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Accurate interface-tracking of surfaces in
three dimensions for arbitrary
Lagrangian-Eulerian schemes

Tormod Bjøntegaard‡ and Einar M. Rønquist§

October 20, 2011

We extend the computational method presented in [1] for tracking an in-
terface immersed in a given velocity field to three spatial dimensions. The
proposed method is particularly relevant to the simulation of unsteady free
surface problems using the arbitrary Lagrangian-Eulerian framework, and has
been constructed with two goals in mind: (i) to be able to accurately follow
the interface; and (ii) to automatically maintain a good distribution of the grid
points along the interface. The method combines information from a pure La-
grangian approach with information from an ALE approach. The new method
offers flexibility in terms of how an “optimal” point distribution should be de-
fined, and relies on the solution of two-dimensional surface convection prob-
lems. We verify the new method by solving model problems both in the single
and multiple spectral element case, and we compare this method with other
traditional alternatives. We have been able to verify first, second, and third
order temporal accuracy for the new method by solving these three-dimensional
model problems.

1 Introduction

The ability to accurately follow time-dependent surfaces is very important in many areas
of computational science and engineering. An important class of such problems is free
surface flows, with the free surface representing the interface between two fluids, e.g., air
and water. Computational methods for solving such problems can typically be classified
into two categories: methods which explicitly track the free surface (interface-tracking
methods; e.g., [17]) and methods where the interface is more implicitly defined (e.g., level
set methods [16, 18, 15] or volume-of-fluid methods [8]); we will here focus on the former
class.
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Interface-tracking methods (or sometimes also referred to as front-tracking methods) com-
prise a few essential steps. At any particular point in time, a velocity field is typically
determined from the governing equations within the fluid(s), e.g., by solving the Navier-
Stokes equations. By integrating this velocity field, it is possible to obtain a new position
of the interface.

A pure Lagrangian approach applied to an evolving interface is simply based on integrating
the velocity of the fluid particles along the surface to obtain the position of the surface at
a later point in time. However, in the context of a numerical approximation (e.g., using
finite-element-based methods), a pure Lagrangian approach is often not a very practical
approach since it typically results in large deformations of the computational domain.

In the context of free surface flows, the arbitrary Lagrangian-Eulerian (ALE) formulation
of the governing equations has been very successful as a point of departure for a numerical
approximation [9, 5, 11]. A typical approach to updating the free surface is to enforce
a kinematic condition along the surface. This condition has its origin in a continuum
description, and says that the normal fluid velocity has to be equal to the normal domain
velocity at any point along the surface. An important consequence of this condition is the
fact that a fluid particle which is present somewhere along the free surface at a particular
time will also be present at the free surface at a later time.

While the kinematic condition enforces a normal condition, a tangential domain velocity
also needs to be specified along the surface; a common choice is to enforce a homogeneous
Dirichlet condition for the tangential component [19, 2]. This choice typically reduces the
deformation of the computational domain compared to a pure Lagrangian approach, how-
ever, it offers limited control over the quality of the grid used to represent the free surface.
In particular, the distribution of the grid points along the free surface may deteriorate over
time, which may ultimately result in severe loss of accuracy (or even breakdown of the
simulation). This latter issue may be dealt with in various ways, e.g., through remeshing
or other mesh update strategies [12, 6]. However, the temporal accuracy will typically
suffer using such a strategy.

The issue of a non-optimal evolution of the surface representation is particularly acute
in the context of using high order finite elements or spectral elements. The reason for
this is related to the fact that such methods depend on locally regular mappings between a
reference domain and the corresponding physical element. If the distribution of the surface
points along the free surface becomes very distorted, this mapping may not be so regular
anymore, resulting in a loss of spatial accuracy. This will again affect the calculation of
tangent and normal vectors, as well as the local curvature, since the computation of these
quantities depends on the coupling between many surface points [10, 20].

One could also imagine enforcing the kinematic condition together with a tangential com-
ponent of the domain velocity in such a way that the integration of the total domain
velocity would: (i) result in an accurate representation of the free surface; and (ii) main-
tain a good distribution of the grid points along the surface [6, 3]. An obvious challenge
with this approach is how to define the overall domain velocity in such a way that not
only good spatial accuracy is achieved (with no need for remeshing), but in a way that
will also ensure good temporal accuracy (better than first order). The work presented in
[1] suggested alternative ways to achieve these two goals in two spatial dimensions.
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The work presented here is an extension of [1] to three spatial dimensions. In the original
work the overall strategy when advancing the interface from time-level tn to tn+1 was based
on searching for particles on the interface at tn which, through a pure Lagrangian motion,
end up at desirable positions at time tn+1. Similar to the two-dimensional study [1], we
only discuss the evolution of a surface when it is “immersed” in a known velocity field; no
partial differential equation will be solved to obtain this velocity field. The main reason
for this is the dearth of available analytical solutions in the context of solving problems
with an evolving interface (e.g., the full Navier-Stokes equations with free surfaces). We
let the three-dimensional surface evolve in time, and different computational strategies for
predicting the surface evolution will be tested and compared. Numerical tests will illustrate
the similarities and differences between the methods, and conclusions will be made based
on these.

