that very rapid convergence is possible, but we are not able to
maintain the convergence rate until we reach machine precision, most likely due to the
difficulty of finding solutions of the non-linear system of equations that arises from
the equal-tangents conditions.

Figure 11: The interpolation error in Case 3. The surface is described by a function of low reg-
ularity, but the equal-tangents surface method finds a set of interpolation points that
corresponds to interpolating a smooth reparametrization. This results in exponential
convergence. The plot only extends to N = 12 because we are not able to maintain
the same convergence rate for higher N .

the equal-tangents boundary method; it may give a good representation of the boundary,
but the Gordon-Hall algorithm does not take the singularity at the origin into account.
The result is low order algebraic convergence.
However, with the addition of the fourth step in the algorithm, we are indeed able to

get exponential convergence. Figure 12 shows the mesh of interpolation points projected
onto the xy-plane, with polynomial degree N = 15 and using the equal-tangents boundary
and equal-tangents surface methods. The latter results in all internal interpolation points
moving toward the origin, the position of the singularity. This corresponds to interpolat-
ing a reparametrization of the surface of higher regularity than f – hence the increased
convergence rate.
The exact surface is rotationally symmetric around the z-axis, and one may therefore

expect the optimal mesh of interpolation points to be rotationally symmetric as well.
The mesh in Figure 12b is not entirely symmetric, but one should be careful with con-
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cluding that a more symmetric mesh will give better approximation properties. It is in
general impossible to predict the convergence rate from the mesh unless one knows which
parametrization it interpolates.

(a) Equal-tangents boundary (b) Equal-tangents surface

Figure 12: The interpolant at N = 15, projected onto the xy-plane. Left: solution obtained
using the equal-tangents boundary method. Right: solution obtained using the equal-
tangents surface method. The latter yields a clustering of interpolation points around
the origin, since this is the position of the singularity in the exact surface. The non-
linear reparametrization enables us to achieve exponential convergence.

Case 4

The last surface is

h(x, y) =
arctan(2x) sin(2x+ (y + 1)2)

1 + x2 + y2
, −1 ≤ x, y ≤ 1, (34)

which is a little more complicated than the other surfaces. Both the chord method and the
arc-length method give low exponential convergence rates. By applying the equal-tangents
method on the boundary, we achieve a better convergence rate. When we apply equal-
tangents in the interior as well, the convergence rate is improved even more. However, we
see that the convergence rate decreases as N increases, most likely due to the failure of
Newton’s method to find the optimal solution.
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Figure 13: The interpolation error in Case 4.
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6 Conclusion

High order interpolation of parametric curves and surfaces is an important part of the
geometry representation in high order methods for solving PDEs in deformed rectangles
and hexahedra, and the interpolation method chosen may have a big influence on the error
in the numerical solution [25]. Still, the topic has received very little attention in the
literature. On the other hand, a lot of work has been done on interpolation of parametric
curves (and some on parametric surfaces) in the CAGD environment, but almost all of it
concerns only low order polynomial interpolation.
Any parametric curve or surface can be reparametrized before being interpolated, and

some reparametrizations will result in a smaller interpolation error than others. Finding
the optimal reparametrization is in general a very difficult (and unsolved) problem. In the
context of high order methods for solving PDEs, most authors settle with relatively simple
and computationally inexpensive interpolation methods. The two most common methods
of this kind is the chord method and the arc-length method, both of which are studied in
this paper. These methods are based on heuristic arguments and rarely yield significantly
better results than classical interpolation (i.e., interpolation without reparametrization).
In order to construct better interpolation methods for parametric curves, a new interpo-

lation method (the L2-method) is introduced. It is based on doing a direct minimization
of the interpolation error using Newton’s method. The method works quite well for low
polynomial degrees N (although it is expensive), but for high N it often degrades, since
Newton’s method is not sufficient for finding the global minimum of the objective function.

In the CAGD community, interpolation methods based on parametrization-independent
quantities such as tangents, curvature and torsion have been suggested, and they are
referred to as geometric Hermite interpolation methods. These methods are conjectured
to be optimal in terms of approximation order (as defined for interpolation using a fixed
N), but they are costly and difficult to implement, since they require systems of non-linear
equations to be solved. Two methods in the family of geometric Hermite interpolation
are proposed, and they yield very good results. Some of the results are assumed to be
very close to optimal, since they are approximately equal to the solution found by the
L2-method for low N , and they often maintain a constant convergence rate until machine
precision.
Some of the interpolation methods are extended to interpolation of parametric surfaces,

and the relative performance of the different methods is often similar to the curve in-
terpolation results. However, in the context of surfaces one can choose to apply costly
interpolation methods only on the boundary, or one can do it over the entire surface. In
some cases the former is enough to achieve a vast improvement from classical interpo-
lation, but sometimes one needs to consider the entire surface to achieve any significant
improvement.
Some important commonly known limitations of high order interpolation are challenged

when considering interpolation of parametric curves and surfaces, because of the option of
reparametrization. For example, curves and surfaces of low regularity can be interpolated
to exponential convergence (as a function of N), as shown by examples in this paper.
Whether this is possible for all curves and surfaces of low regularity is a topic for future
work.
Another such limitation is the Runge phenomenon, which describes the unwanted oscilla-

tions displayed by the interpolant for certain functions and point distributions. Examples
from this paper and from [25] show that this can be avoided by reparametrization. In
fact, in all the numerical experiments considered, we have seen no examples of curves that
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could not be interpolated without oscillations. This includes the Runge function (viewed
as a parametric curve), C0 curves and functions with boundary layers (again, viewed as a
parametric curve). Verifying (or disproving) the claim that any parametric curve can be
interpolated by high order polynomials without oscillations is a topic for future work.
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