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Semi-Lagrangian exponential integrators

for the incompressible Navier-Stokes

equations

Elena Celledoni, Bawfeh Kingsley Kometa and Olivier Verdier

September 14, 2011

Direct applications of high order DIRK-CF methods as presented in [7] to the
incompressible Navier- Stokes equations were found to yield a loss in order of
convergence. The DIRK-CF methods are exponential integrators arising from
the IMEX Runge-Kutta techniques proposed in [1], and are semi-Lagrangian
when applied to convection diffusion equations. As discussed in [17], inappro-
priate implementation of projection methods for incompressible flows can lead
to a loss in the order of convergence. In this paper we recover the full order of
the IMEX methods using projections unto the space of divergence-free vector
fields and we discuss the difficulties encountered in using similar techniques for
the semi-Lagrangian DIRK-CF methods. We finally assess the performance
of the semi-Lagrangian DIRK-CF methods for the Navier-Stokes equations in
convection dominated problems.

1 Introduction

Consider the incompressible Navier-Stokes equations

ut + u · ∇u = ν∇2
u−∇p (1.1)

∇ · u = 0, (1.2)

u|∂Ω = 0, (1.3)

here u = u(x, t) on the cylinder Ω × [0, T ] is the velocity filed (Ω ⊂ R
d and d = 2, 3),

subjected to the incompressibility constraint (1.2), p = p(x, t) is the pressure and plays
the role of a Lagrange multiplier, and ν is the kinematic viscosity of the fluid. We consider
no slip or periodic boundary conditions

u|∂Ω = ub, (1.4)

u periodic. (1.5)

In the case of no slip boundary conditions we will also use that ub ·n = 0 where n is the
unit normal to the boundary ∂Ω. For no slip boundary conditions we will mostly consider
the case

ub = 0. (1.6)
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The variables (u, p) are sometimes called primitive variables and the accurate approxima-
tion of both these variables is desirable in numerical simulations.

In this paper we study semi-Lagrangian discretization methods in time to be used in
combination with high order spatial discretizations of the Navier-Stokes equations, like
for example spectral element methods. High order methods are particularly interesting in
cases when highly accurate numerical approximations of a given flow case are required. A
relevant situation is the direct numerical simulation of turbulence phenomena (DNS), as
pointed out for example in [23].

The methods we consider here are implicit-explicit methods of Runge-Kutta type which
we named DIRK-CF, and they have been proposed in [6, 7]. These methods arise from
IMEX techniques proposed in [2, 1]. In addition to being implicit-explicit the methods are
semi-Lagrangian and they show improved performance in convection dominated probelms.
So far the case of linear and nonlinear convection diffusion equations have been considered.

It is our goal in this paper to further investigate the extension of these methods to the
incompressible Navier-Stokes equations and to asses their performance. Given a time-
stepping technique, a very used approach to adapt the method to the incompressible
Navier-Stokes equations is by means of projections. The primary example of this tech-
nique, and most famous projection method for the incompressible Navier-Stokes equations
is the Chorin’s projection method, proposed by Chorin in [9, 10] and Témam [22]. Chorin’s
method is a version of the implicit Euler integration method adapted to the Navier-Stokes
equations.

The study of the temporal order of this method was considered in [20, 21] and it revealed
order one for the velocity and only 1

2
for the approximation of the pressure. This and similar

order reduction phenomena are typical of projection methods for Navier-Stokes equations
and must be handled properly to achieve higher order. Lately a better understanding of the
issues of order reduction in a variety of projection methods, and remedies to this problem
appeared in [19, 3, 17].

We consider projection methods for IMEX Runge-Kutta schemes as a staring point to
discuss the extension of the methods of [7] to the Navier-Stokes equations. In this prelimi-
nary work we explain some of the difficulties encountered in the case of the semi-Lagrangian
methods, spectral element space discretizations and the Navier-Stokes equations. We ob-
tain methods of IMEX type which show up to third order temporal accuracy in the velocity
and first order in the pressure. The semi-Lagrangian methods achieve up to second tem-
poral order in the velocity.

