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1 INTRODUCTION

In these lecture notes the focus will be on so-called path integration meth-
ods for calculating the probability law of the solution of stochastic di�erential
equations (SDE). The goal then becomes that of calculating the joint proba-
bility density function (PDF) of the phase space Markov vector process that
solves the nonlinear SDE. It is known that for a large class of SDEs, the joint
PDF satis�es the so-called Fokker-Planck (FP) equation [1]. Over the years a
considerable amount of e�ort has been directed toward establishing methods
for solving this equation. In recent years the shift has clearly been toward
numerical methods of solution. Based on past experience, it is clearly recog-
nized that it is still a formidable challenge to solve the FP equation for higher
dimensional problems. For such problems analytical solutions are known only
for a restricted class of nonlinear stochastic systems [2, 3, 4].

The development of numerical solution procedures seems to have followed
mainly three di�erent lines of attack. Of these, the most generally applicable
approaches seem to be based on �nite element (FE) techniques, which provides
weak solutions to the FP equation, see e.g. [5, 6, 7, 8], and the path integration
(PI) method, cf. e.g. [9, 10, 11, 12, 13]. The use of Galerkin type methods for
calculating weak solutions of Fokker-Planck equations by means of orthogonal
expansions have also been pursued [14, 15, 16, 17, 18]. The basic limitation
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of these numerical procedures are the dimension of the problems that can be
solved. So far, only 4D problems have been partly solved. Still the accuracy of
the obtained numerical solutions in the tail regions of the PDFs are somewhat
uncertain.

Among the �rst systematic e�orts to develop the PI method into a nu-
merical tool are those of Wehner & Wolfer [19, 20, 21]. Naess & Johnsen
[10, 11] showed that the PI method could be implemented in such a manner
that extremely accurate results could be obtained for the tail behaviour of the
joint PDF of the state space vector for both 2D and 3D cases. This makes
the PI method of particular interest for the estimation of extreme responses
of dynamical systems which can be modelled as nonlinear oscillators excited
by forces, external or parametric, that can be approximated as white noise or
�ltered white noise processes.

The purpose of these lectures is to describe the basic principles underlying
the path integration method and some recent developments concerning the
numerical implementation of the PI method.

2 THE FROBENIUS-PERRON OPERATOR

Even the simplest, most inconspicuous transformation S : X ! X, where
X denotes a speci�ed state space (e.g. X = [0; 1]), may exhibit irregular
(chaotic) behaviour resembling in many respects random behaviour. The lo-
gistics transformation S : [0; 1] ! [0; 1] de�ned by S(x) = 4x(1 � x) is
one of the classical examples of such a transformation [22, 23]. Starting
from an initial point x0 say, the transformation will produce the trajectory
x0; x1 = S(x0); x2 = S(x1); : : : .

A speci�c feature of the logistics transformation is the existence of a station-
ary density. This can be observed (and estimated) by running a Monte Carlo
simulation in the following manner: The transformation S is used to propagate
forward in time a large number of initial states, x

(i)
0 ; i = 1; 2; : : : ; N , which are

distributed according to some initial density f0(x). After a suÆcient number

of iterations, n say, the density fn(x) of the n'th iterates x
(i)
n ; i = 1; : : : ; N

approximates the stationary density which we denote by f�(x). An estimate
of the stationary density based on N = 5000 is shown in Figure 1.

Another approach is to show that S gives rise to an operator P which
maps the space of densities de�ned on X into itself (a more rigorous de�nition
is given below). The action of P is to propagate the corresponding densities
instead of individual points. That is, P nf0 = fn. The operator P is called the
Frobenius-Perron (FP) operator. Its de�ntion in a general setting is as follows
[24].

Let (X;F ; �) be a measure space, and let L1 = L1(X;F ; �) denote the
space of (complex) integrable functions [25]. D = D(X;F ; �) = ff 2 L1; f �
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0; kfk = 1g = the space of densities. Here kfk = R
X
jf(x)j�(dx).

Let S : X ! X be a measurable transformation, that is S�1(A) 2 F for
all A 2 F . S is called nonsingular if �(S�1(A)) = 0 for every A 2 F such that
�(A) = 0, that is, the transformation S does not collapse non-null sets into
null sets.

Let S : X ! X be a nonsingular transformation. The unique operator
P : L1 ! L1 de�ned by the equation

Z
A

Pf(x)�(dx) =

Z
S�1(A)

f(x)�(dx) for everyA 2 F ; (1)

is called the Frobenius-Perron operator associated with S. It is easy to see
that P : D! D

In mathematical language, the existence of a stationary density can be
rephrased into saying that the associated Frobenius-Perron operator P has a
�xed point f�(x) (f� 2 D � L1), i.e. Pf� = f�

In the context of the logistics transformation, the FP operator is de�ned
by the equation

Z
�

Pf(x) dx =

Z
S�1(�)

f(x) dx (2)

where � is a measurable subset of X = [0; 1], which is equipped with Lebesgue
measure.

It can be shown [24] that the FP operator associated with the logistics
transformation can in fact be given explicitly as follows:

Pf(x) =
1

4
p
1� x

ff( [1�p
1� x ]=2) + f( [1 +

p
1� x ]=2) (3)

Ulam and von Neuman [26] succeeded in actually �nding a closed form ex-
pression for the stationary density for the logistics transformation above by
exploiting the FP operator. They proved the nontrivial result

f�(x) =
1

�
p
x(1� x)

(4)

which can be seen to agree closely with the empirical density plotted in Fig-
ure 2. In general, one cannot expect to be able to derive an explicit and
closed-form expression for the stationary density.

Hence, in practice, there are two alternative approaches for estimating the
stationary density. 1) By following the evolution in time of a large number of
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Figure 1: Empirical stationary density for the logistics transformation. The
full drawn line is the theoretical stationary density given by equation (4).

initial states by iterating S. 2) Or, directly by following the evolution in time
of an initial density by iterating the FP operator P .

It is realized that by changing the focus from the transformation S to
the associated FP operator P , the perspective has been lifted from the de-
tails of individual trajectories to a study coined in a probabilistic language of
the overall beaviour of the states. This is our �rst example of a PI method,
which was developed here for a purely deterministic system with chaotic be-
haviour. It does, however, display the general character of the PI method also
for stochastic systems. In order to extend the PI method to also encompass
such systems, it is necessary to look at a more general class of operators than
the FP operators.

3 MARKOV OPERATORS

The FP operator is a 'deterministic' operator. To be able to handle also
stochastic dynamic problems, it is required to introduce more general operators
than above, viz. the Markov operators [24].

