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Adaptive spectral methods

Øystein Tråsdahl† and Einar M. Rønquist†

January 31, 2012

This paper discusses numerical solution of boundary value problems using
spectral methods combined with nonlinear and adaptive mappings between the
reference domain and the physical domain. A brief review of existing methods
for adaptive mesh generation is given, and a method for finding close to optimal
mappings for boundary value problems in R1 is presented. The method exploits
the link between high order numerical solutions of PDEs and approximation of
parametric curves. Also, other adaptive methods for boundary value problems
in R1 are proposed, based either on minimizing the discrete L2-norm of the
residual, or interpolating the residual as a parametric curve. The adaptive
methods are constructed with the aim of finding optimal mappings, however,
this turns out to be a very difficult task. Still, significant improvement from
standard (non-adaptive) high order methods is achieved in some cases.

Keywords: Spectral methods, optimal mesh, advection-diffusion equation

1 Introduction

Spectral and pseudo-spectral (PS) methods are attractive methods for the numerical solu-
tion of partial differential equations (PDEs) for which the solution, the geometry and the
source terms have a high degree of regularity. In particular, for analytic solution and data,
the error in the numerical solution decreases exponentially fast as the dimension of the ap-
proximation space increases [6, 10]. This convergence rate is related to the global approach
of the spectral and PS methods: the basis functions (trigonometric or algebraic polynomi-
als) have global support, and the convergence rate is inherited from the convergence rate
of classical trigonometric or polynomial approximation. Compared with finite difference
and finite element methods, which are based on local approximations of fixed (low) order,
this can lead to significantly smaller errors for a given number of degrees-of-freedom.
However, there are problems where spectral and PS methods are considered less suitable.

If the solution has a boundary or interior layer with steep gradients, then small errors
will only be achieved when the polynomial degree is high enough to resolve the localized
phenomena. One such class of problems is singularly perturbed boundary value problems.
For example, considering the advection-diffusion equation, a high Peclet number may yield
a solution with a thin boundary layer, and the numerical solution may be corrupted by
oscillations, spreading globally over the computational domain (unless the resolution is
high enough). The thinner the boundary layer is, the larger the oscillations are for a
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fixed resolution (or polynomial degree). These problems are common for most numerical
methods, including finite difference and finite element methods. However, these are cheaper
and easier to refine locally to the required resolution [2, 26]. For this reason, adaptivity is
much more developed in the context of low order methods than for spectral methods.
There have been a number of strategies proposed for overcoming these difficulties in the

context of spectral and PS methods. One option is post-processing the solution through
filtering, which can be used to dampen oscillations. This requires a modal representation
of the numerical solution. Another option is the addition of artificial viscosity. Tadmor
introduced the vanishing viscosity method for shock capturing [22, 23]. Brezzi et. al.
[8] introduced bubble stabilization in a finite element context, in which the space of test
functions is augmented by a set of “bubble functions”. The ideas were applied to spectral
methods by Canuto [9] and Pasquarelli and Quarteroni [20].
Adaptive methods can also be based on modifying the mesh on which the spectral solu-

tion is represented. A spectral Galerkin approach typically involves applying a coordinate
transformation, solving the PDE in a reference domain using a standard mesh, and then
mapping the numerical (polynomial) solution back to the physical domain to approximate
the exact solution. A key idea with adaptive methods is that, to achieve sufficient resolu-
tion in the interior or boundary layers, mesh nodes are clustered in these critical regions in
the physical domain. For low order methods this always leads to a better approximation,
but for high order methods based on polynomials, the issue is a bit more complicated.
A high mesh node density may not necessarily mean better accuracy, since the numerical
solution may display wild oscillations between the nodes. The method may not even con-
verge as the number of nodes increases. The key to constructing good adaptive meshes in
the context of high order methods is regularity: the reference domain must be mapped to
the physical domain by a smooth coordinate transformation in order to avoid oscillations.
Enforcing a smooth and yet suitably adaptive mapping is difficult, and few authors address
the regularity of the mapping explicitly. The adaptive methods are often based on some
other requirement, for example equidistribution of some function over the computational
domain, or minimization of some norm of the numerical solution. An overview over existing
adaptive methods in this category is given in Section 3.
The objectives of this paper are to investigate optimal or close to optimal mappings for

the numerical solution of boundary value problems and to test adaptive methods that are
constructed with the aim of finding such mappings. The paper is structured as follows:
in Section 2 the potential of adaptive methods is demonstrated through the numerical
solution of a one-dimensional advection-diffusion model problem, and the role of the co-
ordinate transformation is briefly discussed. We then proceed in Section 3 with a review
of existing adaptive methods in the high order context. In Sections 4 and 5 we present
methods for constructing close to optimal and approximate coordinate transformations,
respectively; these methods are based on interpolation of parametric curves, and the link
between interpolation and adaptive high order methods is explained. In Sections 6 and
7 we introduce alternative adaptive methods, and in Section 8 some additional numerical
results are presented. Finally, in Section 9, we present some conclusions and remarks.