In section 2 we consider appropriate projections to be used in the reformulation of our
methods in the context of Navier-Stokes equations, including some relevant background
material. In section 3 we discuss implicit-explicit methods, and the semi-Lagrangian meth-
ods named DIRK-CF and their extensions to Navier-Stokes equations. Section 4 is devoted
to numerical experiments. In this section we provide numerical verification of the temporal
order of the methods; we illustrate the benefits of the proposed semi-Lagrangian methods
in the case of convection dominated problems; we also devote this section to the description
of the implementation details behind our numerical results.
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2 Projection methods for the incompressible Navier-Sokes

equations

2.1 Leray projector

According to the Helmholtz decomposition of vector fields, w ∈ (L2(Rd))d can be decom-
posed into a curl-free and a divergence-free part:

w = ∇φ+ v, ∇ · v = 0. (2.1)

We are interested in such decomposition on bounded domains Ω, taking into account
boundary conditions. We consider a projection on the subset of the space of divergence
free vector fields, with prescribed boundary conditions on ∂Ω:

H = {v ∈ (L2(Ω,Rd))d |∇ · v = 0, v|∂Ω = bc}, P : W ⊂ (L2(Ω,Rd))d → H,

and W ⊂ (L2(Ω,Rd))d an appropriate subset of (L2(Ω,Rd))d, here the boundary condi-
tions (bc) are either periodic or n · v|∂Ω = 0.

So P is such that

P(w) = v, (2.2)

satisfying the conditions

∇ · v = 0, v|∂Ω = bc. (2.3)

Assuming w satisfies boundary conditions compatible with v (say w periodic or with no
slip boundary conditions), we can take P to be the Leray projector [14]. This projector is
constructed by taking v as

P(w) = v = w −∇φ,

where φ is the solution of the Poisson equation

∇2φ = ∇ ·w (2.4)

and boundary conditions for φ either periodic or Neumann:

0 = n · v|∂Ω = n · w|∂Ω − n · ∇φ|∂Ω . (2.5)

2.2 Incompressible Navier-Stokes and projections

In general, taking the divergence of the momentum equation, (1.1), we obtain a Poisson
equation for the pressure

∇2p = ∇ · (ν∆u− u · ∇u). (2.6)

When u is space-periodic, i.e. (1.5), the pressure p is fully defined in terms of the velocity
field u and the periodicity condition. In the case of no slip boundary conditions, (1.4) and
(1.6), solving the Poisson equation for p by imposing

∂p

∂n
= ν∆u · n,

on the boundary, fully determines the pressure. In both cases we can write p = ψ(u), [14].
We can then eliminate the pressure from the momentum equation and obtain

ut − ν∆u+ u · ∇u+∇p = ut − ν∆u+ u · ∇u+∇ψ(u) = 0.
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We observe that for u satisfying the Navier-Sokes equations (1.1-1.3) we have

P(u) = u, P(ut) = ut, P(∇p) = 0,

and we can rewrite the Navier-Stokes equations as

ut = P(ν∆u− u · ∇u−∇p). (2.7)

An alternative formulation [14] is

ut = νP(∆u)− P(u · ∇u), (2.8)

where the two projections correspond to two different Poisson problems which have both
periodic or Neumann boundary conditions to be imposed on corresponding Lagrangian
multipliers.

In the context of IMEX and semi-Lagrangian Runge-Kutta time integration methods,
the formulation (2.8) seems to be the most appropriate. The intention is to apply different
Runge-Kutta coefficients to the convection operator and the diffusion operator. However
non-trivial complications arise when discretizing in space.

