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We show that symplectic Runge–Kutta methods provide effective symplectic
integrators for Hamiltonian systems with index one constraints. These include
the Hamiltonian description of variational problems subject to position and
velocity constraints nondegenerate in the velocities, such as those arising in
subRiemannian geometry.

1 Introduction: constrained Hamiltonian systems

We consider constrained Hamiltonian systems of the form

Jż = ∇H(z), z ∈ C ⊂ Rm (1)

where z ∈ Rm, ω := 1
2dz ∧ Jdz is a closed 2-form1, H : Rm → R is a Hamiltonian, and

C is a constraint submanifold such that i∗ω (where i : C → Rm is the inclusion of C in
Rm) is nondegenerate, i.e., such that (C, i∗ω) is a symplectic manifold. The dynamics on
C depends only on the restricted Hamiltonian i∗H and restricted symplectic form i∗ω.
Systems with holonomic (position) constraints take this form, with z = (q, p), ω = dq∧dp,
and C = {(q, p) : hi(q) = 0, Dhi(q)Hp(q, p) = 0, 1 ≤ i ≤ k} consisting of primary and
secondary constraints; a nondegeneracy assumption ensures that C is symplectic. The
widely used rattle method [3, 5] provides a (class of) symplectic integrators for this case
when J is constant: it integrates in coordinates z with Lagrange multipliers to enforce the
constraints. However, there are no known symplectic integrators for general constrained
Hamiltonian systems of the form of Eq. (1).
In this paper we describe a class of symplectic integrators for a class of Hamiltonian

systems of the form (1) containing constraints that can depend on both position and ve-
locity2. The class includes the Hamiltonian description of problems arising from variational
problems in subRiemannian geometry, in which velocities are constrained to lie in a given
(nonintegrable) distribution. We give this application first. In the following proposition,

1We use vector notation in wedge products, writing dq ∧ dp for
∑m
i=1 dqi ∧ dpi and dz ∧ Jdz for∑m

i,j=1 Jijdzi ∧ dzj , where the dimension m is determined from the context.
2We do not use the term nonholonomic which is reserved for constrained mechanical systems satisfying
the Lagrange–d’Alembert principle, whose flow is not in general symplectic.
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the linear independence assumption on the constraints is equivalent to constraining the
velocities to lie in a k-dimensional distribution of the tangent space of the positions.

Proposition 1. Let M be a symmetric nonsingular n × n mass matrix, V : Rn → R a
smooth potential, gi : Rn → Rn, i = 1, . . . , k be smooth functions whose values are linearly
independent for all arguments, and q be a smooth extremal with fixed endpoints for the
functional

S(q) =

∫ t1

t0

L(t, q, q̇)dt =

∫ t1

t0

(
1

2
q̇TMq̇ − V (q)

)
dt (2)

subject to the constraints gi(q) · q̇ = 0, i = 1, . . . , k. Then

Jż = ∇H(z) (3)

where

J =

 0 −In×n 0
In×n 0 0

0 0 0k×k


z =

qp
λ

 ∈ R2n+k

p = Mq̇ −
k∑
i=1

λigi(q)

H(z) =
1

2

(
p+

k∑
i=1

λigi(q)

)T
M−1

(
p+

k∑
i=1

λigi(q)

)
+ V (q)

and, furthermore, the Euler–Lagrange equations for (2) are equivalent to the generalized
Hamiltonian system (3). Eq. (3) forms a constrained Hamiltonian system of the type (1)
with constraint submanifold C a graph over (q, p), i.e., C := {(q, p, λ) : λ = λ̃(q, p)} and
restricted symplectic form i∗ω = dq ∧ dp.

Proof. Introducing Lagrange multipliers λ1, . . . , λk, the Euler–Lagrange equations for (2)
are

d

dt
(∇q̇F )−∇qF = 0, (4)

gi(q) · q̇ = 0, i = 1, . . . , k, (5)

where

F (q, p, λ) =
1

2
q̇TMq̇ − V (q)−

k∑
i=1

λigi(q) · q̇.