2 Problem description

The motivation behind this work is to solve the three-dimensional Navier-Stokes equations
in a domain with a free surface. In this work the focus is on how to maintain a good
representation of the boundary throughout such a simulation. By solving the Navier-
Stokes equations we get a pressure field, p, and a velocity field, u, at a given time, t. It is
this velocity field on the surface of the domain which determines the shape of the domain
as time evolves. In particular, if we consider the surface as a collection of surface particles,
the motion of the particle at location x = (x1, x2, x3) is governed by

dx

dt
= u(x, t), (2.1)

where u = (u1, u2, u3) is the velocity field and t is time.

In the following we assume that the Navier-Stokes equations are formulated in the arbitrary
Lagrangian-Eulerian(ALE) framework. In this framework a third field, w, is introduced
and denoted as the domain velocity (or grid velocity in the discrete case). The shape of the
evolving surface only depends on the normal component of the velocity field, u; hence, the
domain (or grid) velocity is connected to the fluid velocity through the kinematic condition

w · n = u · n, (2.2)

where n is a normal vector. Thus, if the motion of all the surface particles satisfies

dx

dt
= w(x, t) (2.3)

instead of (2.1), the shape of the surface will remain the same.

Typically, in a numerical approximation the surface is represented by a selection of grid-
points, and updating the numerically approximated surface involves moving each individual
grid node. Hence, in the update from time-level tn to tn+1 we may for each grid-node inte-
grate (2.3), where w satisfies (2.2). The temporal accuracy may be achieved by integrating
this equation with the desired accuracy, however the spatial accuracy will depend on w · t,
where t can be any vector in the tangent plane. This tangential component of the grid-
velocity may be chosen freely, and this is something we wish to exploit here; see Figure
2.1. The aim of this work is to indirectly choose w ·t in such a way that both the temporal
and the spatial accuracy is maintained.
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Figure 2.1: The evolution of nine grid-points by integrating (2.3). In the first case w = u
is chosen, while in the other case we are able to control the distribution of the
grid points by a clever choice of w · t.

2.1 Spectral element discretization

In the following we consider front-tracking in the context of solving the Navier-Stokes
equations using a spectral element spatial discretization [4]. In particular, we restrict our
attention to the situation where our domain can be viewed as a deformed sphere, and
where the surface is represented by six spectral elements; see Figure 2.2. This test problem
will suffice for the limited deformations we consider in this study. Most importantly, we
assume that we don’t have a surface which “folds over”; we will comment on this aspect
later.

Figure 2.2: A sphere represented by 6 surface elements.

2.1.1 Surface parameterization

Using a standard spectral element discretization, the surface Γ is represented by K spectral
elements, Γk, k = 1, . . . ,K; see Figure 2.2. For a given (ξ1, ξ2) ∈ Γ̂ = [−1, 1]2, the corre-
sponding coordinate on Γk is given through the mapping Fk, x = (xk1(ξ1, ξ2), xk2(ξ1, ξ2), xk3(ξ1, ξ2));
see Figure 2.3. In general, any field variable ϕ associated with the front on element k is
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represented in terms of the reference variables ξ1 and ξ2. In particular, an Nth order poly-
nomial approximation of ϕ over Γk at time tn can be expressed in terms of the following
nodal basis:

ϕn,k(ξ1, ξ2) =

N∑
l=0

N∑
m=0

(ϕn)klm`l(ξ1)`m(ξ2). (2.4)

Here, `m(ξ) is the Nth order Lagrangian interpolant associated with the N + 1 GLL-
points, ξGLL,j , j = 0, . . . , N , such that `m(ξGLL,j) = δjm. For example, the coordinates
xi, i = 1, 2, 3, over Γk at time tn are represented as

(xi)
n,k(ξ1, ξ2) =

N∑
l=0

N∑
m=0

(xni )klm`l(ξ1)`m(ξ2). (2.5)

We use underscore to denote a vector comprising all the nodal values associated with a field
variable on element k, e.g., the vector xn,k1 represents all the values (xn1 )klm, l,m = 0, . . . , N ,
at time-level tn on element k. We also denote xn,k = (xn,k1 , xn,k2 , xn,k3 ). The following surface
variables are assumed to be known for a second order temporal scheme:

xn,k,xn−1,k,un,k,un−1,k,wn−1,k,wn−2,k, k = 1, . . . ,K.

The motivation behind storing these particular fields will be apparent when the new strat-
egy is described.

(1, 1)

(−1,−1)

Fk

Γk Γ̂

x1
x2 ξ1

x3 ξ2

Figure 2.3: The mapping of the reference domain to the physical domain for a single spec-
tral element.
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3 New strategy

We will here describe the new strategy for a closed surface, which can be viewed as a
deformed sphere, discretized by 6 spectral elements. The element configuration on a sphere
is given in Figure 2.2. The focus here is on how to update the computational domain from
tn to tn+1; our main objective is to track the surface with higher than first order accuracy
in time and at the same time control the spatial accuracy.