Let (X;F ; �) be a (sigma-�nite) measure space. Any linear operator P :
L1 ! L1 satisfying the following properties

(1) Pf � 0 for f � 0, f 2 L1

(2) kPfk = kfk for f � 0, f 2 L1

is called a Markov operator. Hence, any linear operator P : L1 ! L1 that
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preserves densities, is a Markov operator.
Hence, in particular, P : D ! D if P is a Markov operator, and it is

straight-forward to check that an FP operator is also a Markov operator.
Of particular interest to us are the Markov operators that can be de�ned

as an integral operator with a stochastic kernel,

Pf(x) =

Z
X

K(x; y) f(y)�(dy) (5)

where K(�; �) : X �X ! R is a measurable function,

K(x; y) � 0 (6)

and

Z
X

K(x; y)�(dx) = 1 (7)

By invoking Fubini's theorem, it is easily checked that this kind of operator
is indeed a Markov operator.

4 THE STOCHASTIC DIFFERENTIAL EQUATION

Throughout, the stochastic di�erential equations (SDE) will be interpreted in
the Itô sense. The class of SDE considered is of the following form

dYt = a(Yt) dt+ b(Yt) dWt (8)

where Yt =
�
Y1;t; : : : ; Yn;t

�T
= the (n-dimensional) state space vector pro-

cess, and Wt =
�
W1;t; : : : ;Wm;t

�T
is a standard (unit) scalar or vector (m-

dimensional) Brownian motion process [27, 28] depending on the type of system
being studied. In the case m > 1, it is part of the assumptions that the com-

ponents of Wt are assumed to be independent. a(�) = �a1(�); : : : ; an(�)�T is an
(n-dimensional) vector function. Note that a(Yt) may include Wong-Zakai cor-
rection terms if b(Yt) actually depends on Yt, and if the SDE models a system
driven by wide band processes [27]. b(�) = �bij(�)�, i = 1; : : : ; n; j = 1; : : : ; m
is a vector (m = 1) or a matrix function depending on whether Wt is a scalar
or vector process.

The methodology we are going to describe in these lecture notes, also ap-
plies to the case when the drift term a and the di�usion term b in equation (8)
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have explicit time dependence, that is, a = a(t; Yt) and/or b = b(t; Yt). How-
ever, to simplify the exposition, we have chosen to limit ourselves to the sim-
pler, homogeneous case.

Under suÆcient regularity conditions on a(�) and b(�), cf. [28], the solution
process Yt of equation (8) is a Markov process with a.s. continuous paths. This
makes it possible to establish a path integration method for the calculation of
the (joint) PDF p(y; t) of the solution process Yt by exploiting the fundamental
equation

p(y; t) =

Z
1

�1

p(y; tjy0; t0) p(y0; t0) dy0 (9)

where p(y; tjy0; t0) denotes the conditional PDF of Yt given that Yt0 = y0, and
dy0 = dy01 � � �dy0n. It is referred to as the transition probability density function
(TPD), and it serves as the stochastic kernel of an integral Markov operator.
As will be shown, for a numerical solution of an SDE, the TPD can always
be given as an analytical, closed form expression. Hence, if an initial PDF,
p0(y) = p(y; t = 0) say, is given, then equation (9) can be invoked repeatedly
to produce the time evolution of p(y; t). If the SDE has an invariant measure,
that is, there exists a stationary PDF, ps(y) say, then eventually, assuming
that p0(y) 6= ps(y), p(y; t) will approach this stationary PDF. The number of
times equation (9) has to be repeatedly used to reach the stationary situation,
depends, of course, on the dynamic system and on the speci�ed initial PDF
p0(y).

This discussion reveals a fundamental aspect of the PI solution. It is not
obtained by numerically solving the Fokker-Planck equation. If this equation
has a unique solution, it will invariably agree with the PI solution. However,
the theorems on existence and uniqueness of solutions of the FP equation
formulated in terms of PDFs put severe restrictions on the nonlinear systems
for which solutions are garanteed to exist and be unique. However, as pointed
out by [27], these results are believed to fall far short of what is actually true.
Whether the PI method can be used to deduce such results is still an open
problem.

For a numerical solution of the SDE (8), a discretization procedure has
to be adopted. Actually, the SDE (8) is just a short-hand notation for the
expression

Yt = Yt0 +

Z t

t0
a(Ys) ds+

Z t

t0
b(Ys) dWs (10)

where the last integral is interpreted as an Itô stochastic integral. A numerical
solution procedure is then based on choosing a time increment �t = t� t0 such
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that Yt can be calculated for each given value of Yt0. The basic version is the
Euler-Maruyama approximation [30]

Yt = Yt0 + a(Yt0)�t+ b(Yt0)�Wt0 (11)

where �Wt0 =Wt �Wt0 . Since the Brownian motion process has independent
increments, it follows from equation (11) and the de�nition of �Wt0 , that the
sequence f�i = Yi�tg1i=0 is a Markov chain. For suÆciently small �t, it is
assumed that this Markov chain will approximate the continuous time Markov
process solution of the SDE (8). It is also observed from equation (11) that
the TPD p(y; tjy0; t0) is a Gaussian PDF since the conditional random variable
(�i+1j�i = y0) = y0 + a(y0)�t + b(y0)�Wi�t and �Wi�t is a Gaussian variable
for every i = 1; 2; : : : .

Considering only the deterministic part of the SDE (8), equation (11) re-
duces to the Euler approximation yt = yt0 + a(yt0)�t. As is well known, this
approximation is only accurate to order O(�t2). To improve the accuracy of
the discretization process in following the evolution in time of the deterministic
part of the system, a 4th order Runge-Kutta approximation is implemented,
which is accurate to order O(�t5). This amounts to replacing the function
a(y) by the corresponding Runge-Kutta approximation, r(y) say. The explicit
expression for r(y) will not be given here since the procedure to obtain it
is described in any elementary book on numerical methods. Equation (11)
will therefore be replaced by what will be referred to as the Runge-Kutta-
Maruyama (RKM) approximation

Yt = Yt0 + r(Yt0)�t+ b(Yt0)�Wt0 (12)

To get the expression for the TPD corresponding to equation (12), we �rst
introduce the di�usion matrix g(y) de�ned as follows

g(y) =
�
gij(y)

�
= b(y) b(y)T =

� mX
k=1

bik(y)bjk(y)
�

(13)

It is often the case that some of the rows of the matrix b(y) are zero. By
reordering, it will be assumed that the �rst r rows are zero, that is

bij(y) = 0 for i = 1; : : : ; r; j = 1; : : : ; m (r < n) (14)

and that bij 6= 0 for at least one j for every i = r+1; : : : ; n. This implies that
the di�usion matrix g(y) assumes the form

g(y) =

�
0 0
0 ~g(y)