Expanding out equation (4) gives the Euler–Lagrange equations

d

dt

(
Mq̇ −

k∑
i=1

λigi(q)

)
−∇qF = 0

d

dt

(
Mq̇ −

k∑
i=1

λigi(q)

)
+

(
∇V (q) +

k∑
i=1

λiDgi(q)q̇

)
= 0 (6)
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Define the conjugate momentum p ∈ Rn using the standard Legendre transform

p := ∇q̇F = Mq̇ −
k∑
i=1

λigi(q) (7)

so that

q̇ = M−1

(
p+

k∑
i=1

λigi(q)

)
. (8)

Using equations (7) and (8) in equation (4) gives the expression for ṗ

ṗ = −∇V (q)−
k∑
i=1

λiDgi(q)M
−1

p+

k∑
j=1

λjgj(q)

 . (9)

Define the Hamiltonian, again in the standard way, as H(q, p, λ) := q̇ · p − F (q, q̇, λ);
explicitly,

H = q̇ · p− F

= q̇ · p− 1

2
q̇TMq̇ + V (q) +

k∑
i=1

λigi(q) · q̇

= q̇ ·

(
p− 1

2
Mq̇ +

k∑
i=1

λigi(q)

)
+ V (q)

= q̇ ·

(
Mq̇ −

k∑
i=1

λigi(q)−
1

2
Mq̇ +

k∑
i=1

λigi(q)

)
+ V (q)

= q̇ ·
(

1

2
Mq̇

)
+ V (q)

=
1

2

(
p+

k∑
i=1

λigi(q)

)T
M−1

(
p+

k∑
i=1

λigi(q)

)
+ V (q)

A calculation shows the equivalence of the right hand side of (8) and ∇pH; of the right
hand side of (9) and −∇qH(q, p, λ); and of constraints gi(q) · q̇ = 0 and 0 = ∇λH(q, p, λ).
The constraints 0 = ∇λH(q, p, λ) are the following set of equations linear in λ,g1 ·M

−1g1 · · · g1 ·M−1gk
...

. . .
...

gk ·M−1g1 · · · gk ·M−1gk


λ1...
λk

 = −

g1 ·M
−1p

...
gk ·M−1p

 (10)

which has a unique solution for λ for all q, p because the matrix is GM−1GT where G is
the k×n matrix whose ith row is gTi . The assumption that the gi are linearly independent
means that G has full rank k and hence that GM−1GT is nonsingular. The constraints
therefore have a unique solution for λ that we write as λ = λ̃(q, p), that is, the constraint
submanifold is a graph over (q, p). Differentiating these constraints with respect to t then
yields ODEs for λ̇, that is, the system (3) has (differentiation) index 1. The symplectic
form on C is 1

2dz ∧ Jdz = dq ∧ dp.
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2 Symplectic integrators for generalized Hamiltonian systems

The Hamiltonian form (3) suggests considering generalized Hamiltonian systems of the
form Jż = ∇H(z), z ∈ Rm, where J is a constant antisymmetric matrix, and we do
not specify the constraints. Note that many kinds of constrained Hamiltonian systems
(including those with holonomic constraints) can be written in this form; the constraint
manifold C is constructed as the subset of initial conditions for which the equations have
a solution. In general, these equations may not have solutions for all initial conditions; in
the extreme case J = 0, the equations are purely algebraic. However, it is easily seen that
any solutions that do exist do preserve the (possibly degenerate) bilinear form uTJv, for

d

dt
uTJv = uTJv̇ + u̇TJv = uTHzz(z)v − vTHzz(z)u = 0

where Hzz is the Hessian of H—this does not require invertibility of J .
In the particular case of Proposition 1, the generalized Hamiltonian system that is ob-

tained is equivalent to a canonical Hamiltonian system obtained by eliminating the La-
grange multipliers λ. Let λ = λ̃(q, p) be the solution to (10). Then Hamilton’s equations
for H̃(q, p) := H(q, p, λ(q, p)) are

q̇i =
∂H̃

∂pi
(q, p)

=
∂H

∂pi
(q, p, λ̃(q, p)) +

k∑
j=1

∂H

∂λj
(q, p, λ̃(q, p))

∂λ̃j
∂pi

(q, p)

=
∂H

∂pi
(q, p, λ̃(q, p))

ṗi = −∂H̃
∂qi

(q, p)

= −∂H
∂qi

(q, p, λ̃(q, p))−
k∑
j=1

∂H

∂λj
(q, p, λ̃(q, p))

∂λ̃j
∂qi

(q, p)

= −∂H
∂qi

(q, p, λ̃(q, p))

which, together with ∂H
∂λ (q, p, λ̃(q, p)) = 0, are equivalent to (3). That is, the two operations

of eliminating the Lagrange multipliers and mapping the Hamiltonian to its Hamiltonian
vector field commute; this can also be seen abstractly by considering the symplectic man-
ifold C with canonical coordinates (q, p), symplectic form dq ∧ dp, and Hamiltonian i∗H.
The midpoint rule is known to be symplectic when the structure matrix J is invertible [3].