2 A motivational example

To show the potential of adaptivity in the context of spectral methods, we begin with an
example. The problems we will consider in this paper are advection-diffusion boundary
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value problems that can be written on the form

−εd2u

dx2
+

du

dx
= f, x ∈ Ω, (1)

accompanied by suitable boundary conditions. Here, ε is a constant, f is a smooth function,
and Ω is a bounded interval on the real axis.
Consider a particular model problem on the form (1) where Ω = (0, 1), ε = 0.01,

f(x) = 1, and with homogeneous Dirichlet boundary conditions. The problem has the
exact solution

u(x) = x− ex/ε − 1

e1/ε − 1
, (2)

which features a boundary layer with a width of order O(ε) near x = 1.
A pure spectral method is applied to solve the problem numerically. It is based on the

equivalent weak form of (1), and can be stated as follows: find u ∈ X = H1
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ X, (3)

where
a(u, v) = ε

∫
Ω

du

dx

dv

dx
dx+

∫
Ω

du

dx
v dx, (4)

and
(f, v) =

∫
Ω
fv dx. (5)

Prior to discretization both integrals are transformed to integrals over a reference domain
Ω̂ = (−1, 1). The coordinate transformation is given by x = F(ξ), with x ∈ Ω, ξ ∈ Ω̂.
Discretization is based on high order polynomials over Ω̂, and the discrete space XN ⊂ X
can be expressed as

XN = {v ∈ X, v ◦ F ∈ PN (Ω̂)}. (6)

Exact integration of the bilinear and linear forms is replaced by quadrature at the Gauss-
Lobatto Legendre (GLL) points. The numerical solution ûN = uN ◦ F is a polynomial of
degree N over Ω̂, and it can be represented by the nodal basis

ûN (ξ) =
N∑
j=0

uj`j(ξ). (7)

Here, `j is a Lagrangian interpolant through the GLL points ξ0, . . . , ξN , i.e., it is the unique
polynomial of degree N satisfying `j(ξk) = δjk. The functions `0, . . . , `N make up a basis
for the space PN (Ω̂) of polynomials of degree less than or equal to N over Ω̂. Note that in
(7) the basis coefficients u0 = uN = 0 due to the homogeneous boundary conditions, and
uj = ûN (ξj) = uN (xj), with xj = F(ξj).
The difference between the exact solution and the numerical solution measured in the

L2 norm is given by

||u− uN ||2L2(Ω) =

∫
Ω

(
u(x)− uN (x)

)2
dx. (8)

Again, the integral can be transformed to an integral over Ω̂ and exact integration can be
replaced by GLL quadrature. In practice, overintegration in M � N quadrature points is
used in order to ensure that the quadrature error is subdominant the discretization error.
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Solving the boundary value problem over a reference domain requires a bijective mapping
between Ω̂ and Ω. Of course, the easiest, and certainly the most common, option is to use
a linear (or affine) mapping, F = F , given explicitly as

x = F(ξ) =
ξ + 1

2
. (9)

However, we may also consider more general (nonaffine) mappings F : Ω̂ → Ω. There
is nothing in the spectral method that requires F to be linear; the only requirement is
that it is bijective. Note that the numerical solution is not constructed as a polynomial
approximation of u, but rather of the mapped solution

u(F(ξ)) = (u ◦ F)(ξ) = û(ξ). (10)

The standard error estimates apply to û, so using F to increase the smoothness of û may
increase the convergence rate.
A consequence of using a nonlinear mapping is that the test functions are no longer

polynomials when viewed as functions on the physical domain. This is discussed in [21],
where optimal error estimates are derived.
Let us now solve the model problem using a polynomial degree N = 10 and two different

mappings F : the affine mapping (9), and a customized, nonlinear mapping determined
by the ET method described in Section 4. Figure 1 shows the two numerical solutions
over both the physical domain and the reference domain. The affine mapping results in
an oscillatory numerical solution due to the failure of resolving the boundary layer. On
the other hand, the nonlinear F gives a numerical solution that cannot be distinguished
from the exact solution. Figure 2 shows that this mapping is highly nonlinear, and that it
moves all the GLL points in the direction of the boundary layer.

3 A review of adaptive high order methods

Adaptive mesh generation in the context of spectral and pseudo-spectral (PS) methods
has been investigated for several decades. Although some progress has been made, a lot
remains to be done in order for this to represent a practical and efficient tool. This is in
contrast to adaptive low order methods (e.g., hp-FEM), which is a mature field and also
widely used in commercial applications. The reason for the relative lack of breakthrough
is probably the complexity and the cost associated with constructing a global mapping
which will minimize the discretization error for a fixed order of approximation.
In the literature, adaptivity for high order methods is most often applied to problems

with interior or boundary layers. This is the area where such methods have the biggest
potential and where the effect of adaptivity is the most striking. Standard high order
methods may yield exponential convergence for such problems, but small error levels are
typically achieved only after the interior or boundary layer has been properly resolved,
and then often at a very low (exponential) rate [27]. An adaptive mapping will typically
cluster (physical) grid points in the region(s) in Ω where the exact solution u changes
rapidly, effectively “stretching out” the corresponding region in Ω̂, yielding slower variation
and less step gradients in the mapped solution û.
Most adaptive methods can be applied to time-independent problems, but they are more

often applied to time-dependent problems. This is because such problems lend themselves
well to most of the existing adaptive algorithms. The numerical solution from the current
time step contains valuable information about the variation that will occur in the solution
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Figure 1: Two numerical solutions of an advection-diffusion problem with exact solution
(2), solved using a pure Legendre spectral method. Using an affine mapping F (standard)
from the reference domain Ω̂ to the physical domain Ω gives poor resolution of the boundary
layer near x = 1 and therefore unwanted oscillations in the numerical solution uN . Using
a customized, nonlinear F (customized) smooths out the variation in û over Ω̂ and gives
sufficient resolution of the localized effects, resulting in a vastly better numerical solution.

