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1 Introduction

Inverse problems can be defined as problems that consist in finding the cause of
an observed effect. An inverse problem is always paired with a direct problem
that provide the effect of a given cause. This definition requires the formulation
of any specific problem to be based on physical laws and that physics must
specify what is a cause and what is an effect as well as provide the equations
relating the effects to the causes (Bertero 1989). Inverse problems arise naturally
if one is interested in determining the internal structure of a system based on
the system’s observed behavior or in determining the unknown input that give
rise to an observed output (Hansen 1998).

In a mathematical language an inverse problem relate to an operator equa-
tion,

y:K(Z), (1)

with K : Z — ) being a possibly nonlinear operator. The direct problem is
to determine the effect, y, of a given cause, z, whereas the inverse problem is
to determine the cause, z, of an observed effect y. The function space Z is
commonly denoted the model space or parameter space, while ) is denoted the
data space.

Expression (1) is unlikely to hold when y is a measured quantity, since mea-
surements have finite precision. In addition Expression (1) may be inaccurate
in the sense that the operator K does not model all aspects of the physical pro-
cesses that produce the observations. The problem is hence more realistically
stated as,

y:K(Z)+6, (2)

with € being an error term.

To give a comprehensive account for all aspects of inverse problems, is im-
possible in a short introduction since the field have so many branches spanning
physical, mathematical, computational and statistical aspects. The current pre-
sentation include basic mathematical and statistical definitions that are relevant
for inverse problems, and discuss some of the philosophies that underlies the dif-
ferent solution methods. The presentation will concentrate on the case where



K : Z — ) is a compact linear operator since this theory is by far the best de-
veloped. The inversion methods and the underlying philosophies are frequently
generalized to solve nonlinear inverse problems. This is briefly discussed.

The presentation is organized as follows. Mathematical aspects of inverse
problems are presented in in Section 2. Inversion by regularization is presented
in Section 3. The statistical theory of point estimation is presented in 4. Statis-
tical minimax inversion and Bayesian inversion are presented in Section 5 and
6 respectively. In Section 7 the three inversion methodologies are compared
with respect to similarities and differences. Section 8 contains some concluding
remarks and the authors personal preferences.

2 Mathematics of inverse problems

The presentation in this section is based on Engl, Hanke and Neubauer (1996),
Kirsch (1996) and Hansen (1998). It contain basic mathematical definitions and
discusses approximate solutions to inverse problems.

2.1 Problem classification

According to the informal definition above a problem is classified as direct or
inverse by the physics defining the problem. From a mathematical point of
view problems are more naturally labeled as being well-posed or ill-posed. A
problem is well-posed if there exists a unique, stable solution. The notion of a
well-posed problem is attributed to Hadamard (1902, 1923). Although there is
no formal connection between the two sets of labels, it is however true, with few
exceptions, that direct problems are well-posed while the corresponding inverse
problems are ill-posed. A definition of a well-posed inverse problem reads,

Definition 1 (Well-posed) Let Z and ) be normed spaces and let K : Z — Y
be a continuous operator from Z into Y. The problem y = K(z) is well-posed
in the sense of Hadamard if the following three conditions are satisfied:

1. Eristence: There ezist a solution z € Z for anyy € Y with K(z) =y

2. Uniqueness: There exist at most one solution z € Z for any y € Y with
K(z) =y

3. Stability: For every positive number €, there exist a positive number §(€)
such that any pair z1,ze € Z for which ||K (z1)—K (22)|| < 6(€), ||z21 —22|| <
€

Problems for which at least one of the three conditions above fails to hold are
termed ill-posed.

Whether a problem is well-posed or not, depend both on the operator K and
the function spaces Z and ).



The simplest case of an operator equation is, a matrix equation, y = K z,
for which Z2 = R™, Y = R™ and K is a m X n matrix. The existence criterion
then imply that the rank of K is equal to m, the uniqueness criterion imply that
the rank of K is equal to n. Hence to assure both existence and uniqueness the
matrix must be square and have full rank. These are also sufficient conditions
for a matrix equation to be well posed. Any inverse problem formulated as
a square matrix equation of full rank is hence stable in a strict mathematical
sense. For matrix equations the criterion of stability relates to computational
aspects of the inverse, K~!. If a small change in y produce a large change in
z = K~ 'y, the system is said to be unstable. The standard example of such a
matrix is -

+e€
=[]

with € being a small number. Let the supscript T denote matrix transpose. The
solution for y7 = [2, 2] is 27 = [2, 0], while the solution for yT =[2 + €, 2]
is 27 = [1, 1], hence a change in the input of order € result in a change in
the answer of order one. In unstable systems, some of the equations are almost
linearly dependent. These systems are therefore hard to solve numerically, see

Hansen (1998) for an extensive discussion.