However, as for the continuous time case, J need not be invertible.

Proposition 2. Any solutions of the midpoint rule applied to Jż = ∇H preserve the
2-form 1

2dz ∧ Jdz.

Proof. It must be shown that dz1 ∧ Jdz1 = dz0 ∧ Jdz0, where z1 is the result of applying
the midpoint rule to z0. The midpoint rule is

Jz1 − Jz0
∆t

= ∇H
(
z0 + z1

2

)
:= ∇H(z̄) (11)
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where ∆t is the time step and the method takes a point z0 to z1.
Taking exterior derivatives of equation (11) yields

Jdz1 = Jdz0 + ∆tHzz(z̄)

(
dz0 + dz1

2

)
where Hzz is the Hessian of H. Then

J(dz1 − dz0) =
1

2
∆tHzz(z̄)(dz0 + dz1)

⇒ (dz0 + dz1) ∧ J(dz1 − dz0) = (dz0 + dz1) ∧
1

2
∆tHzz(z̄)(dz0 + dz1)

⇒ (dz0 + dz1) ∧ J(dz1 − dz0) = 0

⇒ dz1 ∧ Jdz1 − dz0 ∧ Jdz0 = 0

This is an instance of the following more general result.

Proposition 3. Any solutions of any symplectic Runge–Kutta method applied to Jż = ∇H
preserve the 2-form 1

2dz ∧ Jdz, where J is any constant antisymmetric matrix.

Proof. The s stage symplectic Runge-Kutta method is

JZi = Jz0 + ∆t

s∑
j=1

aijJFj (12)

Jz1 = Jz0 + ∆t
s∑
j=1

bjJFj , (13)

where
JFj = ∇H(Zj) (14)

The coefficients of a symplectic Runge–Kutta method obey

bibj − bjaji − biaij = 0. (15)

Taking the exterior product of equations (12), (13), and (14) gives

Jdz0 = JdZi −∆t

s∑
j=1

aijJdFj (16)

Jdz1 = Jdz0 −∆t

s∑
j=1

bjJdFj (17)

JdFj = HzzdZj (18)

From equation (18),
dZj ∧ JdFj = dZj ∧HzzdZj = 0 (19)

6



Then

dz1 ∧ Jdz1 − dz0 ∧ Jdz0

= dz1 ∧ J(dz0 + ∆t

s∑
j=1

bjdFj)− dz0 ∧ Jdz0 (using (17))

= −Jdz1 ∧

dz0 + ∆t
s∑
j=1

bjdFj

− dz0 ∧ Jdz0
= −

Jdz0 + ∆t

s∑
j=1

bjJdFj

 ∧
dz0 + ∆t

s∑
j=1

bjdFj

− dz0 ∧ Jdz0
= ∆tdz0 ∧ J

s∑
j=1

bjdFj + ∆t

s∑
j=1

bjdFj ∧ Jdz0 + ∆t2
s∑
j=1

bjdFj ∧ J
s∑
j=1

bjdFj

= −∆t

s∑
j=1

bjJdz0 ∧ dFj + ∆t

s∑
i=1

bidFi ∧ Jdz0 + ∆t2
s∑
j=1

bjdFj ∧ J
s∑
j=1

bjdFj

= −∆t

s∑
j=1

bjJ

(
dZj −∆t

s∑
i=1

ajidFi

)
∧ dFj (using (16))

+ ∆t
s∑
i=1

bidFi ∧ J

dZi −∆t
s∑
j=1

aijdFj

 (using (16))

+ ∆t2
s∑
j=1

bjdFj ∧ J
s∑
j=1

bjdFj

= −∆t2

 s,s∑
j,i=1

bjajidFi ∧ JdFj +

s,s∑
i,j=1

biaijdFi ∧ JdFj

 (using (19))