We will assume that the entire surface can be viewed as a collection of “surface particles”
which remain on the surface during the simulation. In order to determine the position
for a grid node at time tn+1, the idea will be to search for the particle at time tn which,
when moved through a pure Lagrangian motion, ends up in a “good position”. With “good
position” we mean that the collection of grid nodes, which are moved in this fashion, on
each element at time tn+1 should make the mapping from the reference domain to the
physical domain as smooth as possible. In order to move a particle through a Lagrangian
motion we need to integrate (2.1). Hence, in the case of using a multi-step time integrator,
we need information about the velocity of a given fluid particle at different time-levels in
order to achieve higher than first order accuracy. Obviously, the surface particle which is
located at a grid node at tn+1 will in general not be located at a grid node at tn (and earlier
time levels); see Figure 3.1(a). Hence, we don’t have immediate access to this particle’s
velocity. Specifically, a surface particle at the position defined by (ξ∗1 , ξ

∗
2) for element k at

tn+1 will, in general, be located at a different and unknown position (ξ̂1, ξ̂2) and possibly
also a different element at time level tn. Thus, in order to get this particle’s velocity at tn

or earlier time levels, we would first need to find the correct element and (ξ̂1, ξ̂2), and then
evaluate the relevant fields in (2.4).

The surface at tn+1 is unknown and a main issue is to quantify what we mean by a “good
position” without knowing the exact shape of the surface. Here, for the update of each grid
node, we choose to do this by finding the surface particle at tn which is located along a
particular vector at tn+1; see Figure 3.1(b). It is here that the restriction of not considering
“folding surfaces” becomes relevant, as we require that only one surface particle ends up
along this direction at tn+1.

We have three different classes of grid nodes to update: (i) the corner points of each
element, (ii) the element edges of each element, and (iii) the interior points of each element.
The directional vectors associated with these three types of nodes need to satisfy different
requirements, and this section is devoted to how these vectors may be chosen. Once
these vectors have been constructed, we discuss in Section 4 how we search for the relevant
particles at tn . The overall operation for the update of the surface from tn to tn+1 involves
three main consecutive steps:

1. Update the corner points (8 in total)

2. Update the element edges (12 in total)

3. Update all the interior surface points
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tn+1

tn−1

tn

(a)

 

tn+1

tn

(b)

Figure 3.1: (a) The path of a surface particle located at a grid node at time tn+1. The
position of this particle at time level tn and tn−1 will depend on the underlying
velocity field. (b) A directional vector and the particle at tn (open circle) which
is located along this vector at time tn+1 (full circle).

3.1 Update of the corner points

We now describe a procedure which tries to position the corner points in such a way that
the areas of the surface elements are similar and that the angles of the connecting edges
are close to 90 degrees; see Figure 3.2. Here, the red circle is the centre of the domain
bounded by the closed surface at tn. We now construct eight vectors originating from this
central point, and we want each of the corner points at tn+1 to be located along one of
these vectors. We also wish these vectors to adapt to the shape of the surface; for instance
we want to update the corner-points differently if the surface is close to a sphere compared
to a surface with an ellipsoidal shape.

The first step is to compute a measure of the general shape of the known surface at tn.
This measure may be represented by the six points found by evaluating the coordinates
in the centre of the reference domain for each element; see Figure 3.3. Once these center
points are determined, we compute the directional vectors

p1 = (x1 − xc) + (x2 − xc) + (x5 − xc)

p2 = (x1 − xc) + (x2 − xc) + (x3 − xc)

p3 = (x1 − xc) + (x3 − xc) + (x4 − xc)

p4 = (x1 − xc) + (x4 − xc) + (x5 − xc)

p5 = (x2 − xc) + (x5 − xc) + (x6 − xc)

p6 = (x2 − xc) + (x3 − xc) + (x6 − xc)

p7 = (x3 − xc) + (x4 − xc) + (x6 − xc)

p8 = (x4 − xc) + (x5 − xc) + (x6 − xc)
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where the center of the domain is defined as

xc =
x1 + x2 + x3 + x4 + x5 + x6

6

The computation of p1 is displayed in Figure 3.4. The idea now is to find the eight
particles on the surface at tn which, when moved by a pure Lagrangian motion, are located
somewhere along these directional vectors at tn+1.

p1

p4

p7

p8

p6 p5

p2

p3

Figure 3.2: Starting point and directional vectors for the corner-update.

 

x1

x6

x3

x1

x2

xc

x3

x4

x2x5

Figure 3.3: The six points determining the general shape of the surface. Here, xc is the
centre of the domain bounded by the closed surface, while x1, . . . ,x6 are the
midpoints of the six surface elements.
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3.2 Update of the points on the element edges

In the previous step we discussed the update of the corner points for each element; we
now focus on how to update the grid-points along the element edges. Again, we want to
construct starting points and directional vectors which determine the directions for the
updated points. As starting points for each edge we choose to distribute points along the
chord connecting the two relevant corner points computed in the previous step; see Figure
3.5. In order to determine the directional vectors we first construct a hexahedron from
the 8 corner-points computed in the previous step. Next, we compute outer unit normals
on each of the six faces of this hexahedron. Hence, for a point on the edge, we have a
non-unique normal. The directional vector for a point is simply the average of the two
normals computed on the opposing faces; see Figure 3.6. As before, we want to find the
particle at tn which, when moved through a Lagrangian motion, ends up somewhere along
the direction vector associated with this particle.