2.2 Singular value expansion

Consider an operator equation
y=Kz, (3)

with K : Z — ) being a compact linear operator between two Hilbert spaces.
In common notation K* : ) — Z denotes the adjoint of K, and is defined by
the requirement that for all z € Z and y € ), (K z,y) = (2, K*y), with (-,-)
denoting inner products in Y and Z at the left and the right side of the equality
respectively. For any compact linear operator K : Z — ), there exist a singular
system {o;,v;, u; }52,, with o; being nonnegative numbers, {v;}$2; and {u;}{2,
being complete orthonormal systems of basis elements for Z, and ) respectively.
That is, z € Z and y € Y can be represented by the generalized Fourier series,
z=Y . zwv; and y = Y y; u;, with z; = (v;, 2) and y; = (u;,y). The numbers o;
are the singular values of K, these are usually ordered in a non increasing order,
01 > 09 > --- > 0. Singular systems resembles the eigensystem of compact self
adjoint operators, indeed {02, v; }$2, and {0?,u;}$2, are the eigensystems of the
self adjoint operators K*K and K K* respectively.
The singular system defines the singular value expansion of K,

o0
Kz:Zcri (v5,2) u; (4)
i=1



The singular value expansion diagonalize the problem such that the generalized
Fourier coefficients of z can be solved independently, i.e.

Ke=y & ojzi=y;,i=1,2,... . (5)

The ill-posedness of a linear inverse problem is frequently related to the decay of
the singular values. As i — oo, ; — 0, hence the effect of z; in Kz diminishes
as ¢ — oo. The rate of decay of the singular values can be used to classify
linear ill-posed problems. A problem is termed mildly ill-posed if o; ~ i~" and
0 < r < 1, moderately ill-posed if ; ~ i~" and r > 1 or severely ill-posed if
o; ~ exp{—ri} or worse.

The singular value expansion is the infinite dimensional analog of the sin-
gular value decomposition of a matrix. In the case of K being a real m x n
matrix, this decomposition reads,

min(n,m)

K=UxvT = Z aiuiUiT,
i=1

with U = [uy ug « -+ up] € R™*™ and V = [vy vg - - v,] € R™*™ being matrices
with orthonormal columns, and ¥ being a m X n diagonal matrix with the
singular values, 01 > g9 > --- > amm(n,,%), on the diagonal. From the equations
KTK = VETYVT and KKT = UL XTUT it is seen that the singular value
decomposition of K is closely linked to the eigenvalue decomposition of K7 K
and KK7T.

2.3 Fundamental subspaces and the generalized inverse
The range of K, R(K), are those y € Y that can be reached from a z € Z.

This is in general not a proper subspace of Y, but the closure of this set, R(K),
is so. R(K) is spanned by the basis elements of } that correspond to strictly
positive singular values, i.e. {u;}{;.4,50}- The orthogonal complement of R(K)
in ) is termed the null space of K*, denoted N (K*), and it is spanned by
the basis elements for which the corresponding singular values are zero, i.e.
{i}{i:0;=0y. Similarly Z can be divided into two subspaces corresponding to
whether the elements influence the output of K or not. From Expression (4) it
is easy to see that the subspace that influence the output of K is spanned by
the basis elements of Z for which the corresponding singular values are strictly

positive, i.e. {v;}{;:s,>0}- This space is the closure of the range of K*, denoted

R(K*). The orthogonal complement of R(K*) in Z is termed the null space
of K, denoted N(K), and is spanned by the basis elements of Z for which the
corresponding singular values are zero, i.e. {v;}{;.,=0}. It is more natural to
relate to the operator K instead of the adjoint, hence it is common to define
R(K*) as the orthogonal complement of N'(K), i.e. R(K*) = N(K)*.