at the next time step. In time-independent problems, adaptivity either involves an a priori
asymptotic analysis to disclose the position (and width) of interior and boundary layers,
or an iterative method is employed to gradually discover these features.
The analysis of adaptive spectral and PS methods can essentially be done in two ways:

on the reference domain or on the physical domain. With the former approach, the basis
functions are not mapped and standard tools can be applied. The difficulty lies in the PDE,
which must be mapped from the physical domain by the inverse of F(ξ) and can be very
complex. The latter approach allows us to consider the original PDE, but now the basis
functions are mapped, and specialized tools must be developed. Wang and Shen used
this approach when they derived optimal error estimates for mapped Legendre spectral
methods in [21] and for mapped Jacobi spectral methods in [27].
The simplest adaptive mesh generation methods are not really adaptive, in that they
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Figure 2: The two mappings x = F(ξ) used to produce the two numerical solutions shown
in Figure 1. The affine (standard) mapping corresponds to the oscillatory solution, and the
nonlinear (customized) mapping corresponds to the solution that cannot be distinguished
from the exact solution.

simply choose the structure of F without using any information about the exact solution.
In [17] the mapping

F(ξ;λ) = −1 + σλ

∫ y

−1
(1− t2)λ dt (11)

is used, where σλ is a constant depending on λ, and λ is a parameter to be determined. For
−1 < λ < 0 the mesh nodes are moved towards the origin, and for λ > 0 they are clustered
near the end points. The authors choose λ = 1 in their numerical experiments and solve
various boundary value problems with a modified Legendre spectral method. They also
extend their method to two-dimensional problems.
Similarly, in [24] Tang and Trummer use a transformation Fm(ξ) consisting of iterated

sine functions, defined recursively by

Fm(ξ) = sin(
π

2
Fm−1(ξ)), F0(ξ) = ξ. (12)

Asm increases, the mesh nodes are clustered more densely at the end points of the physical
interval. The authors test their mappings on one-dimensional boundary value problems
for different m ≤ 3.
A common approach in adaptive high order methods is to restrict F to be a function

on a particular, a priori chosen form, with one or more free parameters. Adaptivity is
then simplified to the task of determining suitable values for these parameters. This is the
approach adopted by Kosloff and Tal-Ezer [16], who use a mapping

F(ξ;λ) =
arcsin(λξ)

arcsin(λ)
, 0 < λ < 1, (13)

which stretches a Gauss-Lobatto Chebyshev (GLC) grid toward a uniform grid as λ→ 1−.
They discuss various considerations for choosing the parameter λ: enabling resolution of
the largest possible wave number, or optimizing for interpolation of a general trigonometric
function. An adaptive approach is to choose the parameters such that the function to be
approximated can be represented by a Chebyshev expansion with the minimal number
of terms. The authors show that a suitable choice leads to a differentiation matrix D
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whose eigenvalues are all O(N), where N is the polynomial degree, reducing the time step
restriction in explicit time integration methods.
In the adaptive methods proposed in [1, 4, 5] the parameters in F are chosen so that

the numerical solution minimizes some chosen functional. The mappings used are two-
parameter functions composed of trigonometric and inverse trigonometric functions, e.g.,

F(ξ;λ1, λ2) = 1 +
4

π
arctan(λ1 tan(

4

π
(
λ2 − x
λ2x− 1

− 1))), λ1 > 0, −1 < λ2 < 1, (14)

where λ1 relates to the width and λ2 to the position of an interior or boundary layer in the
exact solution. The functional to be minimized is typically a measure of the total variation
in the solution, for example the Sobolev norm

J =

∫
Ω

(u2 + u2
x + u2

xx) dx. (15)

The idea is that minimizing J means reducing unwanted oscillations, since these can
give large contributions to J through the second derivative of u. A good mapping yields
a solution with few (or no) unwanted oscillations, and hence a low value of J . The
interpolation and integration in the minimization procedure introduces some significant
overhead, but on the other hand, vast improvements in convergence rate may be achieved.
Tee and Trefethen [25] choose a particular two-parameter mapping F based on how it

maps singularities of the exact solution in the complex plane. The parameters are chosen
to enlarge the ellipse of analyticity of û, which is the largest ellipse with foci ±1 in which
û has no singularities. This immediately increases the convergence rate of the rational
spectral collocation method, since the error is of order O((L + l)−N ), where L and l are
the semi-axes of the ellipse [3]. The method in [25] is limited to cases where u has one pair
of complex conjugated singularities, but it is extended to problems with multiple pairs of
singularities in [14].
Another family of adaptive mesh methods are based on equidistribution of some monitor

or weight function over the physical domain. Such methods must consider general F , since
it is not given that equidistribution can be achieved by an F on a particular functional
form. One weight function that has been considered is the arc length of the numerical
solution. Creating a mesh such that the arc length is distributed equally between the mesh
points will for example ensure a clustering of mesh nodes in regions with steep gradients.
Equidistribution has been shown to work well with different weight functions in FEM
and FD methods [11, 12, 15], but it has not been explored much in the context of high
order methods. It is usually not a suitable adaptive method in itself, since it does not
ensure regularity in F , as demonstrated in [19]. However, the same paper shows that
equidistribution in conjunction with filtering can give very good results. The authors also
reduce the cost of the method by solving the equidistribution problem with a low order
method.
Funaro [13] proposed an adaptive collocation method where the collocation points are

determined by inserting the Legendre polynomial of degree N into the given PDE. For
an advection-diffusion model problem this results in a staggered mesh where the nodes
are actually slightly shifted away from the boundary layer. Still, the numerical solution
on the staggered mesh displays smaller oscillations than that obtained with the standard
collocation method, and it is a better approximation of the exact solution. A favorable
feature of this method is that it is applicable also in higher space dimensions, and the
author shows an example by solving a boundary value problem in R2.
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4 Constructing an optimal mapping

