NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

On the use of local optimisations within
Metropolis-Hastings

by
Hakon Tjelmeland and Jo Eidsvik

PREPRINT
STATISTICS NO. 5/2002

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY
TRONDHEIM, NORWAY

This report has URL http://www.math.ntnu.no/preprint/statistics/2002/55-2002.ps
Hakon Tjelmeland has homepage: http://www.math.ntnu.no/~haakont
E-mail: haakont@stat.ntnu.no
Address: Department of Mathematical Sciences, Norwegian University of Science and Technology,
N-7491 Trondheim, Norway.

On the use of local optimisations
within Metropolis-Hastings

Hakon Tjelmeland and Jo Eidsvik
Department of Mathematical Sciences
Norwegian University of Science and Technology
Trondheim, Norway

Abstract

Markov chain Monte Carlo algorithms generate samples from a specified target distribution
by simulating a Markov chain. In the Metropolis-Hastings set-up, each iteration consists of
two parts. First, a potential new state is proposed from a proposal distribution and, second,
the potential new state is accepted with a given probability. If a prior approximation to the
target distribution is available, this can be used to generate potential new states independent
of the current value, but, if the approximation is poor in parts of the sample space, the
resulting convergence will be extremely slow.

In the present paper we limit attention to continuous distributions on " and study how
optimisation based mode jumping proposals can be combined with proposals from a prior ap-
proximation. Thereby one gets the computational efficiency associated with a fixed proposal
distribution, but forestall the possibly severe consequences of a poor approximation in parts
of the sample space. Next, we explore how optimisation results can be used to update the
prior approximation without destroying the detailed balance of the chain. Thereby we get an
adaptive Markov chain algorithm. We evaluate the effectiveness of the proposed algorithms
in two simulation examples. The first considers a simple mixture of bivariate normal distribu-
tions, whereas the last samples from a posterior distribution based on a previously analysed
data set.

Key words: Markov chain Monte Carlo, mode jumping proposals, adaptation, optimisation, prior
approximation, multi-modal distribution, Metropolis-Hastings

1 Introduction

In Markov chain Monte Carlo (MCMC) samples from a specified target distribution, 7(x), are
generated by simulating a Markov chain with limiting distribution equal to 7(z), see, for example,
Besag et al. (1995) and references therein. After a fixed period, known as “burn-in”, the chain
has effectively converged and produces realisations from the prescribed distribution. A recipe for
construction of Markov chains with the desired limiting distribution is given by the Metropolis-
Hastings set-up.

For many target distributions quite simple Metropolis-Hastings algorithms works satisfactory.
Numerous such cases can be found in the statistical literature, see for example Gilks et al. (1996).
For more complex target distributions, careful tuning of the proposal mechanisms in Metropolis-
Hastings may be necessary to obtain a Markov chain with an acceptable mixing rate. This is,
for example, the situation if 7(z) contains several modes separated by low probability areas. One
possibility is then to construct an approximation to the target density, from which efficient exact
sampling is possible, and use this to propose potential new values in a Metropolis-Hastings setting.
As discussed in Gelman and Rubin (1992), the approximation can be a mixture of multivariate ¢-
distributions fitted to the local maxima for 7(z) found in a number of prior optimisation searches.
If the approximation is reasonably good in the entire sample space, such an independent proposal
Metropolis-Hastings algorithm will have good convergence and mixing properties. However, if
the approximation is poor in some regions, the resulting convergence can become extremely slow.
With the approximation strategy in Gelman and Rubin (1992), this may happen if one or more
modes are missed in the prior search.

As an alternative to using optimisation searches to construct a prior approximation to the target
distribution, Chib and Greenberg (1994) discusses how to use optimisations within Metropolis-
Hastings steps. This strategy is further developed in Tjelmeland and Hegstad (2001), where
optimisations are used to define direct mode jumping proposals. By continual use of optimisations
within Metropolis-Hastings steps, one avoids the risk of missing modes as with a finite number
of prior searches. However, this does not come without a computational cost, as running opti-
misations require a lot more computing resources than just generating proposals from some fixed
proposal density.