The generalized inverse, KT, of a compact linear operator K can be defined




using the singular system of K,

Kty= Y b, (6)

o
{i:0;>0} !

when y € R(K) this generalized Fourier series converge. The solution is easily
found by solving the sequence problem in Expression (5). For a given y € ) the
convergence of the series in Expression (6), is equivalent with y satisfying the

Picard criterion,
2
Uj,

ok
{i: 0;>0} ¢

When the Picard criterion is fulfilled, the general solution to the inverse problem
is characterized by the sum of one component from the null space of K and the
generalized inverse of y, i.e. for any 29 € N (K),

z=z2+Kly. (7)

This decomposition of the general solution as a sum of the homogeneous solu-
tion and a particular solution, is common in differential equations and matrix
algebra.

2.4 Approximate solutions

In a real case the observations are prone to contain error hence the operator
equation in Expression (3), should be replaced by

y=Kz+e, (8)

with € being an error term, see Expression (2). For most inverse problems the
generalized inverse, K, is unstable because o; — 0 as i — oo. This imply
that a small error £ will contribute significantly to the series in Expression (6)
because the inner product (u;, €) is divided by o;. That is, the Picard criterion is
usually not fulfilled for measured data. Since the true solution of Expression (8)
cannot be obtained, an approximate solution is sought. An approximate solution
is denoted 2. Some commonly used approximations are discussed below. All
the approximate solutions are parameterized by a nonnegative number o that
defines the degree of approximation. The parameter, «, is defined such that
a = 0 defines the exact solution. This parameter is briefly discussed below and
more throughly in Section 3.

Filtering is a common way to obtain smoother solutions. In the context
of inverse problems, filter factors may be introduced in the generalized Fourier
series defining the generalized inverse, see Expression (6). The approximation
may then be written as

p= Y o) M2y, o)

{i:0;>0} *



with ¢;(c) being filter or shrinkage factors, and {o;, v;,u; }$2, being the singular
system of K. The filter factors satisfy 0 < ¢;(a) < 1 and ¢;(0) = 1, and are
defined such that the series in Expression (9) converge for « > 0. Many different
approximate solutions of Expression (8) have the form of Expression (9). In fact
this expression is to general and a specific choice must be made for the filter
factors ¢; (). An example is the truncated singular value expansion, which can
be defined by ¢;(a) = I{o; > a}, where I{-} is one if the event in the brackets
is true, zero otherwise. In this case only the terms where the singular value
exceed « are included. The singular value expansion of a problem is generally
not known this complicates the approach in practical situations.

Tikhonov regularization exploits the fact that for any y € R(K) the gen-
eralized inverse is the unique solution of the least squares problem

z=arg min ||[Kz—y|> (10)
2 € N(K)+

When y ¢ R(K), the solution KTy is unbounded, i.e. ||KTy|| = co. Tikhonov
regularization avoid this by adding a penalty term in the minimization to keep
z bounded. The approximate solution, Z, is defined as the unique solution of

Qzargnéig ||Kz—y||2_|_a.](z), (11)

with J(z) being a suitable penalizing functional; and « being a positive number
determining the trade off between the mismatch to the data and the penalizing
term. The most common choice of penalizer is the squared norm in Z, i.e.
J(z) = ||z||?. In this case the approximate solution have the form of Expression
(9), with ¢;(a) = 67/(c? + @). Other choices are Sobolev norms, L' norm
and maximum entropy. The methodology can also be generalized by using
other measures for deviations in the data. Tikhonov regularization may be
formulated in different ways, such as minimizing the error in the data subject
to an upper bound on the penalizing functional, or as minimizing the functional
subject to an upper bound on the error. For any given data y there is an one
to one connection between the different formulations, where the bounds can be
computed in terms of o and y.

Landweber iteration is an algorithmically defined approximate solution. It
can be regarded as steepest decent algorithm with a fixed step length, w < 1/02.
The approximate solution is defined iteratively by

2" =" WK (K2 — ), (12)

with starting point 2° = 0. After m = 1/« iterations, the solution obtained
have the form in Expression (9) with ¢;(a) =1 — (1 — wo?)™. Note that when
y ¢ R(K) the true solution is unbounded, since Expression (12) converge to the
true solution it is not beneficial to iterate the expression too many times. The
amount of approximation hence lies in the number of iterations.

Conjugate gradient is another iterative technique for approximating the
solution in Expression (10). The conjugate gradient identify the best solution



in the Krylov subspace space of order m after m iterations. The Krylov subspace
of order m is defined by

Km(K*K,K*y) = span{K*y, (K*K)K*y,...,(K*K)™" ' K*y}.