The adaptive high order methods mentioned so far are all constructed with the objective
to adjust the mapping F from Ω̂ to Ω in such a way that the discretization error decreases
for a fixed number of degrees-of-freedom (i.e., for a fixed polynomial degree, N). A natural
question to ask is then: to what extent can the mapping be used to reduce the discretiza-
tion error? Let us by optimal mapping define the mapping F that, when used in the
numerical solution of a given boundary value problem with a spectral method as described
in Section 2, results in the smallest numerical error, measured in the L2-norm. This partic-
ular numerical solution will be defined as the optimal solution of the given boundary value
problem for the given method and the given polynomial degree N . Note that the optimal
mapping depends on all of these factors; even changing the norm in which we measure the
error may give a (slightly) different optimal F .
The optimal F is not unique since information about the mapping is only required at a

finite number of points. For example, using a spectral method to solve (1) with Dirichlet
boundary conditions only requires the value of the Jacobian (the first derivative of F) at
the quadrature points. Any two mappings that have the same values of the derivatives at
these points are not discerned by the numerical method. In the following, we will therefore
assume that F ∈ PN (Ω̂) and we will denote the mapping as FN to emphasize this; this
corresponds to an isoparametric approach.
Finding optimal mappings adaptively is very difficult. We therefore start by considering

the simpler problem of finding optimal mappings based on the exact solution. Consider
an advection-diffusion problem (1) with a smooth right hand side f and homogeneous
Dirichlet boundary conditions. The exact solution is a function u(x) defined on Ω. As any
other function it can be viewed as a parametric curve, using the trivial parametrization

u(x) = (x, u(x)), x ∈ Ω. (16)

The curve can also be reparametrized by a change of variable x = FN (ξ), yielding the new
representation

û(ξ) = (FN (ξ), u(FN (ξ))) = (FN (ξ), û(ξ)), ξ ∈ Ω̂. (17)

The numerical solution of the PDE, obtained with a spectral method using the (isopara-
metric) mapping FN , can be represented by

ûN (ξ) = (FN (ξ), ûN (ξ)), ξ ∈ Ω̂, (18)

and this can be viewed as an approximation of the vector-valued function in (17).
A simple way to approximate the exact solution is through interpolation. In order to

exploit the flexibility that the change of variable FN offers, we consider interpolation of
parametric curves. The parametric curve interpolation operator IN is defined by applying
the standard function interpolation operator IN to each parametric function. The functions
are interpolated in the (affinely mapped) GLL points. Applying the operator to (16)
produces the interpolant

INu(x) = (INx, INu(x)) = (x, INu(x)), x ∈ Ω, (19)

and interpolating (17) yields

IN û(ξ) = (INFN (ξ), IN û(ξ)) = (FN (ξ), IN û(ξ)), ξ ∈ Ω̂. (20)
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We will refer to these curves as parametric interpolants. Now, even though u and û describe
the same curve, the interpolants INu and IN û are generally not the same. If we let F
denote the affine mapping from Ω̂ to Ω, and xm = F(ξm), we remark that (xm, u(xm))
and (FN (ξm), û(ξm)) are generally different points on the exact curve (unless FN = F).
The interpolant (19) is equivalent to classical interpolation of the function u(x) in the

GLL points. The interpolant (20) also corresponds to classical interpolation in the special
case that FN = F , i.e., when FN just varies linearly with ξ. However, if FN is chosen
wisely, then û is better suited for polynomial interpolation than u. For example, it may be
a function of higher regularity, or it may have slower variation and wider boundary layers.
Reparametrization can be used to “move” some of the complexity from one parametric
function to the other. One can in principle consider a strongly nonlinear change of variable
x = FN (ξ) that yields little or no variation in û(ξ), however, this may only be possible
for a very high N . A balance in complexity between the two parametric functions is most
likely better in order to achieve a small interpolation error for a fixed N .
The optimal reparametrization is the one that results in minimization of the L2-norm of

the interpolation error1. Finding the optimal change of variable is a problem with N + 1
free variables, since the reparametrization is uniquely determined by the value of FN at
the GLL points. The mapping FN : Ω̂ → Ω such that FN ∈ PN (Ω̂) can be represented
explicitly as

FN (ξ) =
N∑
j=0

x∗j`j(ξ), (21)

with x∗j = FN (ξj). Choosing basis coefficients x∗j uniquely determines FN , which in turn
uniquely determines the interpolant IN û, with

IN û(ξ) =

N∑
j=0

u∗j`j(ξ), (22)

and with u∗j = IN û(ξj) = u(x∗j ), j = 0, . . . , N .
The free variables x∗0, . . . , x∗N representN+1 degrees-of-freedom in the construction of the

interpolant. Note how this differs from classical interpolation of functions: these degrees-
of-freedom are available after we have chosen the GLL points as interpolation points in the
reference domain. If exploited wisely, they represent a potential for parametric interpolants
to be more accurate than classical interpolants.
The variables x∗0, . . . , x∗N can be also expressed through the affine mapping F(ξ). In

particular, we can write

x∗j = FN (ξj) = F(ξ∗j ), j = 0, . . . , N, (23)

and thus redefine the problem of finding an optimal mapping to a problem of choosing the
values ξ∗0 , . . . , ξ∗N . The choice should be restricted to values that satisfy

ξ∗0 < ξ∗1 < . . . < ξ∗N , (24)

since FN should be invertible. The monotonicity restriction (24) does not guarantee that
FN is invertible, since it can oscillate between the nodes, but this is a small practical
problem and will not be discussed here.