3.3 Update of the interior points

At this stage we have updated the boundary of each element, and what remains are the
interior points. The overall strategy here is the same as for the other types of grid nodes;
we need a starting point and a directional vector for each interior point. For the edges, we
chose starting points along the chord connecting the two end-points. For a surface in three
dimensions, however, the best way to do this is not obvious. We know the boundary of each
element at tn+1, and the idea now is to construct an intermediate surface which is solely
determined from this known boundary information and which has a good distribution of
grid points, i.e., the mapping from the reference domain to this new surface is smooth.
The way we choose to do this here is by using the Gordon-Hall algorithm [7] on all three
physical coordinates. At this stage we know the value of xn+1,k

ij on the boundary of each
surface element (where at least one of i or j is 0 or N). The Gordon-Hall algorithm is then
given by

xn+1,k
GH = xn+1,k, on ∂Γn+1,k,(

xn+1,k
GH

)
ij

= xA,kij + xB,kij − xC,kij , for 1 ≤ i, j ≤ N − 1,

where

xA,kij =
(1− ξi)

2
xn+1,k

0j +
(1 + ξi)

2
xn+1,k
Nj ,

xB,kij =
(1− ξj)

2
xn+1,k
i0 +

(1 + ξj)

2
xn+1,k
iN ,

xC,kij =
(1− ξi)

2

(1− ξj)
2

xn+1,k
00 +

(1 + ξi)

2

(1− ξj)
2

xn+1,k
N0

+
(1− ξi)

2

(1 + ξj)

2
xn+1,k

0N +
(1 + ξi)

2

(1 + ξj)

2
xn+1,k
NN .

The collection of points
(
xn+1,k
GH

)
will then give us a surface which solely depends on the

boundary-points which were found in the previous section. We will denote this surface as
the “GH-surface”. We assume that the shape of the “GH-surface” will not be too different
from the actual surface which we want to approximate at tn+1. In Figure 3.7 we have one

9



 

x5 − xc

x2 − xc

x1 − xc

p1

Figure 3.4: One of the directional vectors, p1, which determines the direction we want the
first of eight corner points at tn+1 to be located along. The computation of
p1 is based on points which indicates the general shape of the surface at the
known tn-configuration.

Figure 3.5: Based on the already updated corner points, we construct the chord between
two corner points and use a GLL-distribution along this chord as starting points
for the directional vectors.
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example of a numerically represented surface and its associated “GH-surface”. However,
it is the real surface at time tn+1 that we want to approximate well, so the larger the
difference is between these two, the more important it is to have good directional vectors.

3.3.1 Directional vectors: Alternative 1

One alternative for each directional vector is to use an extension of the chord-distribution
in two dimensions [1]. In two dimensions one way to do this was to distribute starting
points along the chord connecting the end-points, and use the normal of this chord as a
directional vector. Such a strategy would mean that the directional vector for each point
would be the same, and only the starting points would differ. To extend this to three
dimensions for a given point ij, we construct the two chords from the boundary. Both
these chords have a normal plane, and as our directional vector we use the intersection of
these two normal planes; see Figure 3.8.

3.3.2 Directional vectors: Alternative 2

As a second alternative we simply compute the normal on the “GH-surface” at each starting
point, and use this normal as the directional vector.
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Figure 3.6: Unit normals on the faces of the hexahedron computed from the eight updated
corner points. The directional vectors on each edge is the algebraic mean of
the two normal vectors.

(a) Surface (b) GH-surface

Figure 3.7: An example of a surface (a) and the associated GH-surface (b) on one spectral
element. Here the difference is large since the interior structure on the surface
doesn’t appear on the boundary.

(xn+1,k
1,i0 , xn+1,k

2,i0 , xn+1,k
3,i0 )

(xn+1,k
1,Nj , xn+1,k

2,Nj , xn+1,k
3,Nj )

N2

N1

(xn+1,k
1,0j , xn+1,k

2,0j , xn+1,k
3,0j )

(xn+1,k
1,iN , xn+1,k

2,iN , xn+1,k
3,iN )

Figure 3.8: Computation of the directional vector for the grid point with indices ij on
element k using alternative 1.
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4 Implementation

In the previous section we discussed possible ways of updating the grid from tn to tn+1.
This resulted in directions in which we wanted to update each grid node. Next, the idea is
to find a particle at the surface at time tn which when moved by a pure Lagrangian motion
ends up along this direction at time tn+1. For a given particle at tn, the position at tn+1

is found by integrating
dx

dt
= u (4.1)

from tn to tn+1. Here, we will use Adams-Bashforth schemes for the integration of (4.1);
e.g., the position of a given particle at tn+1 is given by

xn+1 = xn + ∆t

(
3

2
un − 1

2
un−1

)
, (4.2)

when using a second order scheme. Hence, for a given particle we need its position at
tn, its velocity at tn and its velocity at tn−1. The relevant fields are available through
the polynomial representations (2.4). One choice (k, ξ∗1 , ξ

∗
2) at tn corresponds to one par-

ticle at this time level, and the position and velocity for this particle is available through
(xi)

n,k(ξ∗1 , ξ
∗
2) and (ui)

n,k(ξ∗1 , ξ
∗
2), i = 1, 2, 3, respectively. However, since the velocity field

(ui)
n−1 is represented on the geometry at time level tn−1 we don’t have the velocity at

tn−1 easily available for this particular particle since (k, ξ∗1 , ξ
∗
2) at tn−1 in general corre-

sponds to a different particle. Hence, if we use (ui)
n−1,k(ξ∗1 , ξ

∗
2) in (4.2) we will not be

able to follow the surface at second order precision, and can at best hope for first order
accuracy. With this in mind, it would be convenient to have representations of the velocity
components (ui)

n−1 at the tn geometry configuration. If we denote this representation ũni ,
(ui)

n,k(ξ∗1 , ξ
∗
2) and (ũi)

n,k(ξ∗1 , ξ
∗
2) will correspond to the ith velocity component at tn and

tn−1, respectively, for the particle corresponding to (k, ξ∗1 , ξ
∗
2) at tn. In the next section we

will discuss how these representations ũni can be computed.