In certain applications the Krylov subspace of order m is an approximation
to the subspace spanned by the first m singular vectors, i.e. span{vi}ﬁl_ In
these cases the conjugate gradient method stopped after m = 1/« iterations,
can be seen as an approximation to the truncated singular value expansion with
1/« terms. Note again that the amount of approximation is determined by the
number of iterations.

Landweber and conjugate gradient iterations as defined above are used
as means to define approximate solutions, for this purpose a finite number of
iterations is required. The iterations can also be used as numerical schemes
to solve well posed problems such as Expression (11). For such cases the the
number of iterations is a purely numerical question. Practical implementation of
the methods above require discretization. Different discretization schemes can
also be used to define approximate solutions of the continuous problem. Most
of the methods above can be described as filtering of the singular system. The
singular value expansion is however not directly accessible for a given problem.
In a given situation the Landweber iteration is hence much easier to implement
than the general filtering scheme.

The approximate solutions above are not fully specified but depend on
the parameter o that determines the tradeoff between data adaption and the
boundedness of the approximate solution, 2. Many techniques are developed
for choosing the parameter a. The L-curve is a helpful tool in understanding
the impact of a particular choice, and can be used in various ways to pick a
particular value of @. Cross validation and generalized cross validation (Wahba
1990) are also used for this purpose. The parameter choice is formalized in the
regularization theory to be discussed next.

3 Inversion by regularization

The basic idea of regularization theory, is that the approximate solution should
be stable with respect to small deviations in the observations. The problem
can be seen as a game between a scientist and a malicious opponent. For given
bounds on the parameter z € C' and the error ||¢|| < J, the scientist can choose
the approximate solution, Z, depending only on the data y. The subset C' C Z
should at least exclude the components of z that does not influence the data,
i.e. N(K). The opponent can chose the parameter, z, within the restriction
C. The pay off in the game is the maximum deviation between approximate
solution and the parameter for errors within the error bound

sup ||z — 2|
lly—K z||<5



This measure of deviation can be interpreted as allowing the opponent to chose
the error in addition to the parameter. The ultimate goal for the scientist is
hence to find an approximate solution that minimize the worst case deviation.

In order to reduce the complexity of the problem an indexed family of
continuous operators R, : Y — Z is considered. A family of operators is
denoted a regularization strategy if RoaKz — KTKz for all z € Z when o — 0.
That is R, K converge pointwise to the projection operator onto A'(K)L. All of
the approximate solutions listed in Section 2.4 are valid regularization strategies.
A regularization method consist of a regularization strategy, R, and a rule for
selecting the index «. A selection rule that only depend on the error bound, 6,
is denoted an apriori selection rule, if the index also depend on the data, y, it
is termed an aposteriori selection rule. A pair (R, @) is called an admissible or
convergent regularization method if

sup «a(d,y) >0 asd—0,
lly—K z]|<é

and
sup  ||Ragsyy — K'Kz|| >0 asd—0.
lly—K z|[<o
That is, as the error in the data tends to zero, so should the amount of reg-
ularization and the error of the approximation. By choosing a regularization
strategy, the original problem has been reduced to a one dimensional problem,
selecting a value of o for a given value of § and y.

The most widespread procedure for selection of « is the discrepancy prin-
ciple of Morozov, which defines the value of the regularization parameter o to
be the one that yields ||[K R,y — y|| = 0, with § being the maximum bound on
the error.

Regularization methods are evaluated by the rate of convergence as the
error in the observation approach zero. In this respect the goal is to obtain
an uniform convergence rate in Z, this is however impossible for most inverse
problems. For this reason attention is drawn to subsets of Z of the form

Zp,p={z=Bu, |u| < p}. (13)

with B : WW — Z being a bounded linear operator; and p being a finite number.
This can be interpreted as an abstract smoothness constraint on z. Typical
theorems for inversion by regularization consist of two results, the first result
state the optimal convergence rate in Zp ,, the second result prove that one
particular regularization method have the optimal rate of convergence in Zp ,.
A typical theorem is hence that the approximate solution found by Tikhonov
regularization using a quadratic regularizer and a selection rule given by the
discrepancy principle, is obtained by an admissible regularization method and
obtain the optimal convergence rate in Zg« ,.