After spatial discretizations of type spectral-Galerkin or spectral element methods, we
obtain a system of differential-algebraic equations of the type:

Bẏ = Ay + C(y) y −DT z, Dy = 0, (2.9)

which should be satisfied with appropriate boundary conditions. Here A is the discrete
Laplacian, B is the mass matrix, C(y) is the discrete convection operator, D is the dis-
crete divergence and DT is the discrete gradient. The numerical solution y ≈ u includes
values pertaining to boundary nodes, and the discrete operators are sized accordingly. The
intention is to impose the boundary conditions directly on the numerical approximation y.
Boundary conditions are not inbuilt in (2.9) as in the case of finite differences discretiza-
tions, and are enforced by applying an operator Rb to the numerical solution.

If D is full rank, the Lagrangian multiplier z in (2.9) can be obtained by solving the
linear system

DB−1DT z = DAy +DC(y)y, (2.10)

but such z is not necessarily satisfying the boundary conditions satisfied by the pressure in
(2.6) deduced from (1.1), and similarly ẏ is not satisfying the boundary conditions satisfied
by ut in (1.1). Assuming Π denotes the projection on the space of discrete divergence free
vector fields, regardless of boundary conditions, this gives

ΠB−1(Ay + C(y)y) = B−1(Ay + C(y)y −DT z) (2.11)

and z the solution of (2.10), we can introduce the discrete analogs to (2.7) and (2.8) simply
as

ẏ = ΠB−1(Ay +C(y) y),

and
ẏ = ΠB−1(Ay) + Π(C(y) y).

Applying Runge-Kutta methods, IMEX methods or semi-Lagrangian exponential integra-
tors to these equations will produce approximations of u which are divergence free, but do
not, in general, satisfy the desired boundary conditions. Trying to enforce boundary con-
ditions by using instead projections Π̃ mapping Ay and C(y)y into the space of divergence
free vector fields with appropriate boundary conditions, turns out to be ill-conditioned.
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Another inconvenience coming from the type of discretizations considered in this work, is
that the pressure is not defined on boundary nodes and the boundary conditions cannot be
imposed on the pressure (as assumed for the solution of the Poisson equations pertaining
to P). The only acceptable alternative is to impose boundary conditions directly on the
numerical approximations of the solution, i.e. the stage values of the Runge-Kutta method.
We then obtain that the boundary conditions satisfied by ut are respected at the discrete
level only for some appropriate, numerical, discrete derivatives.

In the next section we will show how this is handled successfully in the case of IMEX
methods.

The relation between (1.1), (2.8) and (2.7) in terms of the corresponding Lagrangian
multipliers might be important in order to obtain accurate approximations of the pressure.
For example in the periodic case we get

P(∆u) = ∆u ⇒ u · ∇u+∇ψ(u) = P(u · ∇u)

but in the no-slip case this is not so.

We however we always have

u · ∇u+∇ψ(u) = (I − P)(ν∆u) + P(u · ∇u),

here I denotes the identity operator.

3 High order implicit-explicit and semi-Lagrangian methods

of Runge-Kutta type

3.1 IMEX Runge-Kutta

We consider IMEX methods with a DIRK (diagonally implicit Runge-Kutta) implicit part
to be applied to the diffusion operator and an appropriate explicit part to be used for the
convection operator. Applied to (1.1) the projected IMEX methods are

Ui = P(un +∆t
i−1
∑

j=1

(ai,j(∆Uj −∇Pj)− ãi,jUj · ∇Uj) + ∆tai,i∆Ui), i = 1, . . . , s

and Pi is the Lagrangian multiplier to be used to perform the projection P. We assume both
the Runge-Kutta methods with coefficients {ai,j}i,j=1,..,s and {ãi,j}i,j=1,..,s respectively, are
stiffly accurate, so, un+1 = Us. To obtain the fully discrete version of the methods we
apply them first to the equation (2.9) and obtain:

BYi = Byn+∆t

i−1
∑

j=1

[ai,j(AYj −DTZj)− ãi,jC(Yj)Yj ] +∆t ai,i(AYi−DTZi), i = 1, . . . , s

with the constraint DYi = 0. We next apply the operator Rb enforcing boundary conditions
on Yi, and finally we solve the following linear system for Yi and Zi,