+ ∆t2
s∑
j=1

bjdFj ∧ J
s∑
j=1

bjdFj

= ∆t2

 s,s∑
i,j=1

(bibj − bjaji − biaij) dFi ∧ JdFj


= 0 (using (15))

A full study of the geometry of the relations (z0, z1) generated in Proposition 3 remains
to be undertaken.3 Unfortunately, the relations (z0, z1) in Proposition 3 do not yield good
integrators for arbitrary J and H. For example, holonomic constraints can be specified
as generalized Hamiltonian systems with H = H̃(q, p) +

∑k
i=1 λihi(q). In this case the

midpoint rule, say, generates maps from all (q0, p0) to (q1, p1) with the constraints satisfied
at the midpoint. Not only is the phase space ‘wrong’, this method is known to be not

3The relations generated in Proposition 3 are a generalization of the Viterbo generating functions used
in symplectic topology [7]. These take the form S : Q × Rk → R; the submanifold p = Sq(q, λ),
0 = Sλ(q, λ) is Lagrangian in T ∗Q. The parameters λ allow the representation of larger classes of
Lagrangian submanfolds than the standard generating function S(q) which generates p = Sq(q) which
is necessarily a graph over Q.
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convergent in general [2]. The situation is much better for the index one constraints of
Proposition 1.

Proposition 4. For the index 1 constrained problem of Proposition 1, Proposition 3 yields
integrators that are well-defined for sufficiently small ∆t, convergent of the same order as
the Runge–Kutta method, preserve the constraint submanifold, and preserve the symplectic
form on the constraint submanifold.

Proof. In this case the constraint part of the Runge–Kutta equations read

0 = ∇λH(Qi, Pi,Λi), i = 1, . . . , k,

0
λ1 − λ0

∆t
=

s∑
i=1

bi∇λH(Qi, Pi,Λi)

Therefore the Lagrange multipliers Λi at each stage are given by the exact Lagrange mul-
tipliers evaluated at (Qi, Pi), i.e. Λi = λ̃(Qi, Pi), and λ1 is arbitrary. For convenience, we
add the extra equations λ0 = λ̃(q0, p0), λ1 = λ̃(q1, p1) which do not affect the method at all.
The resulting method is equivalent to that obtained by eliminating the Lagrange multipli-
ers in the Hamiltonian, applying a symplectic Runge–Kutta method, and lifting back to the
constraint manifold by λ = λ̃(q, p). It is therefore well defined for sufficiently small ∆t and
convergent of the same order as the Runge–Kutta method. Because 1

2dz ∧ Jdz = dq ∧ dp,
the symplectic form dq ∧ dp is preserved on the constraint manifold.

3 General constraints

Under certain conditions, namely that the Legendre transform that defines the conjugate
momenta must be invertible to give q̇, Proposition 1 can be generalized to allow a general
Lagrangian and general constraints. A very thorough geometric treatment of this type of
constraint, applying the Gotay–Nestor geometric version of the Dirac–Bergmann constraint
algorithm, can be found in [4].

Proposition 5. If the Legendre transform mapping (q̇, q, λ) → (p, q, λ) given in equa-
tion (21) is invertible then the Euler–Lagrange equations for the action

S(q) =

∫ t1

t0

L(t, q, q̇)dt

subject to the constraints gi(q, q̇) = 0, i = 1, . . . , k are equivalent to the generalized Hamil-
tonian system

Jż = ∇H(z) (20)
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where

J =

 0 −In×n 0
In×n 0 0

0 0 0k×k


z =

qp
λ


p = ∇q̇F (q̇, q, λ) (21)

H(z) = q̇ · p− F (q̇, q, λ)

F (q̇, q, λ) = L(t, q, q̇)−
k∑
i=1

λigi(q, q̇)

(22)

(Here the Lagrange multipliers in the (q, q̇) formulation are determined by (23)–(25) below.)
If, in addition, the matrix G(q, q̇) given by Gij = ∂gi(q, q̇)/∂q̇j has full rank k for all q, q̇
then the system of Eq. (20) has index one, i.e., can be solved for λ = λ̃(q, p).