Inversion by regularization is a general approach and can be used to solve
nonlinear inverse problems. There are however few general results for this type



of problems. Most convergence theorems are of local type, or assume that the
global solution of a minimization problem can be found. Further, the uniqueness
problem is not as easily decomposed as for linear systems, see Expression (7).
To avoid problems in this respect a new origin, zp, that represent the best prior
guess is selected. When several solutions can be chosen, the one closest to zg is
preferred. Tikhonov regularization, with penalizer J(2) = ||z — 2o||? is widely
used in nonlinear inverse problems. Since there are few rigorous results in this
area there is no general optimality results for the solution obtained in most
practical cases.

4 Statistical aspects of inverse problems

In the current presentation, inverse problems will be discussed in the context of
point estimation (Lehmann and Casella 1998). There are many other statisti-
cal aspects of inverse problems than those discussed here. Most important are
statistical methods for estimating the regularization parameter «, for a regular-
ization strategy R, without having a prior bound on the error, see O’Sullivan
(1986), Wahba (1990) and Hansen (1998) for a discussion of some of these
methods, see also Stark (2000) for an insightful discussion of inverse problems
as statistics.

From a statistical point of view an inverse problem, as phrased in Expression
(2) and (8), is no different from any other estimation problem. A parameter z
in a parameter space Z is to be estimated based on observations, ¥, in the data
space ). The statistical link between the parameter, z, and the observations,
y, is described by the likelihood, p(y|z). Here, and in what follows, p(-) is being
used as a generic probability distribution. A parameter z, or a feature of z, is
said to be unidentifiable if it does not influence the likelihood, otherwise it is
identifiable. An estimator, 2, for z is a measurable function of the data, 2(y),
or in general an operator, 2 : Y — Z. To evaluate an estimator a loss function,
L(z,%), is defined. A common choice, that will be used in what follows, is the
squared L? norm, i.e. L(z,2) = ||z — 2||?. The statistical philosophy is that if
the experiment conducted to give the observations ¥ is repeated, a new sample
y" from p(y|z) is obtained. Hence the error, ¢, in Expression (2) and (8) is given
a random variable interpretation. The objective is now to identify the estimator
that minimizes the expected loss when observations are sampled according to
the likelihood. The expected loss of an estimator, Z(y), is denoted the risk,
r;(2), and is defined pointwise in Z by,

re(2) = /y Iz = 2W)1I” dp(ylz) = By {llz = 2(YV)]1*} -

An estimator is said to be admissible if no other estimator can improve the risk
uniformly in Z. The risk is defined pointwise in Z, but the estimator must be
chosen without knowledge of z, hence in some way or other the estimator must
take the risk for all z € Z into account. In the minimax risk approach, the



maximum risk over Z is used to compare estimators. An estimator is optimal
if it has the least maximum risk in comparison to any other estimator. This
philosophy is used for inverse problems in Section 5 below. In the average risk
approach a measure is defined on Z and the the optimal estimator is defined as
the one that minimizes the average risk according to this measure. The average
risk approach is the fundament of Bayesian statistics which is further developed
in Section 6 below.

The principles of estimation are the same for inverse problems as for any
other statistical problem. Most inverse problems do however have some char-
acteristics that distinguish them from the classical statistical theory. In inverse
problems the number of parameters will frequently be of the same order, most
often larger, than the number of observations. This can be seen from the se-
quence problem in Expression (5). Inverse problems of this type have closer
resemblance to problems where the number of parameters grow together with
the number of observations, than to the classical large sample theory (Lehmann
1999). Stein (1956) showed that the celebrated maximum likelihood estimator is
inadmissible in a sequence model when there is an equal number of observations
and parameters, larger than two. It is hence not likely that the maximum likeli-
hood methodology will succeed in solving inverse problems. Further, in inverse
problems the parameter is observed through a transform, see Expression (2),
and not directly as in the traditional statistical theory of function estimation.

5 Statistical minimax inversion

In the minimax approach the estimates are evaluated by the maximum risk in
Z. The problem can be seen as a game between the scientist and a malicious
opponent. For given bounds on the parameter z € C' and a specified likelihood
model, p(y|z), the scientist can choose the estimator, 2, depending only on the
data y. The opponent can chose the parameter, z, within the restriction C' C Z.
The pay off in the game is the risk for the opponents choice of parameter, that
is the expected loss under the likelihood model,

rz(2) = By); {llz = 2(Y)*} .