Rb(B −∆t ai,iA)Yi +∆t ai,iRbD
TZi = Rb(Byn +∆t

i−1
∑

j=1

[ai,j(AYj −DTZj) + ãi,jC(Yj)Yj])

DYi = 0.
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The solution of such linear system is obtained by a Schur-complement approach and the
inversion of the discrete Helmohltz operator

Rb(B −∆t ai,iA)

by applying a preconditioned conjugate gradient algorithm. We obtain that yn+1 = Ys is
the approximation of the velocity field at time tn+1 and Zs is the corresponding approxi-
mation of the pressure.

3.2 Semi-Lagrangian IMEX Runge-Kutta

We here consider a second order method presented in [7] in the case of convection diffusion
equations. We refer to [7] for the general formulation of these methods, which are named
DIRK-CF. We apply the method to (2.9), the first stage is

Y1 = yn, Z1 = 0, ϕ1 = I.

Defining ϕ2 = exp(∆t ã2,1C(Y1)) the second stage is

Y2 = ϕ2[yn +∆t a2,1ϕ
−1
1 B−1(AY1 −DTZ1)] + ∆ta2,2B

−1(AY2 −DTZ2),

with DY2 = 0. The term DTZ1 = 0. We now multiply both sides by B and apply Rb to
obtain a linear system for Y2 and Z2. This linear system is

Rb(B −∆t a2,2A)Y2 +∆t a2,2RbD
TZ2 = RbBϕ2(yn +∆t a2,1B

−1AY1),

DY2 = 0.

We interpret the ϕ1w as the transport of w along the flow of the vector field Y1.
At the third stage, we define ϕ3 = exp(∆t ã3,1C(Y1) + ∆t ã3,2C(Y2)) and write

Y3 = ϕ3[yn+∆t a3,1ϕ
−1
1 B−1(AY1−DTZ1)+∆t a3,2ϕ

−1
2 B−1(AY2−DTZ2)]+∆ta3,3B

−1(AY3−DTZ3),

with DY3 = 0. After applying Rb we obtain the linear system

Rb(B −∆t a3,3A)Y3 +∆t a3,3RbD
TZ3 = RbBϕ3(yn +∆t a3,1B

−1AY1 +∆t a3,2ϕ
−1
2 B−1(AY2 −DTZ2)),

DY3 = 0.

We finally take yn+1 = Y3. This approach to enforce boundary conditions for the DIRK-CF
methods is the straightforward counterpart of the approach used for IMEX methods in the
previous section, and leads to methods with temporal order at most 2 in the velocity. We
were unable to obtain order three or more with this technique.

4 Numerical experiments

For the numerical experiments we shall employ a spectral element method (SEM) based
on the standard Galerkin weak formulation as detailed out in [13]. We use a rectangular
domain consisting of Ne uniform elements. The approximation is done in PN − PN−2

compatible velocity-pressure discrete spaces, i.e., keeping the time variable t fixed, in each
element we approximate the velocity by a N -degree Lagrange polynomial based on Gauss-
Lobatto-Legendre (GLL) nodes in each spatial coordinate, and the pressure by (N − 2)-
degree Lagrange polynomial based on Gauss-Legendre (GL) nodes. The discrete spaces
are spanned by tensor product polynomial basis functions. The resulting discrete system
has the form (2.9). We begin by describing some key implementation issues involved in
the numerical experiments.
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4.1 Implementation issues

4.1.1 Pressure-splitting scheme

This scheme is used to enhance solving the linear Stokes systems [12] occuring at each
stage of an IMEX or DIRK-CF method. Suppose

1

γ∆t
BYi −AYi −DTZi = Bŷn

DYi = 0

(4.1)

represents a linear Stokes system arising from stage i of a first or second order IMEX or
DIRK-CF method applied to (2.9), where γ is a parameter of the method. Here the variable
ŷn incorporates the explicit treatment of the convection, the initial data and vector fields
at earlier stages. The splitting scheme (irrespective of boundary conditions) is done in the
following steps:

Step 1: 1
γ∆t

BŶi −AŶi −DT pn = Bŷn

Step 2: DTB−1Dδpi = − 1
γ∆t

DŶi

Step 3: Yi = Ŷi − γ∆tB−1DT δpi, Zi = pn + δpi.