Proof. The Euler-Lagrange equations are

∂

∂t
(∇q̇F )−∇qF = 0, (23)

gi(q, q̇) = 0, i = 1, . . . , k, (24)

where

F (q̇, q, λ) = L(t, q, q̇)−
k∑
i=1

λigi(q, q̇). (25)

Define the conjugate momentum p as

p := ∇q̇F. (26)

By assumption equation (26) can be rearranged to give q̇

q̇ = f(q, p, λ). (27)

Using equation (26) in equation (23) gives the expression for ṗ

ṗ = ∇qF. (28)

Define the Hamiltonian as

H(q, p, λ) := q̇ · p− F (q̇, q, λ) (29)
= p · f(q, p, λ)− F (q̇, q, λ) using (27) (30)
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Then (where fp is the Jacobian derivative ∂fi(q, p, λ)/∂pj , etc.) we have

∇pH = f + fpp−∇pF
= f + fpp− fp∇q̇F
= f + fpp− fpp using (26)
= q̇ using (27) (31)

∇qH = fqp− fq∇q̇F −∇qF
= fqp− fqp−∇qF using (26)
= −ṗ using (28) (32)

∇λH = fλp− fλ∇q̇F + g

= fλp− fλp+ g using (26)
= 0 using (24) (33)

establishing the equivalence of the Euler–Lagrange equations to (20). The constraints in
the Hamiltonian formulation are

0 = ∇H(q, p, λ) = g(q, f(q, p, λ))

and their Jacobian derivative with respect to λ is the matrix
n∑
j=1

∂gi
∂q̇j

∂q̇j
∂λk

.

The first factor is G. The second factor is the derivative of the inverse Legendre transform
(assumed invertible) with respect to λ. The forward Legendre transform is p = ∂L

∂q̇ +∑k
i=1 λi

∂gi
∂q̇ and its derivative with respect to λ is GT . By the chain rule, if G has rank

k then the Jacobian is nonsingular for all q, q̇ and the constraints have a unique solution
λ = λ̃(q, p) for all q, p, that is, the system has index one.

The integrators we considered in Section 2 work for any index one system.

Proposition 6. For any constant antisymmetric J , if the generalized Hamiltonian system
Jż = ∇H(z) can be solved for λ = λ(q, p) where z = (q, p, λ) are Darboux coordinates
for J , then any symplectic Runge–Kutta method applied to this systems yields constrained
symplectic integrators convergent with their classical order.

Note that the assumptions are satisfied if |Hλλ| 6= 0. The constraints may be nonlinear
in λ, and need not be solved analytically; the entire Runge–Kutta system for (Qi, Pi,Λi)
can be numerically solved simultaneously.
Proposition 5 can be generalized further, to any singular Lagrangian L(q, q̇, λ), and still

further to Lagrangians L(z, ż) where |Lżż| = 0, but the required nondegeneracy assump-
tions are not as geometrically transparent as those in Proposition 5.

4 Sub-Riemannian with holonomic constraints

Proposition 1 allowed a variational problem with subRiemannian constraints to be con-
verted into an unconstrained Hamiltonian system that can be solved using the symplectic
midpoint rule. The proposition in this section shows that if holonomic constraints are
added to the original variational problem, then the resulting Hamiltonian system is a sim-
ple holonomically constrained system. This system can be solved by a symplectic method
such as rattle [6].
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Proposition 7. Let M be a symmetric nonsingular n × n mass matrix, V : Rn → R a
smooth potential, gi : Rn → Rn, i = 1, . . . , k be k smooth functions , and q be a smooth
extremal with fixed endpoints for the functional

S(q) =

∫ t1

t0

L(t, q, q̇)dt =

∫ t1

t0

(
1

2
q̇TMq̇ − V (q)

)
dt (34)

subject to the velocity constraints gi(q) · q̇ = 0, i = 1, . . . , k and the holonomic constraints
hi(q) = 0, i = 1, . . . , l. Then

Jż = ∇H(z) (35)

where

J =


0 −In×n 0 0

In×n 0 0 0
0 0 0k×k 0
0 0 0 0l×l

 , z =


q
p
λ
λh


p = Mq̇ −

k∑
i=1

λigi(q)

H(z) =
1

2

(
p+

k∑
i=1

λigi(q)

)T
M−1

(
p+

k∑
i=1

λigi(q)

)
+ V (q) +

l∑
i=1

λhi hi(q)

and, furthermore, the Euler–Lagrange equations for (34) are equivalent to the generalized
Hamiltonian system (35). If, in addition, the velocity constraints are linearly independent
for all q, then Eq. (35) is equivalent to a canonical holonomically constrained Hamiltonian
system.