The subset C' may be a smoothness constraint such as Expression (13). The
ultimate goal for the scientist is hence to find an estimator that minimize the
worst case expected loss.

Estimators in the minimax approach are frequently evaluated by the rate of
convergence as the information content of the date increase, the zero noise limit
is common. Typical theorems for statistical minimax inversion consist of two
results. First the optimal rate of convergence in C' is obtained next an optimal
estimator is found. The case where the set C' is of the quadratic type, see
Expression (13) is treated in Johnstone and Silverman (1990,1991), in which
a rate optimal estimator is defined. The estimator correspond to filtering of

10



singular values, see Expression (9). The estimator truncate the singular value
expansion and shrink the remaining coefficients.

In some cases a smoothness constraint on the parameters such as Expres-
sion (13) can be limiting. The resulting estimators are always linear or almost
so. Resent developments in the field of computational harmonic analysis allow
for using the notion of sparsity rather than smoothness. The resulting estimator
being represented by the wavelet-vaguelette decomposition (Donoho 1995). The
main idea is that wavelets give a sparse representation of functions. Since the
functions sought have few large coefficients, the focus can be directed towards
which coefficients that should be estimated, instead of trying to estimate all.
The typical result for these type of estimators is that the minimax rate of con-
vergence is obtained adaptively within a logarithmic term. The adaptivity is in
contrast to the traditional approaches where the smoothness must be defined
prior to the estimation. The estimators based on wavelet-vaguelette decompo-
sition has been particular successful for mildly and moderately ill-posed inverse
problems.

The concern in minimax estimation is to get the best possible estimator
for z, not to assess the uncertainty. There are however statistical results that
deal with the uncertainty of the estimates also in this case, Stark (2001) con-
siders confidence intervals for linear estimators of linear functionals, and report
the methods of strict bounds (Backus 1989) and minimax confidence intervals
(Donoho 1994), in both cases under the assumption of K being a compact linear
operator.

The minimax approach is a general principle for estimation, and would
apply also to nonlinear inverse problems. It is however a complex machinery
and to the knowledge of the author, which may be limited, there has been no
extensive study of minimax estimation for general nonlinear inverse problems.

6 Bayesian inversion

In the Bayesian approach knowledge and uncertainty regarding the parameter,
z, is summarized in probability distributions. The prior distribution, p(z), rep-
resent the knowledge of z prior to observations. The average risk, commonly
denoted the Bayes risk, of an estimator, 2(y), is the expected risk under the
prior measure,

B:[p(2)] =Ez {r:(2)} =Ez {Eviz {IZ - 2(V)|]’}} . (14)

The objective in Bayesian estimation is to find the estimator that minimizes
the Bayes risk, B;[p(z)], for a given prior p(z). When the Bayes risk is finite,
the order of integration in Expression (14) can be interchanged. The Bayes
estimator, Zg : Y — Z, is then formally defined by

2p = argrrlzany {EZ|Y {“Z - Q(Y)“2}}

11



The problem can be solved for each y separately by minimizing
zp(y) = argminEzy, {[|Z - 2(y)|} (15)

The major advantage of this expression is that the estimator only need to be
found for the observation, y, actually obtained. The unique minimizer of Ex-
pression (15) is known to be the posterior expectation, that is

2p(y) = Ez,{Z} . (16)

This is the classical Bayes estimator. The averaging measure in Expression (15)
and (16) is denoted the posterior distribution and can formally be written as

p(ylz)p(z)

p(y) 1)

p(zly) =
For the Bayesian analyst the posterior distribution is the answer to the inverse
problem, since this contains his updated knowledge regarding the parameter.
The knowledge can be used to produce the best estimate of a parameter accord-
ing to a general loss function and to assess uncertainty regarding the parameter.
Expression (16) and (17) look quite convenient, but computation of these
quantities can be difficult. In order to evaluate expectations under the posterior
distribution in the general case various types of Monte Carlo integration can
be used. The most common approach is Markov chain based techniques like
Metropolis-Hastings (Robert and Casella 1999). One important special case is
however analytically tractable and will be describe in grater detail below. In
the special case the observations are related to a compact linear operator with
additive error, see Expression (8), and the parameter, z, and the error, ¢, are
modeled as Gaussian random functions.
A Gaussian random function, 7, in a separable Hilbert space can be rep-
resented by the Karhunen-Loéve expansion, see Yaglom (1987),