1Since the exact curve can be represented by a single function, we measure the interpolation error between
this function and the function representation of the interpolant. This is possible as long as FN is
invertible.
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The problem of optimal choice of ξ∗0 , . . . , ξ∗N was investigated in [7], where the equal-
tangent (ET) method was proposed. The method reduces the number of degrees-of-freedom
by two by requiring that the end points be interpolation points. This was motivated by the
numerical solution of PDEs in deformed quadrilaterals in R2, but it also makes sense here:
it ensures that the end points are nodes on the computational mesh in the physical domain,
which makes imposition of the boundary conditions easy. The remainingN−1 free variables
are determined by the condition that the interpolant also matches the tangent directions
at the internal interpolation points. This can also be viewed as Hermite interpolation when
considering the function representation of the curves [18]. It can be achieved by solving
the system of non-linear equations

du

dx
(FN (ξj))

dFN
dξ

(ξj)−
dIN (u ◦ FN )

dξ
(ξj) = 0, j = 1, . . . , N − 1, (25)

with respect to the N − 1 free variables ξ∗1 , . . . , ξ∗N−1. The dependency of each term on
the free variables is trough the coordinate transformation FN ; see (21) and (23). We use
u ◦ FN instead of û since we do not assume a priori knowledge of û; in fact, it depends on
FN , which in essence is the unknown here. The last term is given by

dIN (u ◦ FN )

dξ
(ξ) =

N∑
j=0

u(FN (ξj))`
′
j(ξ). (26)

The equations in (25) can be viewed in two ways: (i) in the reference domain they represent
the difference in the derivative between of û and IN û at the internal GLL points; (ii) in
the physical domain, the equations represent the dot product between the tangent vector
(F ′N (ξj), (IN û)′(ξj)) to the interpolant and the normal vector (u′(FN (ξj)),−1) to the exact
curve at the interpolation points. Hence, by solving the system (25) for ξ∗1 , . . . , ξ∗N−1, we are
implicitly finding a coordinate transformation FN such that the interpolant IN û matches
both function values and derivatives of û at the internal GLL points ξ1, . . . , ξN−1.
The system (25) is solved using Newton’s method. Exact expressions for the partial

derivatives of the objective function with respect to the free variables can be derived by
standard techniques. In order to make the interpolation method more robust, Newton’s
method is run several times with different initial values, and the solution that results in the
smallest interpolation error, measured in the discrete L2-norm, is chosen. Implementation
is discussed in more detail in [7].
When the ET method has produced a solution to the interpolation problem, the associ-

ated mapping FN can be used in a pure spectral method for solving the given boundary
value problem. Assume that the exact solution u to this problem belongs to Hσ(Ω) and
that we construct the classical interpolant INu associated with the GLL points. The
standard interpolation error is then bounded by [6]

||u− INu||L2(Ω) ≤ cN−σ||u||Hσ(Ω), (27)

where c is a constant. If the exact solution u is analytic (σ → ∞), we can expect the
classical interpolation error to decrease exponentially fast as the polynomial degree, N ,
increases. It is now of interest to consider the following two questions: (i) what difference
does it make to use a non-affine mapping instead of the standard mapping? and (ii) what
is the difference between the interpolation error ||u − INu|| and the discretization error
||u− uN || in the spectral solution of the given boundary value problem?
We illustrate these issues by revisiting the numerical example from Section 2. Figure 3

shows that a standard spectral method (i.e., using a linear mapping F) results in expo-
nential convergence, but that the convergence rate can be increased dramatically by using

10



the ET method to construct a more appropriate mapping FN . Figure 3 also shows the
interpolation error when interpolating the exact solution as a parametric curve, for two
different parametrizations, one based on the non-affine mapping FN and one based on
the affine mapping F . As expected, the results indicate a close relationship between the
discretization error and the interpolation error.
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Figure 3: The error ||u−uN ||L2 in the spectral Galerkin solution of (1) where (2) is the exact
solution, and the error ||u − INu||L2 in the parametric interpolation of the exact solution.
The non-affine mapping FN produced by the ET method gives much faster convergence
than the standard (affine) mapping F , both when considering interpolation and numerical
solution of the boundary value problem.

5 Constructing an approximate mapping

Let us now change the way we construct our non-affine mapping. In the previous section
we applied the ET method to the exact solution of the original problem to construct a
very good mapping FN . Let us now instead apply the ET method to the exact solution
of a modified problem. In particular, we first change the diffusivity ε to ε̃ (with ε̃ ≥ ε)
in the advection-diffusion problem (1). The exact solution of this modified problem has a
thicker boundary layer compared to the original problem. We now apply the ET method
to the exact solution of the modified problem and construct a corresponding non-affine
mapping FN (ξ; ε̃) (the argument is added to remind us that the mapping constructed this
way depends on the diffusivity ε̃ chosen in the approximate problem). Finally, we use the
mapping FN (ξ; ε̃) in the spectral Galerkin solution of the original problem. In Figure 4
we show the discretization error as a function of the polynomial degree, N , for ε̃ = 0.1,
ε̃ = 0.02 and ε̃ = ε = 0.01 (i.e., corresponding to the results of the previous section). We
notice that significant improvement from using the standard affine mapping is achieved.
However, the results also show a high degree of sensitivity to the quality of the mapping
used.