Proof. As in Proposition 1 the extended Lagrangian F , the conjugate momenta p, and the
Hamiltonian H(q, p, λ, λh) are defined by

F :=
1

2
q̇TMq̇ − V (q)−

k∑
i=1

λigi(q) · q̇ −
l∑

i=1

λhi hi(q),

p := ∇q̇F = Mq̇ −
k∑
i=1

λigi(q),

H := q̇ · p− F.

The rest of the proof is a calculation along the same lines as for Proposition 1.

Proposition 8. Subject to standard nondegeneracy assumptions on the Hamiltonian, the
following algorithm yields a convergent, second order integrator that is symplectic on the
constraint manifold defined by the (primary) holonomic constraints and the secondary con-
straints induced by them: (i) apply rattle using the holonomic constraints; (ii) in the
inner step of rattle, when a time step of the unconstrained system is required, apply the
midpoint rule to the generalized Hamiltonian system with Hamiltonian H(q, p, λ, 0).
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(x,y)

!

"

(z,w)

Figure 1: A two wheeled vehicle with the front wheel at an angle φ and the entire vehicle
on an angle of θ

Proof. Eliminating the velocity constraints by solving for the Lagrange multipliers yields a
standard holonomically constrained system. Applying rattle (with the midpoint rule in
the inner step) to this system yields a convergent second order integrator on the constraint
surface. Applying the midpoint rule in the inner step is equivalent to applying the midpoint
rule to the generalized Hamiltonian system with Hamiltonian H(q, p, λ, 0).

5 Example: Sub-Riemannian geodesics

The motion of a two-wheeled vehicle with a front steering wheel and a non-steering back
wheel, moving on a smooth surface, will be modelled. We consider the two wheeled vehicle
shown in Fig. 1 with length L, back wheel at (z, w), and front wheel at (x, y). The front
wheel is at an angle φ and the vehicle is at an angle θ.
If the speed of the front wheel is v, its velocity of the front wheel must obey

ẋ = v cosφ

ẏ = v sinφ

Eliminating v, the velocity of the front wheel obeys the constraint

ẋ sinφ− ẏ cosφ = 0 (36)

Similarly, the velocity of the back wheel obeys the constraint

ż sin θ − ẇ cos θ = 0 (37)

We can eliminate equation (37), and thus the variables z and w, using the distance between
the two wheels which relates the four variables. Notice that

x− z = L cos θ

y − w = L sin θ

which after taking time derivatives gives

ż = ẋ+ Lθ̇ sin θ

ẇ = ẏ − Lθ̇ cos θ
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Figure 2: Snapshots at every 600th step of the bicycle starting at (x, y, θ, φ, px, py, pθ, pφ) =
(0.15, 0, π/4, 0, 1, 0, 0), with ∆t = 0.001, and travelling in a potential V (q) =
1 + cos(r). At about t = 7.8 and t = 15.6 the steering wheel is aligned with the
bicycle and the bicycle changes direction and retreats rapidly.

which substituted into equation (37) gives

ẋ sin θ − ẏ cos θ + Lθ̇ = 0 (38)

The constraints given in equations (36) and (38) can be written as

gi(q) · q̇ = 0, i = 1, 2

where q = (x, y, θ, φ)T and

g1(q) = (sinφ,− cosφ, 0, 0)T (39)

g2(q) = (sin θ,− cos θ, L, 0)T (40)

We take the Lagrangian to be

L =
1

2

(
ẋ2 + ẏ2 + αθ̇2 + βφ̇2

)
− V (x, y) (41)

where the potential V (x, y) is the (scaled) height of the surface, giving an index one
system as in Proposition 1. That is, we are calculating geodesics (in the case V = 0) of
the subRiemannian metric defined by Eqs. (41), (36) and (38). We use the midpoint rule.
The first four tests use the potential V (q) = − cos r, where r is the midpoint of the