�
(15)
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In this matrix 0 denotes appropriate zero-matrices and ~g(y) denotes an (n �
r)� (n� r)-matrix function. It will be assumed that ~g(y) is a positive de�nite
matrix for all relevant values of y. This leads to the following expression for
the TPD

p(y; tjy0; t0) =
rY
i=1

Æ(yi � y0i � ri(y
0)�t)

� ~p(~y; tjy0; t0)
(16)

where ~y = (yr+1; : : : ; yn)
T , Æ(�) denotes the Dirac delta function and

~p(~y; tjy0; t0) = 1

(2��t)(n�r)=2
j~g(y0)j�1=2 � exp

n
� 1

2�t

nX
i=r+1

nX
j=r+1�

yi � y0i � ri(y
0)�t

�
[~g(y0)�1]i�r;j�r

�
yj � y0j � rj(y

0)�t
�o (17)

where j~gj denotes the determinant of the reduced di�usion matrix ~g, assumed
to be positive de�nite. This implies that j~gj > 0. [~g(y0)�1]ij denotes the
element in position ij of the inverse matrix of ~g. Hence, if r > 0, p(y; tjy0; t0)
is a degenerate multidimensional Gaussian PDF.

Thus, for the RKM approximation to the SDE, we have shown that an
explicit expression for the TPD is at hand. As already pointed out, equation
(9) therefore provides a vehicle for numerical solution of the SDE through
iterated calculation of the PDF of the state space vector associated with the
approximating Markov chain f�ig.

It is realized that in the RKM approximation, the simplest approximation
to the integral

R t
t0
b(Ys)dWs is still retained. Improved approximations to this

integral can be taken into account in some cases as discussed in [13, 29]. How-
ever, the experience has been that to improve numerical eÆciency, relatively
little is gained such improvements. The the most important modi�cation to
implement in the computer code appears to be the Runge-Kutta approxima-
tion to the deterministic part of the SDE.

It is recognized that the numerical schemes used throughout the present
work are explicit forward time stepping methods, and in general such methods
are only conditionally stable. For a more thorough discussion of such mat-
ters, the reader is referred to [30], which provides an extensive coverage of
convergence and stability properties of various explicit and implicit numerical
schemes relating to SDEs.

5 GENERALIZED CELL MAPPING

We have seen in the previous section that the TPD p(y; tjy0; t0) can be given
explicitly and in closed form for the discretized SDE whether it be given by
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equation (11) or (12). This makes possible the numerical implementation of
the PIS.

GCM [31] is the natural �rst approach at implementing numerical di�usion
of probability as expressed by equation (9). The GCM is based on dividing
the state space into a suitable number of nonoverlapping cells. The cells may
be of equal size for simplicity, which is produced by equidistant discretizations
of the relevant parts of the state space coordinate axes, or of di�erent size for
computational eÆciency reasons.

Assuming that the state space vector has dimension n, and that the number
of discretization intervals along coordinate axis no. i is equal to li, then the
total number of cells will be l = l1 � : : :� ln. For each cell no. j, j = 1; : : : ; l,
there is at time t = ti, i = 0; 1; 2; : : : associated a probability mass �

(i)
j . The

corresponding approximation to equation (9) can then be written as

�
(i)
k =

lX
j=1

P
(i;i�1)
kj �

(i�1)
j (18)

where P
(i;i�1)
kj denotes the l � l transition probability matrix (TPM) from

t = ti�1 to t = ti of the l-dimensional Markov chain resulting from the division
of state space into l cells. Hence, as formulated in [32]: "The fundamental
unit operation in this approach is the di�usion of probability mass in one
cell at time ti�1 into a number of neighbouring cells at time ti". This is
illustrated in Figure 2. The probability mass marked with gray in Figure 2a is
distributed according to equation (18) into other cells as shown in Figure 2b.
By performing the same procedure for all the PDF parts of Figure 2a and
adding together the probability masses over one cell, the PDF at time ti is
obtained, cf. equation (18).

The evolution with time of the probability mass vector �(i)j is then found
by repeating the operation of equation (18) the required number of times.
It is recognized that to retain a certain accuracy in the calculation of the
probability mass vector as time evolves, requirements have to be put on both
the cell size and the time increment, and also on a balance between these two
factors. Simply stated, small time steps require small cell size.

An alternative approach was investigated by Sun & Hsu [9]. They in-
troduced the assumption that the TPD associated with equation (10) for a
suitably short time increment was a non-degenerate Gaussian PDF. By appro-
priate assumptions, a set of moment equations for this TPD was established.
Solving these equations then provided the requisite TPM for obtaining an ap-
proximate solution by the GCM method. They showed that this technique
allowed for fairly big time steps and thereby reasonable cell size.
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Figure 2: Illustration of the GCM scheme.

6 NUMERICAL IMPLEMENTATION OF PATH

INTEGRATION

Let us take a closer look at equation (9). It is realized from equations (16)
and (17) that the TPD is highly localized in state space for small values of
�t. Hence, to obtain an accurate result for p(y; t) by using equation (9), an
accurate representation of p(y0; t0) is required. This can be achieved by using
a very �ne mesh in the whole domain where p(y0; t0) is calculated for every
grid point of the mesh, as in the GCM method. However, this quickly leads to
excessive CPU times when the dimension of the problem increases.

A better approach is to use a coarse mesh in combination with an inter-
polation procedure [10, 11]. Here we shall focus on using splines to represent
p(y0; t0), speci�cally cubic B-splines [33]. Hence, at each time step t0 ! t,
p(y0; t0) is represented as a cubic B-splines series in the following manner

p(y0; t0) =
M1X
k1=1

� � �
MnX
kn=1

�t0(k1; : : : ; kn)
nO
i=1

Bki(y
0) (19)

whereMj = number of grid points for the i'th state variable yi, f
n
i=1Bki(�)gMi

ki=1

is a tensor product basis of cubic B-splines [33] and f�t0(k1; : : : ; kn)gMi

ki=1
is the

set of interpolation coeÆcients associated with time t0. It is assumed that each
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set fBki(�)gMi

ki=1
; i = 1; : : : ; n, is a basis of cubic B-splines associated with the

knot sequence [33] determined by the grid points for the i'th variable yi. The
tensor product B-spline 
n

i=1Bki : R
n ! R, where R = (�1;1), is de�ned

by

nO
i=1

Bki(y) =
nY
i=1

Bki(yi) (20)

The representation of p(y0; t0) by B-splines makes it possible to retain high
numerical accuracy even with a fairly coarse basic grid if p(y0; t0) is not too
singular. By substituting from equation (19) into equation (9), it is obtained
that

p(y; t) =
M1X
k1=1

� � �
MnX
kn=1

�t0(k1; : : : ; kn)

�
Z
D1

� � �
Z
Dn

p(y; tjy0; t0)
nO
i=1

Bki(y
0) dy0

(21)

where Di denotes the integration domain for y0i, i = 1; : : : ; n. Note that the
�rst r integrals are only formal integrals due to the delta-function behaviour
of the TPD, cf. equation (16). We shall return to this point later.