6 Adaptivity through minimization of the residual

6.1 Residual of the strong form

If we want to construct an adaptive method to find the optimal solution of a given boundary
value problem, we immediately face a problem: our definition of the optimal solution as
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exact solution. The non-affine mapping FN (ξ; ε̃) used here is constructed by applying the
ET method to the exact solution of a modified advection-diffusion problem with a diffusivity
ε̃ ≥ ε.

the L2-minimizer of the error in the numerical solution of the PDE does not lend itself
to adaptivity, since the evaluation of the error involves the exact solution; an adaptive
method cannot assume any knowledge of the exact solution.
The most valuable information we have about the approximation properties of a numer-

ical solution of a boundary value problem is the residual. It may give information about
about the magnitude of the numerical error, as well as the location of the areas where the
numerical solution represents a poor (or good) approximation of the exact solution. An
adaptive method can in principle be constructed by minimizing the residual.
Consider an advection-diffusion problem on the form (1) with Dirichlet boundary con-

ditions, and assume that we apply a spectral method as shown in Section 2, using a
polynomial mapping FN . The residual of the strong form is then given by

rN (x) = f(x)− fN (x), (28)

where f(x) is the right hand side of the PDE and

fN (x) = −εd2uN
dx2

+
duN
dx

(29)

is the numerical solution (2) inserted into the left hand side of the PDE.
Figure 5 shows some examples of the residual (28) when solving the model problem from

Section 2. In the particular case of using a standard spectral Galerkin method (including an
affine mapping), all the integrals in the weak form are computed without any quadrature
error using standard GLL quadrature, including the right hand side since f is only a
constant. The numerical solution is therefore also a solution of the strong form of the
problem, and hence the residual is zero at the mesh nodes. This is not the case for the ET
solution, which gives zero residual at other points throughout the domain. The standard
method gives poor approximation and large residual in the entire domain for small N ,
whereas the ET method has managed a good approximation of the outer solution even
for relatively small N . The residual is relatively large in the boundary layer, but here it
decreases very rapidly as N increases.
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Figure 5: The residual (28) of the strong form after computing the spectral Galerkin
solution of the advection-diffusion problem (1) with exact solution (2). The standard method
(i.e., using an affine mapping) results in a large residual over the entire domain, whereas
a non-affine mapping produced by the ET method confines the inaccuracy to a very thin
boundary layer.
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In the following, we will only consider the strong form of the residual when discussing
potential ways to construct adaptive spectral methods. This choice has been made in order
to simplify as much as possible the implementation and assessment of such an approach.

6.2 Unconstrained minimization of the residual

A measure of the quality of the numerical solution of the boundary value problem can be
given by the residual of the strong form measured in the L2-norm,

||f − fN ||2L2(Ω) =

∫
Ω
rN (x)2 dx, (30)

which is most conveniently evaluated over the reference domain. Mapping the residual to
the reference domain yields

r̂N (ξ) = f̂(ξ)− f̂N (ξ), (31)

where f̂(ξ) = f(FN (ξ)) and

f̂N (ξ) = −ε
û′′N (ξ)F ′N (ξ)−F ′′N (ξ)û′N (ξ)

(F ′N (ξ))3
+
û′N (ξ)

F ′N (ξ)
(32)

Applying quadrature with over-integration in M � N points to ensure subdominant
quadrature error yields the discrete norm

||f − fN ||N =
( M∑
α=0

ραr̂N (ξα)2F ′N (ξα)
)1/2

. (33)

An adaptive method can now in principle be defined by minimizing the functional

J = ||f − fN ||2N . (34)

At this point, both FN and ûN are unknown. Similar to the case of interpolating the exact
solution (see Section 4), the mapping FN is given by (21) and (23). The numerical solution
ûN is also expressed through a nodal basis similar to (22). The simplest implementation
of the minimization procedure is achieved when letting both ξ∗1 , . . . , ξ

∗
N−1 and the basis

coefficients u∗1, . . . , u∗N−1 be free variables. This means that we do not solve (1) numerically
at this point, but rather let the minimizer of J define the mapping FN that is subsequently
used in a spectral method to compute ûN . However, we keep a link with the boundary
value problem by letting ξ∗0 , ξ∗N , u

∗
0, u
∗
N be determined by the boundary conditions.

The minimum of J occurs at a stationary point, which is a solution of the system

∂J
∂ξ∗i

= 0, i = 1, . . . , N − 1,

∂J
∂u∗i

= 0, i = 1, . . . , N − 1.

(35)

Of course, J may have several stationary points, corresponding to different local minima
(and maxima). A crude global minimization procedure is constructed by solving (35)
several times, using Newton’s method, but with different initial values. The solution that
gives the smallest value of J is then chosen. As the polynomial degree N increases, an
exhaustive search for the global minimizer will be infeasible (as the number of free variables
becomes too large), but with good initial values this minimization method may be sufficient
to find close to optimal solutions.
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The result of the minimization procedure is set of variables that define FN and ûN .
We discard ûN and use a spectral method based on FN to solve (1) numerically. This
completes the adaptive method, which we will refer to as the unconstrained minimum
residual (UMR) method.
Let us write out the terms in (35). The partial derivative of J with respect to ξ∗i is

∂J
∂ξ∗i

=
M∑
α=0

ρα

(
2 r̂N (ξα)

∂r̂N
∂ξ∗i

(ξα)F ′N (ξα) + r̂N (ξα)2 ∂F ′N
∂ξ∗i

(ξα)

)
, (36)

where prime means derivative with respect to the free variable ξ on Ω̂. The partial deriva-
tive of the residual is

∂r̂N
∂ξ∗i

=f ′(FN (ξ))
∂FN
∂ξ∗i

+ û′N (ξ)F ′N (ξ)−2∂F ′N
∂ξ∗i

+ εF ′N (ξ)−4

(
3û′N (ξ)F ′′N (ξ)

∂F ′N
∂ξ∗i

− û′N (ξ)F ′N (ξ)
∂F ′′N
∂ξ∗i

− 2û′′N (ξ)F ′N (ξ)
∂F ′N
∂ξ∗i

)
.