Step 1 is an explicit approximation of the stage value of the velocity using the initial pres-
sure. This approximation is not divergence-free. Step 2 and 3 are thus the projection steps
which enforce the divergence-free constrain and correct the velocity and pressure. Note
that this approximation introduces a truncation error of order 3, and is thus sufficient for
methods order upto 2 (see e.g.[12]). Solving (4.1) directly would lead to solving equations
with the operator DTHD (with H := 1

γ∆t
B + A) for the pressure. However, the cost of

inverting DTH−1D is much higher than for inverting DTB−1D in Step 2, since B is usu-
ally diagonal or tridiagonal an easier to invert than H. This explains the main advantage
for using the pressure-splitting schemes in the numerical computations. We have exploited
this advantage in the numerical experiments in sections 4.4 and 4.5.

4.1.2 Boundary conditions

We illustrate the strategy for implementing the boundary conditions in the context of
spectral element methods. Let Rp represent a periodic boundary operator, defined such
that for a given vector y in the solution space or space of vector fields, Rpy is periodic.
Each stage of an IMEX or DIRK-CF method applied to (2.9) can be expressed in the form
(4.1). Multiplying the first equation of (4.1) by Rp we obtain the system

HYi −RpD
TZi = RpBŷn

DYi = 0
(4.2)

where H := Rp(
1

γ∆t
B − A). The matrix H results from the discrete Helmholtz operator

and is symmetric positive-definite (SPD); the mass B is diagonal and SPD, and thus easy
to invert. The entire system (4.2) forms a symmetric saddle system, which has a unique
solution for Yi provided D is of full rank. The choice of spatial discretization method
provides a full-rank matrix D. The system (4.2) can be solved by a Schur-complement
approach and the pressure-splitting scheme.

The treatment of Dirichlet boundary conditions is very similar and we refer to [12] for
further details. In the experiments reported in this paper, no special treatment has been
taken to enforce pressure boundary conditions, since the discrete pressure space is not
explicitly defined on discretization nodes on the boundary.
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4.2 Temporal order tests for the IMEX methods

We investigate numerically the temporal order of convergence of some IMEX-RK methods
as described in section 3.1. The methods considered here are the second and third order
IMEX-RK schemes with stiffly-accurate and L-stable DIRK parts [1]. We refer to them as
IMEX2L and IMEX3L respectively. They are given by the Butcher tableaus in Tables 1
and 2 where γ = (2−

√
2)/2 and δ = 1− 1/(2γ).

Table 1: IMEX2L: γ = (2−
√
2)/2 and δ = 1− 1/(2γ)

0
γ γ
1 1− γ γ

1− γ γ

,

0
γ γ
1 δ 1− δ

δ 1− δ 0

Table 2: IMEX3L

1
2

1
2

2
3

1
6

1
2

1

2
−1

2

1

2

1

2

1 3
2

−3
2

1
2

1
2

3
2

−3
2

1
2

1
2

,

0
1
2

1
2

2
3

11
18

1
18

1
2

5
6

−5
6

1
2

1 1
4

7
4

3
4

−7
4

1
4

7
4

3
4

−7
4

0

In the first example we consider the Taylor vortex problem with exact solution and initial
data given by







u1 = − cos(πx1) sin(πx2) exp(−2π2t/Re),
u2 = sin(πx1) cos(πx2) exp(−2π2t/Re),
p = −1

4
[cos(2πx1) + cos(2πx2)] exp(−4π2t/Re),

(4.3)

writing Re = 1/ν for the Reynolds number, and u := (u1, u2), x := (x1, x2). The boundary
condition is doubly-periodic on the domain x1, x2 ∈ [−1, 1], and we choose Re = 2π2.
For the spatial discretization we use a spectral method of order N = 12, and the time
integration is done up to time T = 1. For each stepsize ∆t = T/2k, k = 1, . . . , 6, the error
between the numerical solution and the exact PDE solution (at time T ) are measured in
the L2-norm, for both the velocity and pressure. The results for both the IMEX2L and
IMEX3L show a temporal convergence of order 2 and 3 respectively (see Figure 1).