We have made the assumption that the drift term a and the di�usion term
b in equation (8) do not explicitly depend on the time parameter t, that is, the
Markov process Yt will be (time-)homogeneous. It follows from equation (19)
that

p(y; tjy0; t0) = p(y;�tjy0; 0) (22)

Hence, from equation (21) it is seen that for a �xed value of the time
increment �t, each of the integrals on the right hand side of this equation
need to be calculated only once, and can be stored for repeated use. That is,
the following parameters may be calculated initially and stored

Bk1:::kn
l1:::ln

=

Z
D1

� � �
Z
Dn

p(y(l1:::ln);�tjy0; 0)
nO
i=1

Bki(y
0) dy0 (23)

Here the index li, i = 1; : : : ; n, refers to grid point number li for the state space
variable yi. It may be noted that due to the properties of the TPD for small
time increments �t, the tensor Bk1:::kn

l1:::ln
has a strongly banded character with

the elements decreasing rapidly away from the main diagonal k1 = l1; : : : ; kn =
ln. This has important implications for the eÆciency of computer programs
designed to use PI to solve SDEs. Combining equations (21) and (23) gives
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p(y(l1:::ln); t) =
M1X
k1=1

� � �
MnX
kn=1

�t0(k1; : : : ; kn)B
k1:::kn
l1:::ln

(24)

What needs to be calculated at each time step t0 ! t is then the interpolation
coeÆcients �t0(k1; : : : ; kn).

The interpolation procedure described above in general requires a rather
�ne mesh in the tail regions of the PDF to achieve the necessary precision. The
reason for this is not hard to understand. By their very construction, splines
are expectedly best at reproducing polynomials and polynomial-like functions.
Considering that for large classes of problems, ln[p(y0; t0)] is in fact quite close
to a polynomial function, Naess &Moe [13, 29] adopted the strategy of a splines
representation of ln[p(y0; t0)] instead of p(y0; t0) itself. Another representation
strategy has been investigated by Yu et al. [12].

Speci�cally, the following representation as a pp-form series based on cubic
splines [33] was adopted

� ln[p(y0; t0)] =
M1�3X
k1=1

� � �
Mn�3X
kn=1

Ik1;::: ;kn(y
0)

�
3X

l1=0

� � �
3X

ln=0


k1;::: ;knl1;::: ;ln
� (y01)l1 � : : : � (y0n)ln

(25)

Mi = number of grid points for the i0th state space variable yi. In our case,
there are Mi � 3 intervals Iki on the yi-axis relative to which the cubic splines
are de�ned. This is related to the choice of knot sequence [33]. The func-
tion Ik1;::: ;kn(y

0) = 1 if y0 belongs to the subdomain given by the Cartesian
product Ik1 � : : : � Ikn , while it is equal to zero if y0 does not belong to this
subdomain. For each subdomain, uniquely speci�ed by the indices k1; : : : ; kn,
the coeÆcients 
k1;::: ;knl1;::: ;ln

= 
k1;::: ;knl1;::: ;ln
(t0) of the pp-form splines representation are

determined by adapting algorithms given by de Boor [33].
The expression analogous to equation (21) is for this case

p(y; t) =

Z
D1

� � �
Z
Dn

p(y; tjy0; t0) � exp
n
�

M1�3X
k1=1

� � �
Mn�3X
kn=1

Ik1;::: ;kn(y
0)

�
3X

l1=0

� � �
3X

ln=0


k1;::: ;knl1;::: ;ln
� (y01)l1 � : : : � (y0n)ln

o
dy0

(26)

It is recognized that for this formulation of the interpolation procedure,
there is no formula corresponding to equation (24). That is, the integrations of
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equation (26) have to be carried out at each time step. Hence the potential gain
in CPU time achieved by a coarser grid for this formulation is to some extent
lost by these repeated integrations. On the other hand, there is no added cost
to treat the case of explicit time dependence of the drift and di�usion terms
in the SDE.

A point to observe at this stage is the fact that p(y; t) in equations (21)
and (26) is calculated only for the points of the chosen grid, that is, for
y = y(l1:::ln). This has the implication that the numerical evaluation of the
integral of equations (21) or (26) in fact should be based on a backward time-
stepping procedure, as opposed to the GCM, which is a purely forward time-
stepping method. Figure 3 illustrates how the backward time-stepping is im-
plemented. The point y0 is determined by following the deterministic path
backwards from y for the time duration �t. The points y0A = (y01A; : : : ; y

0

nA)
T

and y0B = (y01B; : : : ; y
0

nB)
T , which give the integration limits in equation (21)

or (26), that is, Di = (y0iA; y
0

iB), are determined by backward time-stepping of
the corresponding points yA and yB, requiring that (the non-degenerate part
of) the TPD functions centered at yA and yB assume values less than a preas-
signed threshold value at the point y, typically 10�6. The choice of threshold
value will depend on the grid mesh. The chosen value should be small enough
to ensure that the probability of a point starting at e.g. y0A to end up at y
after one (forward) time step is suÆciently small.

This backward time stepping procedure is of considerable computational
advantage in the sense that it allows a relatively coarse grid. With the calcula-
tion procedure adopted here, the density of grid points is solely determined by
the ability to represent the PDF at each time step by e.g. a splines approxima-
tion in a suÆciently accurate manner. What is suÆciently accurate, is to some
extent problem speci�c. A more detailed discussion of the numerical aspects
of the proposed implementation is given in Moe [34]. Figure 4 illustrates the
numerical PI scheme

To ensure a correct normalization, checks on the value of the integralR
p(y; t) dy have to be made repeatedly after a suitable number of iterations.

If the calculated value deviates from 1.0 relative to a preassigned accuracy, the
coeÆcients of the splines representation are updated accordingly.