In the present paper, we limit the attention to continuous probability distributions on ™ and
study how optimisation based mode jumping proposals can be combined with proposals from an
available prior approximation. Thereby we get some of the computational efficiency associated
with a fixed proposal distribution, but forestall the possibly severe consequences of a poor prior
approximation in parts of the sample space. To take full advantage of the two types of proposals,
the Metropolis-Hastings kernel should be constructed so that the number of proposals of each type
automatically adjust to the quality of the approximation available.

The paper is organised as follows. Section 2 briefly reviews the MCMC strategy and the
Metropolis-Hastings set-up. In Section 3 we discuss how to combine proposals from a prior ap-
proximation with optimisation based mode jumping proposals. In Section 4 we consider how the
optimisations within Metropolis-Hastings also can be used to update the prior approximation and
thereby define an adaptive Markov chain algorithm. Section 5 evaluates the effectiveness of the
proposed algorithms in two examples and, finally, Section 6 provides conclusions.

2 Markov chain Monte Carlo

A general introduction to MCMC can be found in the references mentioned above. Here, we first
define a few basic concepts in Markov chain theory and then briefly review the Metropolis-Hastings
set-up. In the following we assume the target distribution to be continuous on " and let 7(x)
denote its density with respect to the Lebesgue measure. The normalising constant of 7 (x) is
possibly unknown and we let h(x) be a corresponding unnormalised density function.

2.1 Detailed balance condition

The idea in MCMC is to construct a Markov chain with a stationary transition kernel P with
limiting distribution equal to w(x). Thus, 7(-) must be an invariant distribution for P. In a
Metropolis-Hastings algorithm, P is furthermore restricted to be time reversible, i.e. P must fulfil
the detailed balance condition,

/7r(x)P(B|a:)d:c :/ m(z)P(Alz)dz V A,B € F,. (1)
A B
In MCMC combinations of transition kernels satisfying equation (1) are frequently used. If two

kernels P; and P both fulfil equation (1) it follows directly that aP; + (1 — a)P5 also does so for
any a € [0,1]. Likewise, if P¥ satisfy equation (1) for all ¢ € R¢, then

P(dlr) = [P(almate)dp)
also fulfils detailed balance with respect to 7(-) for any density a(-) on R%.

2.2 Metropolis-Hastings

Metropolis-Hastings is a recipe for construction of transition kernels satisfying equation (1). The
set-up given in the following is a generalisation of the scheme used in Tjelmeland and Hegstad
(2001).

Let Qqg,Qq,.-. ,Qn_1 be N transition kernels on R", which we assume to have corresponding
densities g;(-|z);¢ = 0,1,...,N — 1 with respect to the Lebesgue measure. Furthermore, for
each z € R™ we let p(f,b|z) denote a joint probability distribution for a pair (f,b) for f,b =
0,1,...,N — 1. Then, a corresponding Metropolis-Hastings transition kernel P is defined by

N—
Pl = 3 Z [(£:b00) [asl)atle. . b)dy] + 1o € A)r(a), 3)
=0 b=
where the acceptance probabilities a(y|z, f,b) are
o h(y) g (zly) p(b, fly) _ B
a(y|x,f,b)—m1n{1,h() 45 l2) (f,b|w)} for f,b=0,...,N—1 4)

and r(z) is the rejection probability, given as

N—-1N-1

-3 Z[(1.b42) [as(ula)(1 = alyle, 1.3 %)

=0 b=0

Thus, with z denoting the current state, one iteration of the corresponding Metropolis-Hastings
algorithm becomes; 1) draw a pair (f, b) from the distribution p(f, b|z), 2) generate a potential new
state y from gf(-|z), 3) sample u from the uniform distribution on [0, 1], and 4) if v < a(y|z, f,b)
let y be the new state and otherwise leave the state vector unchanged. The @y is thereby used
forward in time by proposing to go from x to y. The @) only appears in the acceptance probability,
where it enters as the probability for the corresponding backward proposal from y to x.