vehicle. The first test is to compute a simple trajectory of a bicycle of length 0.3, starting
with the centroid of the bicycle at the origin. The bicycle is given a small push by setting the
initial generalized momenta py 6= 0. The initial conditions are (x, y, θ, φ, px, py, pθ, pφ) =
(0.15, 0, π/4, 0, 1, 0, 0). Fig. 2 shows the bicycle at regular snapshots through time. The
background colours show the potential: red is high, and blue is low. Note that that at
about t = 7.8 and t = 15.6 the steering wheel is aligned with the bicycle and the bicycle
changes direction and retreats rapidly.
The second test is to check the order of the method by plotting, in Fig. 3, the error of

various solutions. A reference trajectory with ∆t = 10−4 and final time 10s is computed,
and trajectories with bigger time steps are compared to it. The slope of the error line
shows that the method is second order. A comparison to a highly accurate reference
solution calculated with matlab’s ode15s and tolerance 10−12 also shows the second order
accuracy of our method (Fig. 4).
Our third test is to numerically test the symplectic condition by evaluating the symplectic

bilinear form for a number of steps. See Fig. 5. The reference trajectory is the one used in
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Figure 3: The error of three runs compared to a reference solution with ∆t = 1 × 10−4.
The initial conditions were (x, y, θ, φ, px, py, pθ, pφ) = (0.15, 0, 0, π4 , 0, 1, 0, 0). The
method is order ∆t2

Figure 4: Error compared to matlab ode15s solution. Initial conditions were
(x, y, θ, φ, px, py, pθ, pφ) = (0.3, 0, 0, π, 0, 1.09, 1), with λ = (0,−0, 3), final time
10s, and travelling in no potential field. The solution agrees with the matlab
solution.

Figure 5: The symplectic bilinear form error evaluated for 100 steps with ∆t = 0.1.
The trajectories φzi(n) for three nearby initial conditions, z0, z1, and z2, were
calculated. The change in the symplectic form was estimated as uTnJvn −
uT0 Jv0 where un = φz1(n) − φz0(n) and vn = φz2(n) − φz0(n). The initial
points were z0 = (0.15, 0, 0, π4 , 0, 1, 0, 0), z1 = (0.1500000085, 1 × 10−8,−1 ×
10−8, 0.785398145543,−1 × 10−8, 0.99999998, 1 × 10−8,−1 × 10−8) and z2 =
(0.1500000115,−1× 10−8, 1× 10−8, 0.785398181251, 1× 10−8, 0.99999998,−1×
10−8,−1× 10−8).
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Figure 6: The energy error over time. This is the energy at each step minus the initial
energy. The bicycle is trapped in the potential bowl −V (q), and the energy
error does not show a linear growth in time.

Figure 7: Snapshots at every 600th step of the bicycle starting at (x, y, θ, φ, px, py, pθ, pφ) =
(0.15, 0, 0, 1, 0, 0, 0), with ∆t = 0.01, and travelling in no potential field. The
bicycle stays straight. The trajectory is unstable and eventually wanders from a
straight path.

the error plot with with ∆t = 0.1. Two nearby trajectories are also calculated to allow an
estimate of the change in dq ∧ dp. The calculated change is near roundoff indicating that
the integrator is symplectic.
The fourth test is to plot, in Fig. 6, the energy error for ∆t = 0.01 and ∆t = 0.001. From

the figure the energy errors appear to be bounded, as expected for a symplectic integrator.
The free motion case (V (q) = 0) has two simple solutions that are relative equilibria for

the translation and rotation symmetries of the problem, namely straight line and circular
motion. The first trajectory to check is a straight line. If the bicycle starts with θ = φ = 0,
and there is no potential field, then bicycle should remain travelling in a straight line.
Let θ = φ = 0, ẋ = 1, and ẏ = 0. The constraints in equations (36) and (38) are

satisfied. Equation (8) gives the initial generalized momenta values: all are zero except
px = 1. In Fig. 7 this simple trajectory of the bicycle is confirmed.
For the circle, let θ = at, φ = at + π

2 , ẋ = −c sin(θ), and ẏ = c cos(θ). There are two
constants, a and c, to be determined. Equation (36) gives λ = (1,−c), and equation (38)
gives aL = c. Using these values in equation (8) gives the initial generalized momenta
values: (px, py, pθ, pφ) = (0, 0, a(1 + L2), a). For this simple trajectory a is chosen to
be 1. In Fig. 8 the circle trajectory of the bicycle is confirmed. If the trajectory is
computed for larger times the bicycle leaves the circle; the solution appears to be unstable,
but, interestingly, appears to repeatedly return to the circular orbit, indicating a possible
relative homoclinic structure of this problem. This is also suggested from the evolution of
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Figure 8: Snapshots every 5th step of the bicycle starting at (x, y, θ, φ, px, py, pθ, pφ) =
(0.3, 0, 0, π, 0, 1.09, 1), with ∆t = 0.1, and travelling in no potential field. The
bicycle stays in a circle for many revolutions (not shown for clarity), but the
trajectory is not stable, so eventually wanders.