Let us now return to the previous comment that the �rst r integrals in
equations (21) and (26) are only formal integrals. At the same time we want
to point out one of the signi�cant advantages of numerical PI for solving an
important class of SDEs obtained from nonlinear dynamic systems. Very often
the stochastic excitation only enters through one of the dimensions of the state
space vector, that is, r = n � 1. Under this assumption, it is recognized that
the integrations of equations (21) and (26) in fact reduces to an integration of
only one variable, viz. y0n. This follows by observing that for 1 � i � n�1, due
to the degenerate form of the TPD, cf. equation (16), the integration variable
y0i is obtained as a function of y = (y1; : : : ; yn)

T and y0n by solving the set of
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Figure 3: Illustration of the backward time-stepping procedure.

equations yi = y0i + ri(y
0)�t. A �rst approximation is obviously obtained by

setting y0i = yi � ri(y)�t, which can be sharpened by iteration in an obvious
manner. Denote the solutions by ~y0i =  i(y

0

n; y), and ~y0 = (~y01; : : : ; ~y
0

n�1; y
0

n)
T .

Then equation (21) assumes the form

p(y; t) =
M1X
k1=1

� � �
MnX
kn=1

�t0(k1; : : : ; kn)

�
Z y0

nB

y0
nA

~p(yn; tj~y0; t0)
nO
i=1

Bki(~y
0) dy0n

(27)

so that the calculation of the coeÆcients Bk1:::kn
l1:::ln

in equation (23) only involves
a one-dimensional integration.

In the same manner, equation (26) can be written in the following form

15



Figure 4: Pictorial representation of the PI scheme.

p(y; t) =

Z y0
nB

y0
nA

~p(yn; tj~y0; t0) � exp
(
�

M1�3X
k1=1

� � �
Mn�3X
kn=1

Ik1;::: ;kn(~y
0)

�
3X

l1=0

� � �
3X

ln=0


k1;::: ;knl1;::: ;ln
� (~y01)l1 � : : : � (~y0n�1)ln�1 � (y0n)ln

)
dy0n

(28)
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The number of integrations that has to be carried out in equations (21) and
(26) have signi�cant implications for the CPU time needed to solve a speci�c
problem. Hence it is of great advantage when the required integrations can
be reduced to only one, as above. Clearly, in general, this cannot be done.
Note that the positivity of the calculated PDF p(y; t) is guaranteed by the fact
that both functions entering the integration on the rhs of equation (11) are
invariably non-negative.

We close this section by a discussion of a technique for complexity reduction
which is often useful. For many dynamic models not all state space dimen-
sions are of equal interest. In fact, very often it is only the �rst two state
space dimensions that are of immediate interest, but the remaining dimen-
sions are needed to obtain a SDE. In such cases one might consider simplifying
the numerical calculations by retaining an accurate representation in term of
splines only for the �rst two dimensions while treating the remaining dimen-
sions only as slave variables with a coarse numerical representation. However,
practical experience has shown that to obtain accurate results for the �rst
two dimensions, there appears to be a rather stringent requirement regarding
representation accuracy also for the slave variables.

Let us illustrate one such possible approach for the 4D situation. Assuming
that the PDF p(y) of the state space vector Yt has been calculated for the points
of the chosen grid, which are here generically denoted by (y1k; y2l; y3m; y4n). For
each point (y3m; y4n), a splines representation pmn(y1; y2) can be calculated for
the �rst two state space dimensions. When y3m < y3 < y3m+1 and y4n < y4 <
y4n+1, a 4D interpolation for p(y) is then calculated by the expression

p(y) = (1� �m)(1� �n)pmn(y1; y2)

+ �m(1� �n)pm+1n(y1; y2)

+ (1� �m)�npmn+1(y1; y2)

+ �m�npm+1n+1(y1; y2) (29)

where

�m =
y3 � y3m

y3m+1 � y3m
(30)

�n =
y4 � y4n

y4n+1 � y4n
: (31)

This simple procedure has been used to calculate the stationary PDF of
some nonlinear oscillators leading to 4D SDEs, as will be shown in the next
section.
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7 NUMERICAL EXAMPLES

The performance of the numerical PI procedure described in these notes will
be illustrated by application to a few special cases of some classes of nonlinear
oscillators driven by white or coloured noise. In this section we shall refer to
the two basic methods of splines interpolation presented in the previous section
as Splines A (for p(y; t)) and Splines B (for ln[p(y; t)]).

CLASS 1 - Nonlinear oscillators with additive noise

The �rst type of oscillators within this class are characterized by the dynamic
model, cf. [35],

�Xt + g(E) _Xt + h(Xt) = Ft (32)

where g(�) and h(�) are suitable functions. E = E(Xt; _Xt) denotes the total
energy, that is

E =
1

2
_X2
t + V (Xt) (33)

where the potential energy function V (�) is given by the relation

V (x) =

Z x

0

h(s) ds (34)

The external excitation process Ft of equation (29) will be chosen �rst as a
stationary Gaussian white noise, which means that equation (29) corresponds
to a 2D SDE (n = 2, m = 1, cf. equation (8)), where Yt = (Y1;t; Y2;t)

T =

(Xt; _Xt)
T , a(Yt) =

�
Y2t;�g(E)Y2t � h(Y1t)

�T
, and b(Yt) =

�
0; 

�T
, and 
 is a

positive constant.
It can be shown that the stationary joint PDF ps(y1; y2) determined by

equation (32) for this case is given by the formula [35]

ps(y1; y2) = C exp
n
� 2


2

Z E(y1;y2)

0

g(s) ds
o

(35)

where C = normalization constant.
This case will be illustrated by the following two examples.
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Example 1 - DuÆng I

The classical DuÆng oscillator (in normalized form) is obtained by setting
g(E) = 2 �, where � is some positive constant, and h(Xt) = Xt + �X3

t . By
choosing 
 = 2

p
�, it follows that for this case

ps(y1; y2) = C exp
n
� 1

2

�
y21 +

�

2
y41 + y22

�o
(36)

Note that the parameter � does not appear in the expression for ps, which
is due to the speci�c choice of 
. For the numerical calculations, � = 0:25 and
� = 0.2 and 1.0.

Numerical results obtained for the stationary PDF using Splines A com-
bined with a 31�31 grid, starting from an initial Gaussian PDF with zero
mean, are plotted in the form of marginal displacement PDFs in Figure 5. For
comparison also the corresponding analytical results have been drawn. The
agreement is seen to be excellent.