To prove that the transition kernel in equation (3) is time reversible with respect to m(x) is
easily done by direct calculations, or one may rewrite the kernel and show how it originates for
one specific choice of s(z,y) in the original set-up of Hastings (1970). The latter implies that the
above set-up is sub-optimal, unless N = 1, in terms of asymptotic variance. According to Peskun
(1973), it is better to define the overall proposal density

N-1 N—-1
glyle) = > KZ p(f,blw)> qf(ylw)] , (6)

f=0 b=0

to propose y from ¢(-|z) and accept y with probability min{1, (h(y)q(z|y))/(h(z)q(y|x)}. This
algorithm has exactly the same proposal mechanism as above, but with higher acceptance proba-
bilities. However, Peskun measures efficiency in terms of number of iterations and in the Peskun
optimal algorithm, g¢(y|z) and gs(z|y) have to be computed for all f,b =0,1,... , N —1, whereas
in the Peskun sub-optimal algorithm it is sufficient to have g¢(y|z) and gs(z|y) for one value of
f and b. Thus, when efficiency is measured in terms of required computer resources, the Peskun
sub-optimal algorithm may be preferable. In the next section we discuss one such situation.

It should be noted that one may use the above scheme also to construct a transition kernel
indexed with a parameter o, P?, to be used as in equation (2). Then, both the proposal kernels and
the probabilities p(f, b|z) may depend on ¢, and as a consequence also the acceptance probabilities
and the rejection probability become functions of ¢. To indicate the dependence on ¢, we then
use the notation Q7, ¢f (y|z), p?(f,blz), a®(y|z, f,b) and r¢(z).

3 Mode jumping proposals

Tjelmeland and Hegstad (2001) discusses how to sample from a multi-modal target distribution
by use of so-called mode jumping proposals. Here, we use the set-up from Section 2.2 to define a
refined version of their approach.

Assume that we prior to the MCMC simulation have available an approximation to the target
distribution and let g(z); x € R™ denote its (normalised) density function. As suggested in Gelman

and Rubin (1992), g(z) may be a mixture of multivariate t-densities fitted to modes located in a
prior optimisation search. Thus, up to an unknown multiplicative constant, we assume g(z) to
be a good approximation to m(z) in some parts of ", but perhaps not in others. If g(z) is the
only proposal distribution used we get an independent proposal Metropolis-Hastings algorithm.
If 8 =inf,eqn [g(z)/m(x)] > O the convergence becomes geometric with rate 1 — 8 (Mengersen
and Tweedie, 1996). In the following, we require this condition to hold. If w(x) is bounded, a
sufficient condition is that g(z) has heavier tails than 7 (x), which can often be accomplished with
a mixture of ¢-distributions. However, even geometric convergence is extremely slow if 3 is very
close to zero, which will be the case if the prior optimisation search missed some modes. Thus,
intuitively one should expect convergence to be improved by combining g(z) with other proposal
kernels which concentrates most of the probability mass in regions where g(z)/m(z) is small. Such
an area can be located by first drawing a ¢ € R™ from some wide distribution and, starting at
®, running a local minimisation algorithm for U(z) = In(g(z)) — In(h(z)). Let pu(yp) denote the
location of the minimum found when starting at ¢ and let X(¢) be the inverse of the Hessian
at this minimum, i.e. X(p) = [(V2U)(u(v))] 1. One may then propose a potential new state
from a non-central t-distribution with some fixed v degrees of freedom, centered at u(p) and with
correlation governed by X(y).

Following the ideas discussed above, we define a transition kernel P¥ according to the set-up
in Section 2.2 with index ¢ = (p1,¥2), where @1,p2 € R*. We combine the following N = 3
proposal kernels

a5 (y|z) 9(y) (7
& ylr) = To(u(er),2(e1)®) (8)
a5 ylz) = Tu(u(e2), Z(w2))(y), 9)

where T, (u, X)(y) denotes the density of a multivariate t-distribution with v degrees of freedom,
centered at g and with covariance matrix defined by X.