00
Z:ZZi'Ui,
i=1

with {Z;}2, being independent Gaussian random variables with mean p; and
variance v7; and {v;}%°, being the corresponding basis elements of unit length.
The pairs {y7,v;}3°; is the eigensystem of the covariance operator of Z. This
is the infinite dimensional equivalent of the eigenvalues and eigenvectors of the
covariance matrix. For simplicity let {Z;}°; be centered, i.e. p; =0, Vi. The
observations are y = Kz + ¢, see Expression (8), with K : Z — ) being a
compact operator; and £ being an error term, modeled as a Gaussian random
function. Assume further that € have the Karhunen-Loéve expansion

o0
g = E E; Ug
=1

12



with {g;}¢2, being centered independent Gaussian random variables with vari-
ance \?, and for presentational simplicity that K have the singular system
{02, vi,u;}2,, with v; and u; being identical to the basis elements in the
Karhunen-Loéve expansion of Z and ¢ respectively. The posterior random func-
tion (Z]Y = y) can then be represented by the same Karhunen-Loéve expansion
as the prior, only with different coefficients. Defining y; = (u;,y) this reads

o0

(ZIY =y) =D (ZlYi =) vi , (18)

=1

with {(Z;|Y; = y;)}52, being independent Gaussian random variables with mean
yioi /(0 + A2 /v?) and variance y2[1 — 07 /(0? + AZ/+?)]. The optimal estimator
can in this case be found explicitly as

é(y) _ i 012 (uiay) Vs
o+ N[ o

Note that this result is of the form in Expression (9).

Nonlinear inverse problems fits equally well into the Bayesian methodology,
as linear. The optimal estimator under quadratic loss is again the conditional
expectation, and the uncertainty is again described by the posterior distribu-
tion. There is no additional problem with identifiability since the posterior is a
measure on the parameter space. There is however a computational cost which
may be a severe obstacle.

7 Comparison of methodologies

In the previous sections inversion by regularization, statistical minimax inver-
sion and Bayesian inversion, are presented as methodologies to solve inverse
problems. In the current section these methodologies are compared.

In the presentation above inversion by regularization is presented as a math-
ematical approach whereas the other two are presented as statistical approaches.
This classification focuses the observation error, e. In the mathematical ap-
proach the error is chosen by a malicious opponent that always makes the least
favorable choice, whereas in the statistical approaches the error is considered
random, hence it will change if the experiment is repeated.

Historically the mathematical and statistical approaches are developed sep-
arately and different languages have emerged. The result is that different names
have been given to the same effect, and similar names have been given to differ-
ent effects. The first is exemplified by uniqueness in the mathematical language
and identifiability in the statistical. An example of the latter is that an ad-
missible regularization strategy relate to an effect in the zero noise limit, while
an admissible estimator relates to the performance of a particular estimator
regardless of the noise level.

13



From a mathematical point of view the important notion for the solution is
stability and convergence, which is implied by an upper bound on the estima-
tion error in terms of the observation error. These bounds are seldom tight such
that tight uncertainty bounds for the approximate solution can be derived. In
a discrete problem the maximum estimation error of an approximate solution,
can in theory be found using constrained optimization. This is however a hard
problem to solve numerically. In the statistical literature the two estimation
approaches justify two different strategies to assess the uncertainty. In the min-
imax approach few techniques are able to assess the uncertainty in the setting
of inverse problems, the few rigorous methods stated above are limited to lin-
ear inverse problems. In the Bayesian approach the uncertainty is described
by the posterior distribution, any probabilistic uncertainty statement regarding
the parameter can be deduced from this distribution. Stark (1992) denote the
Bayesian uncertainties as formal uncertainties, because they are based on an
apriori assumption about the parameter that cannot be verified.

In many respects it is more natural to classify the methodologies by their
view on the parameter. Inversion by regularization and statistical minimax in-
version regard the parameter as a fixed quantity, while in the Bayesian approach
it is considered to be random. In Donoho (1994) a related problem is investi-
gated, a deep connection between two fixed parameter approaches corresponding
to those above is found.