−5 0 5

−12

−10

−8

−6

−4

−2

0

x

lo
g 

 f 
(x

)

−4 −2 0 2 4
−14

−12

−10

−8

−6

−4

−2

0

x

lo
g 

 f 
(x

)

Figure 5: Logarithmic plots of exact (solid line) vs. numerical PI (Æ Æ Æ) results
using Splines A for the marginal stationary displacement response PDF of the
2D DuÆng oscillator. Left �gure: � = 0:2. Right �gure: � = 1:0

Analogously, in Figure 6 are shown numerical results obtained by using
Splines B for a 23�23-grid and an initial Gaussian PDF with mean value zero.
The corresponding analytical results are also shown. The results are presented
in the form of the marginal stationary PDFs for displacement and velocity.
It is seen that the agreement is very good down to extremely low probability
levels, except for a slight overshoot in the central part of the marginal PDF of
the displacement response.
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Figure 6: Linear and logarithmic plots of exact (solid line) vs. numerical PI
(� � �) results using Splines B for the marginal stationary response PDF of
the 2D DuÆng oscillator (Example 1) for � = 0:2. Top �gures: Displacement.
Bottom �gures: Velocity

Example 2 - DuÆng II

This example distinguishes itself from Example 1 only by the way the function
h is chosen. Here h(Xt) = �Xt + �X3

t , corresponding to what is often called
a double potential well. In this case
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ps(y1; y2) = C exp
n
� 1

2

� � y21 +
�

2
y41 + y22

�o
(37)

which is recognized as a two-peaked PDF.
It is seen from Figure 7 that the results obtained by numerical PI using

Splines B based on a 15 � 15-grid and an initial Gaussian PDF with mean
value zero, compares well with the analytical results.

The next type of nonlinear system with additive noise that we shall work
with, is the DuÆng - van der Pol Oscillator. The equation of motion for this
oscillator is as follows

�Xt + 2 � (X2
t � 1) _Xt +Xt + �X3

t = Ft (38)

where � is a positive constant.

Example 3 - Van der Pol oscillator

This case is obtained by putting � = 0. We shall in this example consider
a van der Pol oscillator driven by stationary Gaussian white noise. Similarly
to the two preceding examples, this leads to a 2D SDE. This example has
been calculated using only Splines A with a 41 � 41 grid. Since no closed
form expression is known for the stationary PDF for this case, Monte Carlo
simulations were carried out to get an empirical estimate of the PDF for the
purpose of comparison. To get good empirical estimates down to the 10�7

level, about 12 hours of CPU time was needed on the work station used. In
contrast, the PI solution takes a few seconds, which is essentially the same for
all 2D problems.

The numerical results for two speci�c choices of �-values, have been pre-
sented in Figures 8 and 9 in the form of marginal PDFs. Figure 10 shows 3D
plots of the corresponding joint PDFs.

In the next two examples, we shall consider additive coloured noise ob-
tained by passing Gaussian white noise through a second order linear �lter.
Speci�cally, the coloured noise Ft is determined by the equation

�Ft + 2 �!s _Ft + !2
s Ft = �Nt (39)

where �, � and !s are positive constants, and N(t) denotes (symbolically)
standard Gaussian white noise. This means that Ft satis�es a 2D linear SDE,
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Figure 7: Linear and logarithmic plots of exact (solid line) vs. numerical PI
((� � �) results using Splines B for the marginal stationary response PDF of
the 2D DuÆng oscillator (Example 2) for � = 0:2. Top �gures: Displacement.
Bottom �gures: Velocity

and it follows that Ft becomes a stationary Gaussian process with zero mean
and spectral density given by the expression

S(!) =
�2

2 �[(!2 � !2
s)

2 � (2�!s!)2]
(40)

22



−6 −4 −2 0 2 4 6

−7

−6

−5

−4

−3

−2

−1

0

x

lo
g 

 f 
(x

)

−8 −6 −4 −2 0 2 4 6 8
−8

−7

−6

−5

−4

−3

−2

−1

0

y

lo
g 

 f 
(y

)

Figure 8: Logarithmic plot of Monte Carlo (solid line) vs. numerical PI (Æ Æ Æ)
results for the marginal stationary response PDF of the van der Pol oscillator
for � = 0:05. Left �gure: Displacement. Right �gure: Velocity
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Figure 9: Logarithmic plot of Monte Carlo (solid line) vs. numerical PI (Æ Æ Æ)
results for the marginal stationary response PDF of the van der Pol oscillator
for � = 0:25. Left �gure: Displacement. Right �gure: Velocity

This spectral density has been drawn in Figure 11 for � = !s = 1:0 and
� = 0:02, which are the values to be used in the next two examples. In the
�gure is also shown a part of a realization of the corresponding Ft. It is seen
that this coloured noise is indeed very narrow band in character, as opposed
to a white noise.

Example 4 - 4D DuÆng

It is recognized that the DuÆng oscillator driven by the coloured noise given

above leads to a 4D SDE where Yt = (Y1;t; Y2;t; Y3;t; Y4;t)
T =

�
Xt; _Xt; Ft; _Ft

�T
,

a(Yt) =
�
Y2;t;�2 � Y2;t � Y1;t � �Y 3

1;t + Y3;t; Y4;t; �2 �!s Y4;t � !2
s Y3;t

�T
, and
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Figure 10: 3D plot of numerical PI results for the joint stationary response
PDF of the van der Pol oscillator. Left �gure: � = 0:05. Right �gure: � = 0:25.
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Figure 11: Left �gure: Plot of the spectral density of the coloured noise Ft for
� = !s = 1:0 and � = 0:02. Right �gure: Part of a realization of Ft.

b(Yt) =
�
0; 0; 0; �

�T
.

For the numerical calculations Splines A was used for the �rst two di-
mensions, while linear interpolation as described in the previous section was
applied for the remaining two. The grid was 414. Again, for comparison, an
empirical PDF was established by Monte Carlo simulations, which required
about 24 hours on the work station used for the calculations. In this case the
PI solution took about 30 minutes.

The numerical results for � = 1:0 have been presented in Figure 12 in the
form of marginal stationary PDFs. Note that the marginal velocity distribution
is distinctly non-Gaussian in this case as opposed to the white noise driven
oscillator, when it is always Gaussian.
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Figure 12: Logarithmic plot of Monte Carlo (solid line) vs. numerical PI
(Æ Æ Æ) results for the marginal stationary response PDF of the 4D DuÆng
oscillator for � = 1:0. Left �gure: Displacement. Right �gure: Velocity

Example 5 - 4D DuÆng - van der Pol

Let us now look at the DuÆng - van der Pol oscillator driven by the coloured
noise Ft. The speci�cs are the same as for Example 4, and we put � = � = 1.
The results obtained are shown in Figure 13.
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Figure 13: Logarithmic plot of Monte Carlo (solid line) vs. numerical PI
(Æ Æ Æ) results for the marginal stationary response PDF of the 4D DuÆng -
van der Pol oscillator for � = � = 1:0. Left �gure: Displacement. Right �gure:
Velocity

It is seen that the agreement between the Monte Carlo and the PI results
are fairly good, but not on the same level as for the previous example. This
can be better understood by looking at the 3D plots of the two joint PDFs,
which are given in Figure 14.
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Figure 14: 3D plot of numerical PI results for the joint stationary response
PDF of displacement and velocity of oscillator. Left �gure: 4D DuÆng. Right
�gure: 4D DuÆng - van der Pol.