(37)
Note that ûN and its derivatives do not depend on ξ∗i since ûN is not a numerical solu-
tion of the boundary value problem at this point; it is one of the unknowns. From the
representation (21) of FN we see that

∂FN
∂ξ∗i

= c `i(ξ),
∂F ′N
∂ξ∗i

= c `′i(ξ) and
∂F ′′N
∂ξ∗i

= c `′′i (ξ), (38)

where c = F ′(ξ) is a constant. The partial derivative of J with respect to u∗i is simply

∂J
∂u∗i

= 2
M∑
α=0

ραr̂N (ξα)
∂r̂N
∂u∗i

(ξα)F ′N (ξα), (39)

since FN does not depend on any of the u∗i . The partial derivative of the residual is

∂r̂N
∂u∗i

= − ε

F ′N (ξ)2

∂û′′N
∂u∗i

+

(
εF ′′N (ξ)

F ′N (ξ)3
+

1

F ′N (ξ)

)
∂û′N
∂u∗i

, (40)

where
∂û′N
∂u∗i

= `′i(ξ) and
∂û′′N
∂u∗i

= `′′i (ξ). (41)

The expressions above are needed just to evaluate (35). Newton’s method additionally
requires the partial derivatives of each equation in (35) with respect to each free variable.
The resulting 2(N − 1)× 2(N − 1) Hessian matrix is quite complicated, but can be found
explicitly through repeated partial differentiation.
We apply the UMR method in the numerical solution of the advection-diffusion problem

(1) with f = 1 and exact solution (2). Figure 6 shows that the UMR method almost keeps
up with the ET method (as discussed in Section 4) for small N , but that the convergence
rate decreases as N increases. This is most likely due to the difficulty of solving the global
minimization problem.

6.3 Constrained minimization of the residual

One possible way to improve the UMR method is to solve the boundary value problem
in conjunction with the minimization problem. In the UMR method, the minimization
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Figure 6: The error in the numerical solution of the advection-diffusion problem (1) with
exact solution (2). The UMRmethod gives an improvement compared to a standard spectral
method (i.e., using an affine mapping), and it keeps up with the solution obtained by the
ET-method (as discussed in Section 4) for low values of N . However, as N increases the
convergence rate decreases due to the complexity of the system of nonlinear equations that
must be solved.

procedure does not take into account which numerical method is used to ultimately solve
the boundary value problem. The minimization procedure would be the same if we switched
from a spectral method to a PS method or another method.
Solving the minimization problem and the boundary value problem simultaneously means

minimizing J subject to the constraint that ûN is a numerical solution of (1). The resulting
adaptive method will be referred to as the minimum residual (MR) method, and it is most
conveniently implemented by considering a PS method for the numerical solution of the
boundary value problem. This means that the constraints are r̂N (ξj) = 0, j = 1, . . . , N−1,
i.e., vanishing residual (of the strong form) in the internal GLL points. The constrained
minimization problem can be solved by considering the Lagrange function

Λ = J +
N−1∑
k=1

λkr̂N (ξk), (42)

where λk are the Lagrange multipliers. Solutions of the constrained minimization prob-
lem are stationary points for Λ, which is a function of ξ∗1 , . . . , ξ∗N−1, u

∗
1, . . . , u

∗
N−1 and

λ1, . . . , λN−1. Finding a stationary point means solving a system of 3(N − 1) nonlinear
equations,

∂Λ

∂ξ∗i
=
∂J
∂ξ∗i

+
N−1∑
k=1

λk
∂r̂N
∂ξ∗i

(ξk) = 0, i = 1, . . . , N − 1,

∂Λ

∂u∗i
=
∂J
∂u∗i

+

N−1∑
k=1

λk
∂r̂N
∂u∗i

(ξk) = 0, i = 1, . . . , N − 1,

∂Λ

∂λi
= r̂N (ξi) = 0, i = 1, . . . , N − 1.

(43)

Note that even if this system is larger than (35), it is not much more complicated. The
partial derivatives of J are the same as (36) and (39), and due to our choice of using a PS
method we can reuse the partial derivatives (37) and (40) of r̂N .
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In order to find solutions of (43) we again employ Newton’s method. The implementation
is basically the same as for the UMR method.
The MR method should, by construction, give the optimal solution in terms of the

residual, which again is very close to the optimal solution as defined in Section 4. However,
this requires us to find the best of all possible solutions to (43). Figure 7 shows that we
get the same convergence rate as the ET method for low values of N ; this is an indication
that the solution may be close to optimal. However, the convergence rate decreases as N
increases, just as in Figure 6, most likely for the same reason.
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Figure 7: The error in the numerical solution of the advection-diffusion problem (1) with
exact solution (2). The MR method almost keeps up with the ET method (as discussed in
Section 4) for small values of N , but the convergence rate decreases as N increases since
the minimization problem becomes more difficult to solve.