Figure 9: Some of the phase space variables for the bicycle trajectory starting in a circle.
The solution for pθ and pφ suggest a relative homoclinic orbit.

the Lagrange multipliers, λ− (1,−c) being shown in Fig. 11.

6 Example: the Heisenberg problem

A previous study of geometric integrators for subRiemannian variational problems used
a discrete variational approach to obtain constrained symplectic integrators [1]. Our ap-
proach, applying symplectic integrators to the Hamiltonian formulation, yields geometric
integrators with the same geometric properties, but uses standard integrators that allow
any order with standard implementations, and does not require an approximation of q̇, that
is, it naturally yields first-order trajectories in (q, p) instead of second-order trajectories in
q.
We repeat the numerical illustration of [1, pg. 12], the Heisenberg problem, using our

approach. This is to find the extremal q(t) = (x(t), y(t), z(t)) of

S(q) =

∫ t1

t0

L(t, q, q̇)dt =

∫ t1

t0

(
1

2
q̇T q̇ − V (q)

)
dt

subject to the constraint g(q) · q̇ = 0, where g(q) = (−y, x, 1).
Equation (8) gives q̇ ẋẏ

ż

 =

pxpy
pz

+ λ

−yx
1

 (42)
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Figure 10: Some of the phase space variables for the bicycle trajectory starting in a circle.
These angle variables are monotonically increasing.

Figure 11: The error in the λ’s for the circle trajectory. Note that there are many more
steps than shown in Fig. 8. This shows that the λ’s periodically return to their
values for a circle.

Using equation (9) the ṗ can be writtenṗxṗy
ṗz

 = −∇V (q)− λ

 0 1 0
−1 0 0
0 0 0

pxpy
pz

+ λ

−yx
1

 (43)

and we have the constraint g · (p+ λg) = 0, which gives

λ = −g · p
g · g

A simple trajectory starting with the same initial conditions as in [1, pg. 15] is shown in
Fig. 12. Their initial conditions are (x, y, z, ẋ, ẏ, ż, λ) = (0, 0, 0, 0.1, 0.3, 0, 1), which when
converted to generalized momenta variables are (x, y, z, px, py, pz, λ) = (0, 0, 0, 0.1, 0.3, 1, 1).
Qualitatively the results look like [1, pg.14].

7 Discussion

We have constructed symplectic integrators for a different class of constrained Hamiltonian
systems than the holonomic constraints most commonly considered in the literature. The
class includes important practical problems arising in subRiemannian geometry. We have
restricted our attention to symplectic Runge–Kutta methods; a generalization to parti-
tioned methods in which different Runge–Kutta coefficients are used for q, for p, and for
λ is straightforward. In other work [5], we reinterpret these methods as an instance of
rattle in an extended phase space; that point of view also suggests different generali-
sations. However, the nondegeneracy conditions are essential for the method, indeed, for
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Figure 12: The Heisenberg example starting at (x, y, z, ẋ, ẏ, ż) = (0, 0, 0, 0.1, 0.3, 0) or
(x, y, z, px, py, pz, λ) = (0, 0, 0, 0.1, 0.3, 1, 1). Qualitatively the results look
like [1, pg.14].

the entire approach, to work. It is not clear to what extent the approach can be extended
to handle more general constraints, for example, to the system Jż = ∇H + λ∇g, where
the constraint submanifold g(z) = 0 is symplectic. No symplectic, constraint-preserving
method is known for this problem. As remarked before Proposition 4, a full study of the
geometry of the relations (z0, z1) generated in Proposition 3 remains to be undertaken.
Any solutions are symplectic, so this gives access to a much larger class of symplectic maps
than do traditional generating functions. Note that new variables (analogous to λ) can be
added as needed to generate larger classes of maps.
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