To discuss the choice of p?(f,b|z), we call it a (f,b)-move whenever specified values for f
and b are used. We first set p¥(0,2|z) = p¥(2,0]z) = 0 as (1,0)- and (0, 1)-moves have similar
effects to (2,0)- and (0,2)-moves, respectively. We also set p?(1,1|z) = p?(2,2|z) = 0 as (1,2)-
and (2,1)-moves correspond to (1,1)- and (2,2)-moves whenever u(yp1) = pu(p2). To specify the
remaining elements of p?(f,b|x), we write

p?(f,blz) = p*?(blz)p?(f|z,b), (10)

where p?(b|z) and p?(f|z,b) are the marginal distribution for b and the conditional distribution
for f given b, respectively. We first focus on p¥(b|z). As g(z) appears in the numerator in the
expression for the acceptance probability for a (f,0)-move, we want p¥(0|z) to be high only if z is
in a region where g(x) provides a good approximation to m(x). Later we will also need to bound
p¥(0|z) away from zero, so a natural choice for p¥(0|z) becomes

]

where ¢ € (0,1) and & > 0 are constants to be specified and k should be chosen so that kg(x)
and h(z) are of similar size in high density regions of g(z). To set a reasonable value for k one
may, prior to running the Metropolis-Hastings algorithm, sample 21, ... ,2s independently from
g(x) and set k = median;—1 ... s[h(2;)/9(#)]- It should be noted that k is not, and should not be,
an estimate of the unknown normalising constant in m(z). By similar arguments as for p?(0|z),
the probability p?(1|z) should be high only when T, (u(p1), X(¢1))(x) is high, i.e. if z is within
the mode located by the optimisation search started at ¢;. Thus, a natural choice is to set

p(0fz) = ¢+ (1—¢) [1 & (1)

pPlle) _ [, & T . !
T—pr0 1T S @ = lp1) Bler) (@ —nlen))| (12)

Figure 1: Algorithm for sampling (f,b) from p?(f,b|z). If an inequality in an oval is true follow
the right arrow (T), and otherwise choose the left alternative (U). The variables ug, u1,us and usg
are independently and uniformly sampled on [0, 1].

where & is a constant to be specified. Then, of course, p?(2|z) = 1 — p?(1|z) — p¥(0|z).

We can see no good arguments for letting p?(f|z,b) be a function of z or ¢. Thereby, the
two parameters & = p?(0|z,0) and & = p®(0|z,1) gives all the probabilities p?(f|z,b); f,b =
0,1,...,N — 1. This is so because, to get the vanishing probabilities p?(f, b|z) discussed above,
one must have p¥(2|z,0) = p?(1]z,1) = p?(0|z,2) = p¥(2|z,2) = 0. To sample a pair (f,b)
can thereby be performed via a series of binary decisions as shown in Figure 1. It should be
noted that with this choice of p?(f,b|z) no optimisations need to be run for (0,0)-moves. Opti-
misations are necessary neither to decide whether (f,b) = (0,0) nor to propose from g(z) or to
compute a?(y|z,0,0). Likewise, for (0,1)- and (1,0)-moves, it is sufficient with one optimisation.
This property is obviously extremely important for computational efficiency and explains why the
proposed algorithm is preferable to the corresponding Peskun optimal alternative.

The Metropolis-Hastings kernel P¥ discussed above may be modified in several respects, some
of which we briefly discuss in the following. First, the P¥ should not be used alone, but be
combined with standard Metropolis-Hastings kernels doing small local changes within one mode
more efficiently. Second, the (1,2)- and (2, 1)-moves are included to enable jumps between two
high 7(x)-density regions which are not reflected in g(x). Such moves can also be indirectly
obtained via an acceptance of a (1, 0)-move followed by acceptance of a (0,1)-move. Thus, if it is
known that the regions where g(z) provides a good approximation to m(x) contain a significant
amount of the probability mass under w(xz), it is natural to simplify the graph in Figure 1 by
setting p?(1|z,2) = p?(2|z,1) = 0, i.e. defining P¥ from ¢f (y|z) and ¢f (y|z) only. Third, if no
approximative density g(z) is available, one may define P¥ from ¢f (y|z) and ¢F (y|z) only, where
the function to be optimised should now be U(z) = — In(h(z)).