CLASS 2 - Nonlinear Oscillators with Parametric Excitation

This case is concerned with a class of parametrically excited nonlinear oscilla-
tors with equation of motion of the form

�Xt + 2� _Xt (1 + 
1N1;t) + � _Xt

�
X2

t + _Xt
2
=!2
�

+ !2Xt (1 + 
2N2;t) = 
3N3;t

(41)

Here �, � and ! are positive constants. The stationary Gaussian white noise
processes Ni;t, i = 1; 2; 3, are independent and satisfy the same condition
as Nt above. The parameters 
i, i = 1; 2; 3, represent the intensities of the
excitations.

Dimentberg [36] has shown that when

!2
22 = 4�2
21 (42)

the stationary PDF exists and is given by the expression

ps(y1; y2) = C
�
�+ y21 + y22=!

2
����Æ

exp
n
� �

�
y21 +

y22
!2

�o
(43)

where C is a normalization constant, and

� =

23

22!

4
; Æ =

2�


22!
2
+
1

2
; � =

�


22!
2

(44)

Here we shall present results for the stationary PDF of two speci�c ex-
amples where a closed form solution is known for the �rst example, but is
unknown for the second. The results obtained by the PI method are therefore
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compared with results obtained by Monte Carlo simulation for the last exam-
ple. The PI results are in both examples calculated using Splines B on the
basis of an equidistant 25� 25-grid for the chosen calculation domain and an
initial Gaussian density with mean value zero.

In each case a 2D SDE (n = 2,m = 3) is obtained, where Yt = (Y1;t; Y2;t)
T =

(Xt; _Xt)
T , a(Yt) = (a1(Yt); a2(Yt))

T = (Y2;t;�2�Y2;t � �Y2;t(Y
2
1;t + Y2;t=!

2) �
!2Y1;t + 2�2�21Y2;t)

T , and b1i = b2i = 0, i = 1; 2; 3, b31(Yt) = �2��1Y2;t,
b32(Yt) = �!2�2Y1;t, b33(Yt) = �3. The term 2�2�21Y2;t appearing in the ex-
pression for a2(Yt) is a Wong-Sakai correction term [27].

Example 6 - Dimentberg I

The following set of parameters has been chosen, which comply with the con-
dition of equation (42): � = 0:1, � = 0:4, ! = 1:0, 
21 = 5:0, 
22 = 0:2 and

23 = 0:3. Figure 15 shows the analytical and numerical PI results in the form
of marginal stationary PDFs. The agreement between the two sets of results
is seen to be very good.

For concenience, most of the PI calculations have been carried out with
equidistant grids. Clearly, this may not be the optimal choice in terms of the
accuracy to CPU time ratio. In many cases this can be improved by adopting
non-equidistant grids. This e�ect is illustrated by Figure 16, which corresponds
to Figure 15, but the PI results are calculated on the basis of a non-equidistant
15 � 15-grid. The accuracy is practically the same as in Figure 15, but the
reduced grid leads to a reduction of required CPU time by a factor of almost
3.

Example 7 - Dimentberg II

This example is determined by the following set of parameters: � = �0:1,
� = 0:1, ! = 1:0, 
21 = 0:1, 
22 = 0:1 and 
23 = 0:3. In Figure 17 are given the
results for the stationary PDFs (marginal) from both the PIS and the Monte
Carlo simulations. The agreement between the two methods are good where
comparison is feasible. Figure 18 shows 3D-plots of the stationary joint PDFs
by numerical PI and Monte Carlo simulation.

8 STOCHASTIC DIFFERENTIAL EQUATIONSWITH

�-STABLE L�EVY PROCESSES

Due to an increasing interest in exploring the use of �-stable stochastic pro-
cesses for modeling physical and economic processes, the purpose of this section
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Figure 15: Linear and logarithmic plots of exact (solid line) vs. numerical PI
with equidistant 25� 25 -grid (� � �) results using Splines B for the marginal
stationary response PDF of the 2D Dimentberg oscillator (Example 6). Top
�gures: Displacement. Bottom �gures: Velocity

is to describe some initial e�orts to explore the potential of the PI technique
for calculating the PDF of the state space vector of various SDEs with �-stable
L�evy noise [37].

The SDE is still considered as an (extended) Itô SDE, and it is written in
the following form
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Figure 16: Linear and logarithmic plots of exact (solid line) vs. numerical
PI with non-equidistant 15� 15 -grid (� � �) results using Splines B for the
marginal stationary response PDF of the 2D Dimentberg oscillator (Example
6). Top �gures: Displacement. Bottom �gures: Velocity

dYt = a(Yt) dt+ b(Yt) dL
(�)
t (45)

where Yt = the (n-dimensional) state space vector process, and L
(�)
t , 0 < � � 2,

is a scalar �-stable L�evy motion process, cf. [38]. When � = 2:0, L
(�)
t becomes

a Brownian motion. a(Yt) and b(Yt) are de�ned as in the standard case.
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Figure 17: Linear and logarithmic plots of Monte Carlo (solid line) vs. numer-
ical PI with equidistant 25� 25 -grid (� � �) results using Splines B for the
marginal stationary response PDF of the 2D Dimentberg oscillator (Example
7). Top �gures: Displacement. Bottom �gures: Velocity

For the sake of easy reference, a brief overview over some of the basic
features of �-stable L�evy processes that is of relevance here will be given.