4.1 Finding a fluid particle’s earlier velocities

We will base our strategy on the idea presented in [14] and used for time-dependent sur-
faces in two space dimensions in [1]. This strategy involves integrating surface convection
problems, which take the form

∂ϕ

∂τ
+ u · ∇sϕ = 0, on Γ(t∗ + τ),

ϕ = ϕ0, on Γ(t∗).
(4.3)

Here, Γ is the time-dependent interface, t∗ will either be tn−1 or tn−2, and ∇s is the surface
gradient. The ALE-formulation of this problem reads: find ϕ ∈ X such that

d

dτ
(ϕ, v) + c(ϕ, v) = 0, ∀v ∈ X,

ϕ|Γk(ξ1, ξ2; τ = 0) = ϕk0(ξ1, ξ2), k = 1, . . . ,K,
(4.4)
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where X is an appropriate function space and

(ϕ, v) =

K∑
k=1

∫
Γ̂
ϕv(Js)k dΓ̂, (4.5)

c(ϕ, v) =
K∑
k=1

(∫
Γ̂
v(u−w) · ∇sϕ(Js)k dΓ̂−

∫
Γ̂
vϕ

d(Js)k

dτ
dΓ̂

)
. (4.6)

Here,
d

dτ
=

∂

∂τ
+ w · ∇s.

To express the other terms we need the following definitions

wt1 =

(
∂w1

∂ξ1
,
∂w2

∂ξ1
,
∂w3

∂ξ1

)
,

wt2 =

(
∂w1

∂ξ2
,
∂w2

∂ξ2
,
∂w3

∂ξ2

)
,

g1 =

(
∂x1

∂ξ1
,
∂x2

∂ξ1
,
∂x3

∂ξ1

)
,

g2 =

(
∂x1

∂ξ2
,
∂x2

∂ξ2
,
∂x3

∂ξ2

)
,

gαβ = gα · gβ,
gα · gβ = δαβ,

g =
√
g11g22 − g2

12. (4.7)

Then,

Js = g,

∇sϕ =
∂ϕ

∂ξα
gα,

dJs

dτ
=

(g1 ·wt1)g22 + (g2 ·wt2)g11 − (g1 ·wt2 + g2 ·wt1)g12

g
,

where α = 1, 2 and summation over repeated indices is assumed.

We discretize the convection problem (4.4) using a standard spectral element method in
space and arrive at the following set of ordinary differential equations:

dBsϕ

dτ
= −Csϕ,

ϕ(τ = 0) = ϕ
0
.

(4.8)

Here, Bs is the surface mass matrix, Cs is the convection operator and ϕ is a global vector
comprising this fields nodal values on all the surface elements. For a second order scheme,
we need to solve (4.8) three times, with initial conditions ϕ

0
= un−1

i , i = 1, 2, 3, and
integration domain (0,∆t). For a third order scheme we need to solve six such problems
with initial conditions ϕ

0
= un−1

i and ϕ
0

= un−2
i , i = 1, 2, 3, and integration domains

(0,∆t) and (0, 2∆t), respectively. We denote the output as ũni for the problems with
integration domain (0,∆t) and ˜̃uni for the problems with integration domain (0, 2∆t). In
this work we use the classical explicit fourth order Runge-Kutta method for solving this
problem.
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4.2 Finding the correct particle

At this stage we have developed a general strategy for how we want the grid-nodes to
move, which resulted in starting points and directional vectors, and the idea is to search
for the particle at tn which ends up at the desired location (dictated by these vectors) at
tn+1 by a pure Lagrangian motion. The assumption that we have a surface which doesn’t
“fold over” with respect to these vectors ensures that this problem has a unique solution.
Using a second order scheme as an example we want to find the particle such that xn+1

from (4.2) is a valid location for each grid node. By solving three convection problems
as described in the previous section we were able to represent un−1 on the tn-geometry.
Hence, xn,k(ξ∗1 , ξ∗2), un,k(ξ∗1 , ξ∗2) and ũn,k(ξ∗1 , ξ

∗
2) now corresponds to the position at tn, the

velocity at tn and the velocity at tn−1, respectively, for the unique particle at element k
with reference coordinates (ξ∗1 , ξ

∗
2). This is all the information we need, and the remaining

task is now to find the correct particle, represented by the element number and the location
on the reference domain.

4.2.1 The mono-domain case

When we have a problem which is modelled by a single spectral element and the system
is closed such that no “surface particles” enter or leave the domain, we may deal with
this by either a direct search for a set (ξ∗1 , ξ

∗
2) or extending the idea from [1] by solving

one-dimensional convection problems in multiple directions.