Similar experiments are carried out for the test problem [18] with exact solution given
by







u1 = π sin(2π x2) sin
2(π x1) sin t,

u2 = −π sin(2π x1) sin2(π x2) sin t,
p = cos(π x1) sin(π x2) sin t,

(4.4)

for x1, x2 ∈ [0, 1] and t ∈ [0, T ], with T = 1. A corresponding forcing term is added to
(1.1) for a given Reynolds number. In this test case we have used Re = 100. Meanwhile
the boundary condition is homogeneous Dirichlet. The results are shown in Figure 2
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Figure 1: Order of convergence of the IMEX2L and IMEX3L. Test problem: Taylor vortex
(4.3); Re = 2π2, T = 1, N = 12, Ne = 1, Ω = [−1, 1]2, h = ∆t = T/2k, k =
1, . . . , 6. bc: periodic. (a) velocity error: IMEX2L (slope = 2.0154), IMEX3L
(slope = 2.9250); (b) pressure error: IMEX2L (slope = 1.2773), IMEX3L (slope
= 1.2711).
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Figure 2: Order of convergence of the IMEX2L and IMEX3L. Test problem:(4.4); Re =
100, T = 1, N = 16, Ne = 1, Ω = [0, 1]2, h = ∆t = T/2k, k = 4, . . . , 9. bc:
homogeneous Dirichlet. (a) velocity error: IMEX2L (slope = 1.7908), IMEX3L
(slope = 2.9669); (b) pressure error: IMEX2L (slope = 1.0140), IMEX3L (slope
= 1.0132).

4.3 Temporal order tests for the DIRK-CF methods

Using the IMEX2L and IMEX3L methods, we construct two DIRK-CF methods, namely,
DIRK-CF2L and DIRK-CF3L, of classical orders 2 and 3 respectively. DIRK-CF2L is
applied to (2.9) following the algorithm discussed in section 3.2. For DIRK-CF3L we use a
similar algorithm at each stage, but an extra update stage added, followed by a projection
step to enforce the divergence-free condition. We obtain second order for DIRK-CF2L, but
DIRK-CF3L suffer a loss in order (see Figure 3). The flows of the convecting vector fields
are computed in a semi-Lagrangian fashion. We believe that the implementation of the
boundary conditions alongside the projections is still not very clear from a numerical point
of view. The test problem used is the Taylor vortex problem (4.3) with doubly-periodic
domain x1, x2 ∈ [−1, 1], and we choose Re = 2π2. For the spatial discretization we use a
spectral method of order N = 12, and the time integration is done up to time T = 1. For
each stepsize ∆t = T/2k, k = 4, . . . , 9, the velocity error between the numerical solution
and the exact PDE solution (at time T ) is measured in the L2-norm. Meanwhile the
pressure error shows first order order of convergence (see Figure 3b).
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Figure 3: Order of convergence of the DIRK-CF2L and DIRK-CF3L. Test problem: Tay-
lor vortex (4.3); Re = 2π2, T = 1, N = 12, Ne = 1, Ω = [−1, 1]2, h =
∆t = T/2k, k = 4, . . . , 9. bc: periodic. (a) velocity error: DIRK-CF2L (slope
= 2.0243), DIRK-CF3L (slope = 2.000); (b) pressure error: DIRK-CF2L (slope
= 0.9734), DIRK-CF3L (slope = 0.8919).