Results in any of the three methodologies, require that additional informa-
tion is given. In the fixed parameter approaches this is done by imposing bounds
on the parameter space such as Expression (13). In the Bayesian approach the
information is given in terms of a probability measure on Z. The Bayesian
approach hence requires stronger assumptions, since the relative importance of
any two elements in Z can be measured.

Consider also the achievement of the methodologies, within their own stan-
dard. In the Bayesian approach the optimal estimator under quadratic loss
is well defined, i.e. Ez,{Z}, hence it is a computational question to obtain
the solution for given set of data. The fixed parameter approaches are more
ambitious, but only rate optimality is established.

Tikhonov regularization is frequently given a Bayesian interpretation, by
defining

p(2) = const x exp{—12aJ(2)/2}
and
p(ylz) = const x exp{—7?||Kz — y||*/2}

with const being a generic normalizing constant; 7 being a scaling factor; and
J(2), || K z—y||? and a being as as for Expression (11). The posterior distribution
is then

p(zly) = const x exp{—7*([|Kz — y||* + aJ (2))/2}

The value of z that maximizes this distribution is denoted the maximum poste-
rior estimate. This is identical to the solution found by Tikhonov regularization,
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see Expression (11). Although this estimate for computational reasons is com-
monly used in Bayesian analysis, it is not a proper Bayes estimate in the cases
considered here, since no proper loss function correspond to this estimator.

There is also a connection between the statistical minimax inversion and
Bayesian inversion. The minimax approach can be seen as a game version of
the Bayesian approach. In this game the scientist pick the estimator, 2, whereas
the opponent may pick the prior distribution, 7(z), within a restricted class of
distributions. The pay off in this game is the Bayes risk with the prior from the
opponent, i.e. B;[m(z)]. This connection is an essential part in the theory of
statistical minimax inversion.

8 Conclusions

The three methodologies are all successful for linear inverse problems, and the
solutions look surprisingly similar.

The philosophical difference between mathematical approach and the sta-
tistical approaches is the nature of the observation error. The mathematical
approach considers the worst case error. The statistical approaches regard the
error as random. To choose one over the other based on this criterion is a
philosophical debate of the nature of the error, £. The error is caused by many
sources. If all of the sources are of equal strength, the central limit theorem,
can be used to argue the case for random errors. If some of the sources are dom-
inant, this will produce a systematic error hence the mathematical philosophy
would be preferable.

A practical difference between the mathematical approach and the two sta-
tistical approaches, is that stability is focused in the mathematical approach
whereas uncertainty is focused in the statistical approach. There is a funda-
mental difference between the two notions, i.e. a solution can be stable and
have large uncertainty. In the authors opinion assessment of uncertainty is an
important issue, hence he tends to favor the statistical approaches.

The Bayesian choice of prior distribution is usually criticized in traditional
statistics. The critique is not as severe when it comes to the inverse problems
considered here since information about the parameter must be included apriori
in any case. Non informative prior distributions is in the author opinion only
of interest for hyper parameters when inverse problems are considered, since
inverse problems requires additional structure to be enforced. The Bayesian
methodology achieves more and is more widely applicable, but the Bayesian
assumptions regarding the parameters are stronger than that of minimax es-
timation. Whether the Bayesian achievements are worth the price of stronger
assumptions is for the practitioner to decide.

From a purely statistical point of view the minimax estimator usually have
better properties and should be preferred. On the other hand minimax esti-
mators are only found for special cases, and are hence generally not available.
Phenomena that are studied in inverse problems frequently have spatio-temporal
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structures, hence modeling the prior by random fields seem natural and may give
the Bayesian estimates an advantage. The Bayesian methodology also guaran-
tee the estimator to be admissible. Hence the Bayesian estimators can be used
also by non-Bayesian that do not fully believe in the posterior distribution.

When it comes to aspects of uncertainty, the question is whether formal un-
certainties are acceptable or not, keeping in mind that the alternative might be
no assessment at all. In the authors opinion formal uncertainties are acceptable
in any engineering application, but can be questioned for scientific purposes.

Non of the theories are fully developed in the nonlinear case. In the
Bayesian approach the optimal estimator is known in theory, but there is no
general way to compute it. The choice in the nonlinear case is frequently be-
tween Tikhonov regularization and the Bayesian approach, i.e. the maximum
aposteriori estimate and the conditional expectation. The authors personal
preference is the conditional expectation since this account for many reasonable
solutions and is the one where loss criterion carry through to the final estimate
also for nonlinear problems.
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