4.2.2 The multi-domain case

In the multi-element case, the situation becomes more complicated due to the fact that
particles may be located on one element at tn and on a different one at tn+1, and this is
something we need to be able to deal with. We still consider the six-element configuration
which can be viewed as a deformed sphere. In our search we want to be able to access
all surface particles on the deformed surface. The first thing we do is construct a regular
reference sphere with the same elemental structure and polynomial degree. Here, all the
elements have the same shape and size and we have control over the location of the elemen-
tal boundaries. Next, we map the relevant fields from the (deformed) physical surface to
the reference sphere by simply representing each nodal value on the physical domain to the
corresponding node on the reference sphere; see Figure 4.1(a). Hence, we may now search
for the surface particle which satisfies our requirements on the reference sphere instead of
the (deformed) physical domain. In particular, we define a starting point on the reference
sphere, and from this starting point we first rotate θ radians in the latitude direction and
next φ radians in the longitude direction, and our search consists of finding the unique set
(θ∗, φ∗) (0 ≤ θ∗, φ∗ ≤ 2π) which satisfies our criteria; see Figure 4.1(b). In this way we are
able to access all the points on the sphere, and from a given (θ∗, φ∗) we are able to map
this to a corresponding (k, ξ∗1 , ξ

∗
2) due to the known shape of the reference sphere.

From the resulting (k, ξ∗1 , ξ
∗
2) we may then find the relevant position and velocities from

the expansions (2.4).
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ReferencePhysical

M

(a)

θ

φ

(b)

Figure 4.1: (a) The mapping, M, from the physical domain to the reference sphere. (b)
An illustration of the search strategy on the reference sphere. Here, the blue
circle is our starting point, and the “correct” particle represented by the red
circle is found by rotations in both the latitude and longitude direction.

16



4.3 Algorithm

The algorithm for a first order scheme for the update from tn to tn+1 is given in Algorithm
1, the second order version is given in Algorithm 2, while the third order version is given
in Algorithm 3.

Equations which will be referenced in the algorithms:

First order:

xn+1 = xn + ∆tun, (4.9)

wn =
xn+1 − xn

∆t
, (4.10)

Second order:

xn+1 = xn + ∆t

(
3

2
un − 1

2
ũn
)
, (4.11)

wn =
2

3

(
xn+1 − xn

∆t

)
+

1

3
wn−1, (4.12)

Third order:

xn+1 = xn + ∆t

(
23

12
un − 4

3
ũn +

5

12
˜̃un) , (4.13)

wn =
12

23

(
xn+1 − xn

∆t

)
+

16

23
wn−1 − 5

23
wn−2. (4.14)
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Algorithm 1 First order algorithm for the update xn to xn+1

Input: xn,un,wn−1

1. Set wn = wn−1. This corresponds to a zeroth order extrapolation.
2. Compute starting points and directional vectors for the corners as described in Section
3.1
for All 8 corners do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.9) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
3. Compute starting points and directional vectors for the element edges as described
in Section 3.2
for All interior points on all 12 edges do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.9) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
4. Compute starting points and directional vectors for the interior points on each element
as described in Section 3.3
for All interior points on all 6 elements do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.9) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
5. Update wn according to (4.10).

Algorithm 2 Second order algorithm for the update xn to xn+1

Input: xn,xn−1,un,un−1,wn−1,wn−2

1. Set wn = 2wn−1 −wn−2. This corresponds to a first order extrapolation.
2. Integrate (4.8) from (0,∆t) three times with initial conditions ϕ

0
= un−1

i , i = 1, 2, 3
by using the classical RK4-method. Use first order polynomial interpolation for x, u
and w in (0,∆t), where (0,∆t) corresponds to (tn−1, tn) in “real time” ⇒ ũn.
3. Compute starting points and directional vectors for the corners as described in Section
3.1
for All 8 corners do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.11) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
4. Compute starting points and directional vectors for the element edges as described
in Section 3.2
for All interior points on all 12 edges do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.11) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
5. Compute starting points and directional vectors for the interior points on each element
as described in Section 3.3
for All interior points on all 6 elements do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.11) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
6. Update wn according to (4.12).
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Algorithm 3 Third order algorithm for the update xn to xn+1

Input: xn,xn−1,xn−2,un,un−1,un−2,wn−1,wn−2,wn−3

1. Set wn = 3wn−1− 3wn−2 +wn−3. This corresponds to a second order extrapolation.
2. Integrate (4.8) from (0,∆t) three times with initial conditions ϕ

0
= un−1

i , i = 1, 2, 3
by using the classical RK4-method. Use second order polynomial interpolation for x, u
and w in (0,∆t), where (0,∆t) corresponds to (tn−1, tn) in “real time” ⇒ ũn. Integrate
(4.8) from (0, 2∆t) three times with initial conditions ϕ

0
= un−2

i , i = 1, 2, 3 by using
the classical RK4-method. Use second order polynomial interpoltion for x, u and w in
(0, 2∆t), where (0, 2∆t) corresponds to (tn−2, tn) in “real time” ⇒ ˜̃un.
3. Compute starting points and directional vectors for the corners as described in Section
3.1
for All 8 corners do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.13) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
4. Compute starting points and directional vectors for the element edges as described
in Section 3.2
for All interior points on all 12 edges do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.13) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
5. Compute starting points and directional vectors for the interior points on each element
as described in Section 3.3
for All interior points on all 6 elements do
Find the set (θ∗, φ∗) which corresponds to the particle such that xn+1 from (4.13) is
located in the desired direction. This search for (θ∗, φ∗) involves a Newton iteration.

end for
6. Update wn according to (4.14).
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4.4 Computational complexity