In the Metropolis-Hastings algorithm defined here, any (0,1), (1,0), (1,2) or (2,1)-move in-
cludes optimisations of U(z) = In(h(z)) —In(g(x)). Thus, regions where g(z) is too low compared
to 7w(x) are identified. It is then tempting to use this information to define an improved approx-
imation to m(x) and replace the old g(x) by this updated g(x) in later iterations. However, with
such a procedure the resulting chain is no longer Markov. Even if ¢ is sampled independently of
everything else, whether or not an optimisation is actually performed depends on the current state

Figure 2: Conditional independence graph for the three sequences {z;}3°,, {6:}2, and {v:}3°;.

vector z via the probabilities p?(f, b|z). Thereby, an updated g(z) will also depend on the current
state and, in turn, the g(z) used in a later iteration will not only depend on the current value of
x, but also previously visited states via g(z). Instead of discussing this non-Markovian alternative
any further, in the next section we consider a simplified situation which ensures a Markov property
also for the adaptive chain.

4 An adaptive Markov chain

In this section we first define a Markov chain with an adaptive structure and evaluates its con-
vergence properties. Thereafter we describe how an adaptation of the mode jumping proposal
Metropolis-Hastings algorithm defined in Section 3 can be formulated within this framework.

4.1 Adaptation structure

Let {z;}2,, {0:}2, and {v;}$2; be three stochastic sequences where z; € R", 6, € © (for some
sample space ©) and ; € R™ (for some integer m > 0) for all ¢ and assume the distribution
of the sequences to have the conditional independence graph given in Figure 2. Thus, the joint
distribution of the three sequences is defined by the initial joint distribution for 2y and 8y and three
conditional distributions; () the conditional distribution for ~; given 6;_1, (i7) the conditional
distribution for 6; given 6;_; and ;, and (i74) the conditional distribution for z; given 6;_1,
v; and x; 1. To keep notation simple we also do the following assumptions; Let zo have a
continuous marginal distribution and denote its density with respect to the Lebesgue measure by
vo(+). Assume the conditional distribution (7) to be continuous and denote the conditional density
by 7(-|f). Let conditional distribution (ii7) by defined by a Metropolis-Hastings transitional kernel
as defined in Section 2.2, but where the proposal kernels and probability distributions for the pair
(f,b) now may be functions of v and §. We use the obvious notation ¢;(-|z,~v,8), p(f,b|z,~,8)
and P(-|z,7,6). Thus, for each fixed v € ®™ and § € O, P(-|z,v,6) defines a Markov chain
with invariant distribution 7(-). Moreover, as we still require the proposal distributions to be
continuous, x; has a continuous marginal distribution for each i. The corresponding density we
denote by v;(+).

In the above construction, conditional on {6;}$2, and {v;}$2,, {z:}$2; becomes a Markov chain
with (non-stationary) transition kernel P(-|z,v,6). The algorithm can then be interpreted as an
adaptive Metropolis-Hastings algorithm. The adaptation of the transition kernel is via the value
of § and, at any iteration, the generation of v may uncover new information about the target
distribution, which can then be used both to propose a new state vector and to update the value
of §. To guarantee convergence of the algorithm to 7 (z), it is not sufficient that P(-|z,,) has 7(-)
as invariant distribution for any fixed v and 6. One must also avoid the adaptation of 8 to make
the mixing arbitrarily slow. A natural alternative, used in the following theorem, is to include a
non-adaptive term in one proposal density.

Theorem 1 Let the joint distribution for {x;}52,, {6:}2, and {vi}$2, be defined as specified
above. Then the following holds:

(a) If the marginal distribution for xo follows w(-), then the marginal distribution for x; follows
w(-) for alli > 1.

(b) Let qo(-|z,7,6) be given as

qO(y|$:770) = C(’Ya 9)QS(21|$) + (1 - C(’Ya 0))60(:‘/'5”77:0): (13)

where c(v,0) € [0,1] for all v € R™ and 8 € O, and ¢{(-|z) and go(:|z,7,8) are proposal densities
on R™. Furthermore, write

. % (ylz) . _
pr=int [BUD) g k=t (BRO.O0c0.00), (9
where the ezpectation is with respect to conditional distribution (i) above, 7(-|0) Then, if 5* > 0
and kx >0

[vi(-) = w()I] < (1= B7w%)". (15)

The requirement 3* > 0 ensures geometric convergence when g (-|z) is used alone and £* > 0
gives that g3 (-|x) is used infinitely often. A detailed proof of the theorem is given in Appendix A.
Similarly to convergence theorems for other adaptive chains (Gilks et al., 1998; Haario et al.,2001;
Sahu and Zhigljavsky, 1999; Holden, 1998), the above result does not guarantee any benefit of
the adaptation process, it just prevents convergence and mixing from becoming arbitrarily slow.
In fact, the convergence rate guaranteed by the theorem, 1 — §*k*, is lower than what ¢§(-|z) is
required to produce alone. In practice, construction of the adaptation process should obviously
aim at obtaining faster convergence and better mixing. In the next section we discuss adap-
tation strategies for the Metropolis-Hastings algorithm defined in Section 3 and we empirically
demonstrate improved mixing for two examples in Section 5.