The numerical experiments presented in sections 4.4 and 4.5 illustrate the potentials of
the semi-Lagragian exponential integrators [7] for the treatment of convection-dominated
problems. We consider two examples involving high Reynolds incompressible Navier-
Stokes models. These examples are the shear-layer rollup problem [4, 11, 13], and the
2D lid-driven cavity problem (see [16, 5] and references therein). The second order semi-
Lagrangian DIRK-CF2L method (named SL2L in [7]) is used in each of these experiments.
The pressure-splitting technique [12] (discussed in section 4.1.1) is applied to solve the
discrete linear Stokes system that arises at each stage of the DIRK-CF method. The
semi-Lagrangian schemes associated to the DIRK-CF method are achieved by tracking
characteristics and interpolating as in [15].

The results reported in both sections 4.4 and 4.5 indicate that the semi-Lagrangian
exponential integrators permit the use of large time stepsizes and Courant numbers.

4.4 Lid-driven cavity flow in 2D

We consider the 2D lid-driven cavity problem on a domain (x, y) ∈ Ω := [0, 1]2 with initial
data u = (u, v) = (0, 0) and constant Dirichlet boundary conditions

u =

{

1 on upper portion of ∂Ω

0 elsewhere on ∂Ω
, v = 0 on ∂Ω. (4.5)

In Figure 4 we demonstrate the performance of the second order DIRK-CF method
(SL2L, by the nomenclature of [7]). Spectral element method (see [13]) on a unit square
domain [0, 1]2 with Ne = 10 × 10 uniform rectangular elements and polynomial degree
p = 10 is used. The specified Reynolds numbers considered are Re = 400, 3200. A constant
time stepsize, ∆t = 0.03, is used, corresponding to a Courant number of Cr ≈ 9.0911. In
Figure 4c-d we plot the streamline contours of the stream functions, choosing contour levels
as in [5]. Meanwhile in Figures 4a-b plots of the centerline velocities (continuous line, for
Re = 400, dashed line, for Re = 3200) show a good match with those reported in [16]
(plotted in red circles). The results in Figure 5 show the evolution of the center velocity
(at Re = 400) up to steady state. It can be observed from this figure that steady state is
attained at time t ≈ 40. At steady state the relative error (L2-norm) between the velocity
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at a given time and the velocity at the preceding time has decreased to O(10−8). The
results also match with those of [23].
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Figure 4: Results of a second order DIRK-CF method for the 2D lid-driven cavity problem.
We have (x, y) ∈ [0, 1]2; Ne = 10× 10, N = 10, ∆t = 0.03, Cr = 9.0911. In blue
continuous line (our numerical solution); in red circles (◦, reference solution [16]).
(a) Horrizontal velocity component u along the vertical center line (x = 0.5),
(b) Vertical velocity component v along the horrizonal center line (y = 0.5), (c)
Streamline contours of the solution for Re = 400, (d) Streamline contours of the
solution for Re = 3200.
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Figure 5: Results of a second order DIRK-CF method for the 2D lid-driven cavity problem.
We have (x, y) ∈ [0, 1]2; Ne = 10 × 10, p = 10, ∆t = 0.03, Cr = 9.0911, Re =
400. (a) Evolution of the horrizontal velocity component u at the domain cen-
ter (x = 0.5, y = 0.5): t ∈ (0, 112.08), (b) Evolution of the vertical velocity
component v at the domain center (x = 0.5, y = 0.5): t ∈ (0, 112.08).
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4.5 Shear-layer roll up problem

We now consider the shear-layer problem [4, 11, 13] on a domain Ω := [0, 1]2 with initial
data u = (u, v) given by

{

tanh(ρ(y − 0.25)) for y ≤ 0.5

tanh(ρ(0.75 − y)) for y > 0.5
, v = 0.05 sin(2π x) (4.6)

which corresponds to a layer of thickness O(1/ρ). Doubly-periodic boundary conditions
are applied.