We will here briefly discuss the cost of the new algorithm when we consider a deformed
sphere represented by six elements. Step 2 in Algorithm 2 and Algorithm 3 involves solving
problems of the type (4.8), which scales like O(N3) when exploiting that the operators are
based on tensor-product forms [4]. The main bottleneck is however the steps 3., 4. and
5. in the algorithms which involve searching for the correct particle. For each grid-node
we wish to find (θ∗, ϕ∗) which satisfies our criterion, and at each iteration the guess (θ, ϕ)
corresponds to an element number k and reference values (ξ1, ξ2). Hence, we need to make
several evaluations on the form

ϕ(ξ1, ξ2) =

N∑
m,n=0

ϕmn`m(ξ1)`n(ξ2). (4.15)

This can be done rather efficiently by first evaluating

`j(ξ1), `j(ξ2), j = 0, . . . , N. (4.16)

The computation of `j(ξ) requires about 2N operations, hence (4.16) requires approxi-
mately 4N2 operations. By setting

Lij = `i(ξ1)`j(ξ2), 0 ≤ i, j ≤ N,

the evaluation (4.15) corresponds to

ϕ(ξ1, ξ2) =
N∑

m,n=0

ϕmnLmn, (4.17)

at the cost of approximately 2N2. For a second order scheme we need to do 9 such
evaluations at each iteration (3 fields xn, un, ũn with three components each), while for a
third order scheme we need 12. We need to do this for approximately 6N2 points, hence,
in total we get

Second order : Nit · 6N2 · (18N2 + 4N2) = 132NitN4,

Third order : Nit · 6N2 · (24N2 + 4N2) = 168NitN4,

where Nit is the average number of iterations needed in Newton’s method. In our simula-
tions we typically achieve convergence in about three iterations.
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5 Numerical results

In this section we will present numerical results where we compare our new strategy with
other strategies. The main motivation behind this work is to solve the three-dimensional
Navier-Stokes equations with a free surface, however, it is difficult to construct a test-
problem which satisfies these equations and where the evolution of the surface also depends
on the time-dependent solution of the Navier-Stokes equations. Instead, we will here only
focus on the step of updating the geometry in such a solver and we will assume that we
“release” the surface in a known velocity field (which in a real case should come from
the Navier-Stokes solver at each time-step). These numerical tests are constructed by first
deciding the evolution of the exact front, and next computing a velocity field which satisfies
this evolution. Finally, we may add suitable tangential components to this velocity field
which doesn’t alter the shape of the front but may alter the motion of the fluid particles.
From now on we will only use the known velocity-field in our strategies (unless stated
otherwise) and the known shape of the exact front at a given time, T , is only used in the
error computation.

In order to determine the quality of the numerically computed surface at a given time, T ,
we have two error measures:

1. Error “hitting the front”

For each grid node we compute the distance to the exact front, and the reported
error is the maximum over all grid nodes; see Figure 5.1. Hence, the quality of the
grid doesn’t come into consideration for this measure.

2. Error computing the surface area

We compute the surface area from the numerically computed front, and compare this
with the surface area of the exact front, Se. The surface area is given by:

Se =

∫
dS,

and the numerically computed area of our front is given by

Sn =

K∑
k=1

N∑
i,j=0

wiwjg
k
ij ,

where wi is the ith GLL-weight and gkij corresponds to the quantity in (4.7). The
reported error is |Se − Sn|.

5.1 Test problem 1: a single element

Here we compare the new strategy on a front discretized by one spectral element which
is released in a velocity field. The problem is constructed such that a motion of the grid
nodes on the boundary of the domain through a pure Lagrangian motion yields a good point
distribution. We compare the motion of the interior grid points by using a pure Lagrangian
strategy and the new strategy with alternative 1 for the update of the interior points. In
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Error

Exact

Numerical

xc

xe

xp

Figure 5.1: A two-dimensional projection of the exact and numerically approximated sur-
face to a plane containing the vector xp − xc. Here, xc is the centre of the
deformed sphere, xp is a point on the numerical surface and xe is the corre-
sponding point on the exact surface. The error “hitting the front” is defined as
the distance between xp and xe.

Figures 5.2 and 5.3 we see the numerically approximated surface at a few snapshots during
the simulation for the new strategy and the Lagrangian strategy, respectively. Figures
5.4 and 5.5 display the error for both these approaches for first, second, and third order
schemes. We see that both approaches are able to achieve the expected accuracy in terms
of hitting the front, however, due to the distorted grid we get a large error in terms of
computing the area when using the Lagrangian approach. With the new strategy the error
decays with the expected rate for the first, second, and third order scheme. Here, we also
note that the spatial error with N = 18 seems to be about 10−5.
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(a) T=0 (b) T=1

(c) T=2 (d) T=3

(e) T=4 (f) T=5

Figure 5.2: The front represented at selected times using the new strategy to solve test
problem 1.
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(a) T=0 (b) T=1

(c) T=2 (d) T=3

(e) T=4 (f) T=5

Figure 5.3: The front represented at selected times using a Lagrangian strategy to solve
test problem 1.
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Figure 5.4: The error for test problem 1 when using the new strategy with Alternative 1
with N = 18 and T = 5.