7 Adaptivity through residual-based interpolation

The excellent results achieved with the ET method applied to the exact solution in Section
4 motivates an investigation of how it may be used in an adaptive method, but now without
using any information about the exact solution. We first recall that the ET method is based
on using the available degrees-of-freedom to ensure that the error in the derivative is zero
at the internal interpolation points. In the context of solving PDEs, the collocation method
gives zero residual at the grid points, but has typically nonzero derivatives at these points,
e.g., see the results in Figure 5 for the standard method. A parallel to the ET method
would be to use the available degrees-of-freedom to also make the derivative of the residual
zero at the internal grid points. This means finding a mapping FN (ξ) such that

r̂′N (ξj) = f̂ ′(ξj)− f̂ ′N (ξj) = 0, j = 1, . . . , N − 1. (44)

To make sure that zero residual is also satisfied, we must solve these equations together
with the collocation equations

r̂N (ξj) = f̂(ξj)− f̂N (ξj) = 0, j = 1, . . . , N − 1. (45)

As before, we use Newton’s method for the solution of the coupled system of nonlinear
equations. The Jacobian matrix of the system can be derived using (37) and (40) and
normal differentiation rules. Since the system may have more than one solution, we repeat
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our strategy of solving the system several times with different initial values, and choose
the solution with the smallest L2-error. We will refer to this method as the equal-tangent
residual (ETR) method.
Figure 8 shows a convergence plot for the same test problem as before. There is some

improvement from the standard method, but the new method is not able to find the optimal
solution.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

N

||
u

 −
 u

N
||

L
2

 

 

standard

ETR

ET

Figure 8: The error in the numerical solution of the model problem (1) with exact solution
(2). The ETR method gives a certain improvement from the standard method, but does
not match the convergence rate of the ET method.

8 Additional numerical results

Let us now consider a few more numerical examples in order to compare the various meth-
ods proposed earlier. Again, we consider the advection-diffusion boundary value problem
(1) with ε = 0.01, but now for different choices of f .

Figure 9 shows a convergence plot when the exact solution is given as

u(x) =
1

2

(
1− erf(x/

√
ε)

erf(1/
√
ε)

)
, x ∈ [−1, 1]. (46)

This solution has an interior layer of width O(ε) around x = 0. The ETR and the UMR
method only keep up with the ET method for very low N ; the error then decreases very
slowly as N increases. The MR method gives better results, since it is able to follow the
ET convergence rate a little longer.
When the exact solution is given as

u(x) =
1

2
(1− x)(arctan(

1 + x

(2− a)ε
) + arctan(

a

ε
)), x ∈ [−1, 1], (47)

where a = 0.35, we get an interior layer of width O(ε) near x = 2a − 1 = −0.3. Figure
10 shows that the UMR method is not very successful in this case, although it suddenly
finds a better solution after N = 20. This may be caused by a lucky choice of initial value
for the Newton iterations. The ETR method, on the other hand, gives markedly better
performance, and the MR method gives an even better convergence rate.
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Figure 9: The error in the numerical solution of the advection-diffusion problem (1) with
exact solution (46), which has an interior layer near x = 0. Of the adaptive methods, only
the MR method gives a clear improvement from the standard method.
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Figure 10: The error in the numerical solution of the advection-diffusion problem (1) with
exact solution (47), which has an interior layer near x = −0.3. Again the adaptive methods
lose track of the ET convergence rate very early, but they maintain a good convergence rate
as N increases, making them far more accurate than the standard method.

9 Conclusions

We have proposed several methods for constructing coordinate transformations for spectral
and PS methods, and these have sometimes yielded significant improvement compared
to standard methods. Improvement here means smaller discretization error for a fixed
polynomial degree, N , used in the approximation.
The methods that are based on a direct minimization of the residual of the strong form

should, by construction, give close to optimal solutions. However, these methods require
proper global minimization procedures, something which is very difficult and computation-
ally expensive to achieve. The minimization method used in this work sometimes yields
close to optimal convergence rate for low N , but the convergence rate often decreases as N
increases; this is primarily due to the increasing difficulty of solving the global minimiza-
tion problem. One conclusion from this effort is therefore that it is difficult to construct
efficient and robust adaptive methods based on minimization of the residual since good
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global minimization procedures are often computationally expensive, and the added cost
typically outweigh the increased accuracy for a given N .

We have also proposed a way to construct close to optimal nonlinear mappings for
spectral and PS methods based on information about the exact solution. The approach
uses the equal-tangent (ET) method investigated in [7] to first construct an interpolant
of the exact solution, viewed as a parametric curve, and then employs this interpolant
to define the mapping used in a subsequent spectral Galerkin method to solve the given
boundary value problem. The method does not qualify as an adaptive method since it
requires knowledge of the exact solution, but it is useful for providing benchmark solutions
to model problems.
An adaptive method based on the same idea as the ET method has also been proposed;

this method is based on requiring zero derivative of the residual of the strong form in the
nodal points of the solution. The method often gives an improvement from the standard
spectral method, but the convergence rate is rarely optimal.
The methods proposed and tested in this paper are relatively expensive computationally.

A cost-benefit test has not been performed, since efficiency has not been the main focus of
this work. The problem of finding optimal adaptive solutions of even the simplest boundary
value problems is so hard that even brute-force solutions do not always succeed. Hence,
just finding solutions has taken precedence over efficiency in this preliminary study. A lot
of work remains to be done in order to find efficient and robust adaptive methods for the
numerical solutions of PDEs using spectral methods.
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