In Figure 6 we demonstrate the performance of various second order methods including
two DIRK-CF methods (SL2 & SL2L, by the nomenclature of [7]) and a second order
semi-Lagrangian multistep exponential integrator (named BDF2-CF2, in [8]). The results
are obtained at time t = 1.5, using a filter-based spectral element method (see [13]) with
Ne = 16 × 16 elements and polynomial degree N = 8. The specified Reynolds number is
Re = 105, while ρ = 30 and time stepsizes used are ∆t = 0.002, 0.005, 0.01 corresponding
to a Courant numbers of Cr ≈ 0.6393, 1.5981, 3.1963 respectively. The filtering parameter
used in each experiment is α = 0.3 (see for example [13]). However, the time stepsize and
Courant number are upto about 10 times larger than that report in [13]. The initial values
for the BDF2-CF are computed accurated using the second order DIRK-CF (SL2L) with
smaller steps. The results are qualitatively comparable with those in [11, 13].

In Figure 7 we demonstrate the performance of the second order DIRK-CF method
(SL2L). The results are obtained at times t = 0.8, 1.0, 1.2 and 1.5 respectively, using
spectral element method (without filtering) with Ne = 16 × 16 elements and polynomial
degree N = 16. The specified Reynolds number is Re = 105, while ρ = 30. The time
stepsize used is ∆t = 0.01, corresponding to a Courant number of Cr ≈ 11.9250. This time
stepsize is 10 times larger than that report in [13]. Again the results are well comparable
to those in [11, 13].

Finally in Figure 8 we demonstrate the performance of the second order DIRK-CF
method (SL2L) for the “thin” shear-layer rollup problem, so defined for ρ = 100. The
results are obtained at times t = 0.8, 1.0, 1.2 and 1.5 respectively, using spectral element
method (without filtering) with Ne = 16 × 16 elements and polynomial degree N = 16.
The specified Reynolds number is Re = 40, 000. The time stepsize used is ∆t = 0.01,
corresponding to a Courant number of Cr ≈ 11.9250. The results are well comparable to
those in [11, 13], except that we used 10 times the stepsize in time.

5 Conclusion

We have derived projection methods based on IMEX Runge-Kutta schemes and semi-
Lagrangian exponential integrators (DIRK-CF) for the incompressible Navier-Stokes equa-
tions. These methods have been shown to perform well in the case of periodic and no-slip
boundary conditions. Using model problems in 2D with high Reynolds number, we have
demonstrated the performance of the DIRK-CF methods for convection dominated prob-
lems. The IMEX methods show upto third order of convergence in the velocity. However,
the DIRK-CF methods only show upto second order. Proper ways of implementing the
projections alongside the boundary conditions for the DIRK-CF methods are still to be
investigated further. We believe this would help recover the full order of the methods.
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Figure 6: Results of second order DIRK-CF methods (SL2 & SL2L) and BDF2-CF method
for the shear-layer rollup problem. We have (x, y) ∈ [0, 1]2; Ne = 16×16, N = 8.
(filtering, α = 0.3), ρ = 30, Re = 105. Vorticity contours (-70 to 70 by 15) of the
solution at time t = 1.5.
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Figure 7: Results of second order DIRK-CF method (SL2L) for the shear-layer rollup problem. We
have (x, y) ∈ [0, 1]2; Ne = 16× 16, p = 16, ∆t = 0.01, Cr = 11.9250, ρ = 30, Re = 105.
Vorticity contours (-70 to 70 by 15) of the solution at time (a) t = 0.8, (b) t = 1.0, (c)
t = 1.2, (d) t = 1.5.
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Figure 8: Results of second order DIRK-CF method (SL2L) for the “thin” shear-layer rollup
problem. We have (x, y) ∈ [0, 1]2; Ne = 16 × 16, p = 16, ∆t = 0.01, Cr =
11.9250. (no filtering), ρ = 100, Re = 40, 000. Vorticity contours (-36 to 36 by
13) of the solution at time (a) t = 0, (b) t = 0.8, (c) t = 1.0, (d) t = 1.2.
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