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

∆t

E
rr

o
r

 

 

1.order

2.order

3.order

(a) Error front

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

∆t

E
rr

o
r

 

 

1.order

2.order

3.order

(b) Error area

Figure 5.5: The error for test problem 1 when moving the grid-nodes in a pure Lagrangian
motion with N = 18 and T = 5.
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5.2 Test problem 2 - a closed surface

Next, we move to a closed surface which is represented by six spectral elements; the initial
surface is released in a known velocity field. The process of updating the grid from tn to
tn+1 using the new strategy involves using Algorithms 1, 2 and 3 for the first, second and
third order approach. Here, alternative 2 is used for updating the interior grid-points on
all 6 elements. In this example we compare the new strategy with a strategy where all
the grid-points are moved in a pure Lagrangian fashion. We also compare with a strategy
where all the grid-points are moved in the normal direction, which is a common strategy
in the ALE-setting. Computing the normals based on the numerically represented surface,
however, makes the simulation break down, so here we compute the normals from the
analytically known surface. This is obviously something we usually won’t have access to
in a real simulation.

In Figure 5.6 we see that we are able to maintain a good grid quality during the simulation,
and we are able to achieve first, second and third order accuracy both in terms of “hitting
the front” and when measuring the surface area. In Figure 5.7 we have used a pure
Lagrangian motion for all grid-nodes. Now the grid quality is totally dependent on the
velocity field, and we see that the grid becomes heavily distorted due to a substantial
velocity component in the tangential directions. In Figure 5.8 we have the evolution of
the grid when we are using a normal strategy where all grid nodes are only moved in
the normal direction, and we see that the grid becomes somewhat distorted. In Figures
5.9, 5.10 and 5.11 we have the error at T = 16 with N = 21 for the three approaches.
All three approaches behave as expected in regards to hitting the front. In terms of the
approximated surface area, we get the expected behaviour for the new strategy and the
Lagrangian strategy. We also note that the normal strategy here actually behaves better
than the new strategy, so in princible a motion in the normal direction doesn’t seem like a
bad idea for this example. However, as noted earlier we have used the analytically known
surface to compute the normals in this case. Computing the normals from the numerically
approximated surface is here unstable and eventually leads the simulation to break down.
We may also note that if we had replaced ũ with u in Algorithm 3, we would achieve first
order accuracy with a slightly better constant than the overall first order scheme described
in Algorithm 1 for this test-problem.
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(a) T=0 (b) T=1.1

(c) T=2.8 (d) T=3.3

(e) T=6 (f) T=8

Figure 5.6: The front representation at selected times using the new strategy to solve test
problem 2.
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(a) T=0 (b) T=1.1

(c) T=2.8 (d) T=3.3

(e) T=6 (f) T=8

Figure 5.7: The front representation at selected times using the Lagrangian strategy to
solve test problem 2.
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(a) T=0 (b) T=1.1

(c) T=2.8 (d) T=3.3

(e) T=6 (f) T=8

Figure 5.8: The front representation at selected times using the normal strategy with an-
alytical normals to solve test problem 2.
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Figure 5.9: The error for test problem 2 when using the new strategy with Alternative 2
with N = 21 and T = 16.
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Figure 5.10: The error for test problem 2 when moving the grid-nodes in a pure Lagrangian
motion with N = 21 and T = 16.
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Figure 5.11: The error for test problem 2 when moving the grid-nodes in the normal direc-
tion (where the normals are analytically computed) with N = 21 and T = 16.
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6 Conclusions

We have extended the computational approach presented in [1] for tracking an interface
immersed in a given velocity field to three spatial dimensions. The proposed method is
particularly relevant to the simulation of unsteady free surface problems using the arbitrary
Lagrangian-Eulerian framework, and has been constructed with two goals in mind: (i)
to be able to accurately follow the interface; and (ii) to automatically maintain a good
distribution of the grid points along the interface. The method combines information from
a pure Lagrangian approach with information from an ALE approach.

We have been able to construct three-dimensional model problems allowing us to quantify
the discretization error incurred. In particular, it has allowed us to verify and compare the
temporal accuracy of different methods: the new approach, a pure Lagrangian approach,
and an approach honoring the kinematic condition in the normal direction, but imposing a
homogeneous Dirichlet condition for the tangential component of the grid velocity (called
the Normal approach). Using the new approach we have been able to achieve both of
our primary objectives; we have verified first, second, and third order temporal accuracy
for the two model problems considered here. The new method is particularly important
in the context of using high order spatial discretization schemes. Both the Lagrangian
approach and the Normal approach generally give a non-optimal point distribution along
the interface, something which again may result in large errors in the computation of
important surface quantities (e.g., normal and tangent vectors, local curvature, length
etc.). Such errors may, in the worst case, result in a complete breakdown of the interface-
tracking.

In the two test problems considered in this study, we use a single spectral element (an open
surface) and multiple spectral elements (a closed surface), respectively. The polynomial
approximation in each spatial direction on the reference element is N . Hence, the number
of nodal points on a three-dimensional surface is O(N2). The complexity of the proposed
method for tracking the evolving surface is O(N4), which may appear expensive. However,
in the context of solving three-dimensional Navier-Stokes problems using spectral elements,
the number of unknowns will scale as O(N3), and the computational cost for a single
(spatial) operator evaluation will scale as O(N4) [13]. Hence, using the proposed method
in the context of solving such problems, the added computational cost will be modest.
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