A (real) random variable X is said to have a stable distribution if there
are parameters 0 < � � 2, � > 0, �1 � � � 1, and � real such that its
characteristic function  (�) = E[exp i�X] assumes the following form [38].
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Figure 18: 3D plots of the stationary joint PDF of displacement (y1) and veloc-
ity (y2) of the 2D Dimentberg oscillator (Example 7). Top �gure: Numerical
PI with equidistant 25� 25 -grid. Bottom �gure: Monte Carlo results

If � 6= 1:

 (�) = exp f���j�j�(1� i�sign� tan(��=2)) + i��g (46)

If � = 1:

 (�) = exp f��j�j(1 + i�(2=�)sign� ln j�j) + i��g (47)

Here sign� = 1 if � > 0, = 0 if � = 0, = �1 if � < 0. � = the stability
parameter, � = the scale parameter, � = the skewness parameter, and � =
the shift parameter. Since the distribution of X is characterized by these
four parameters, the notation X � S�(�; �; �) is often adopted to denote the
situation that X is a stable variable with a speci�ed set of parameters. When
X is symmetric �-stable, that is � = � = 0, we shall write X � S�S.
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From equation (46) it follows that the stable distribution is Gaussian when
� = 2 (� = 0). Then � is proportional to the standard deviation, and � equals
the mean value. When � < 2, the tails of the probability distributions decay
like a power function. Speci�cally, limx!1 x

�ProbfX > xg = C��
�(1 + �)=2

and limx!1 x
�ProbfX < �xg = C��

�(1� �)=2, where C� is a constant [38].
Hence it follows that no �nite variance exists when � < 2. Such distributions
are frequently referred to as having heavy tails. Further, a �nite mean value
is obtained only if � > 1. Such distributions therefore leads to much more
variability than a Gaussian distribution. This e�ect will be demonstrated
below.

It may also be noted that the probability density functions (PDF) of �-
stable random variables exist and are continuous, but unknown in closed form
with few exceptions. When � < 2 and � = 0, only one nontrivial case is known
in closed form, viz. the Cauchy distribution S1(�; 0; �). If X � S1(1; 0; 0), then
its PDF is given as follows

p(x) =
1

�( x2 + 1 )
(48)

For illustration, we shall also investigate the case when � = 1:5. A numer-
ical procedure for calculating the PDF is then required. Here we shall use the
following result [38]: X � S�(1; 0; 0) if

X =
sin(��)

(cos�)1=�

�
cos((1� �)�)

W

�(1��)=�

(49)

where � is a random variable uniformly distributed on (��=2; �=2) and W
is an exponential random variable with mean 1. The FORTRAN program
rstable [38] is used to generate a very large sample of the random variableX �
S1:5(1; 0; 0) which is then used to determine the PDF with desired accuracy.
Figure 19 shows the PDF used for the calculations to be discussed below.

To be able to change the parameters of the PDFs, the following property
will be used later. If X � S�(1; 0; 0), and � > 0 and � are real constants, then
�X + � � S�(�; 0; �).

The stochastic process L
(�)
t (t � 0) is a (symmetric) �-stable L�evy motion

process if

1. L
(�)
0 = 0 (a.s.),

2. L
(�)
t has independent increments,

3. L
(�)
t � L

(�)
s � S�( (t� s)1=�; 0; 0) for any 0 � s < t <1 and 0 < � � 2.
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Figure 19: The PDF of X � S1:5(1; 0; 0)

It follows that such a process has stationary increments, and it becomes a
Brownian motion for � = 2. Also, for �xed t, L

(�)
t � S�S.

The distinct di�erence between a Brownian motion L
(2)
t on the one hand

and the Cauchy motion L
(1)
t and L

(1:5)
t , on the other, is displayed in Figures 20-

22, which shows part of a realization of each of these processes. In contrast to
the Brownian motion, a typical feature of the two other processes is the sudden
large excursions, which tend to become more pronounced with decreasing �-
parameter. This re
ects the much larger variability inherent in e.g. the Cauchy
distribution as opposed to the Gaussian law which determine the variability
in the Brownian motion.

It is clear that the PI solution of a standard SDE with Brownian motion
detailed in previous sections can be adapted almost word for word to also apply
to the extended SDE with �-stable L�evy motion. However, as already seen,
for � < 2:0, only for the case of Cauchy motion does there exist a closed form
expression for the TPD. For the other values of � < 2, a normalized, empirical
PDF can easily be produced and stored, and only rescaling and shifting is
needed to provide the required TPD.

We shall conclude by calculating the stationary PDF of the following dy-
namic model

�Xt + 2� _Xt +Xt + �X3
t = 2

p
� N

(�)
t (50)

where �L
(�)
t = N

(�)
t �t. So this model can be recognized as a DuÆng oscillator

driven by an �-stable L�evy white noise. For the numerical calculations, which
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Figure 20: A realization of �-stable L�evy motion L
(2)
t , i.e. Brownian motion
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Figure 21: A realization of �-stable L�evy motion L
(1:5)
t

were based on Splines A 31 � 31 grid. The parameter values were � = 0:25
and � = 0:2, the same as in previous examples.

One of the speci�c problems that one has to cope with in a numerical
calculation of the joint PDF of the state space vector of dynamic systems
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Figure 22: A realization of �-stable L�evy motion L
(1)
t , i.e. Cauchy motion

driven by an �-stable L�evy white noise with � < 2, is the extension of the
domain in state space where the PDF needs to be considered to obtain accurate
results by PI. The heavy tails of the PDF of the excitation process is of course
re
ected in the tails of the PDF of the response process. Compared to the case
of Gaussian white noise driven oscillators, in general a much larger domain
has to be considered. However, this is compensated by the small gradients
associated with the PDF of the response process, which allows a discretization
of the state space with a comparable number of grid points as in the case of
Gaussian white noise excitation.

Example 8 - � = 1:5

For this case, the choice of domain was [�30; 30]� [�35; 35] with 31 grid points
on each axis. The number of grid points is very similar to what was required
for Gaussian white noise excitations while the domain is much larger. To get
a check on the results, extensive Monte Carlo simulations were carried out to
obtain accurate estimates of the joint PDF also in the tail region. It is found
that reasonable accuracy is obtained over almost the entire domain except at
the boundary of the domain. This is illustrated by the plots in Figure 23 where
the maginal PDF of displacement and velocity response obtained by PI and
Monte Carlo simulations are shown.
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Figure 23: The marginal PDF of stationary response obtained by PI (Æ)and
Monte Carlo simulations (��) for � = 1:5. Left �gure: Displacement. Right
�gure: Velocity.

Example 9 - � = 1:0

For the case � = 1:0, that is, Cauchy motion, the chosen domain was [�35; 35]�
[�35; 35] also with 31 grid points on each axis. In this case very good agree-
ment was found over the entire domain between the joint PDF obtained by PI
and extensive Monte Carlo simulations. Figure 24 show the maginal PDF of
displacement and velocity response obtained by PI and Monte Carlo simula-
tions. Also for this case, good numerical accuracy is obtained.
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Figure 24: The marginal PDF of stationary response obtained by PI (�)and
Monte Carlo simulations (��) for � = 1:0. Left �gure: Displacement. Right
�gure: Velocity.
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