4.2 Adaptation of mode jumping proposals

To generalise the mode jumping proposal Metropolis-Hastings algorithm in Section 3 to an adaptive
algorithm, we assume the approximate distribution, g(x), to be parameterised with a parameter
0 € O©. Thus, in the algorithm defined in Section 3 we replace g(z) by g(z|0). Consequently, all
quantities derived from g(z), like U(z), u(p), Z(p), ¢f (ylz), af;(y|z) and P?(A|z), also become
functions of 8. However, except for g(z|6), we retain our notation from Section 3 and thereby
suppress the dependence on 6 in the notation.

Reconsidering the adaptation strategy briefly discussed in the end of Section 3 and putting
it into the adaptive Markov chain framework defined above, we can now better understand what
is going wrong. We only want to use the modes found by optimisation starting at ¢; or @2 to
update 6 if the corresponding optimisations have to be performed to run the Metropolis-Hastings
iteration. Thus, dependent on the pair (f,b), we would like to set v = (p1,92), ¥ = ¢1 or
~v = 0. However, the (f,b) sampled depends on the state vector z, so this alternative violates the
conditional independence structure of Figure 2. As an alternative adaptation strategy one could
try to set v = (1, us), where us is the uniform random variate used to decide (f,b) in Figure
1, update 6 only if us > & and when updating 6 only use u(p1) and X(p1). The event uy > &
is independent of = and whenever this event occurs, the optimisation from ¢; must be run to do
the Metropolis-Hastings update. However, also this alternative violates the conditions set for the
adaptive Markov chain because the P¥ defined in Section 3 does not fulfil detailed balance when
conditioned on wuy. To fix this problem, the acceptance probabilities need to be changed.

At any iteration 4, let y; = (p1,u4), where uy is uniformly sampled on the unit interval,
independently of everything else. Define a new transition kernel, P(-|z,~,8) by

Py (Alz,v,0) ifug <&

P(Alz,v,0) :{ P?(Alz,7,0) otherwise, (16)

where & € (£2,1) and where both PY and PJ are identical to the P¥ defined in Section 3 and
Figure 2, except that & is replaced with & /&, for PY and & is set equal to zero for P¥. One should
note that, when randomised over the value of u4, the resulting proposal mechanism for P(-|z,~, 6)
is identical to what is used in Section 3. However, the acceptance probabilities differ (and is lower)
because the acceptance probabilities for P(-|z,~,6) is computed conditional on the value of ua.
With this choice for v and P(:|z,~,), v is sampled independently of z and whenever the event
ug > & occurs, u(pr) and X(p;) must be computed to perform the Markov chain update and can
thereby also be used to improve the approximation g(z|f) by modifying 6. Moreover, P(-|z,, §)
fulfils detailed balance for each fixed v € ®2"*! and 6 € O, as required.

To complete the definition of the adaptive Markov chain, it remains to specify ©, g(z|0) and the
updating rule for 6. Different choices are again possible, but we pursue the idea briefly discussed
in Section 3 and let g(z|f) be a mixture of multivariate ¢-distributions and have found this to work
well in several situations. Appendix B gives the exact updating procedure we have used and show
how the resulting simulation algorithm is within the class defined by Theorem 1(b). It should be
noted that also the parameters &, &1, ... ,&4 may be functions of 8 and we use this to get more
frequent adaptations in the first part of a simulation.

5 Simulation examples

In the first example in this section we let the target distribution be given as a mixture of nine
Gaussian distributions on 2. The second example revisit a Bayesian model for mixtures.

5.1 Mixture of Gaussian distributions
Let the target distribution be

9
m(z) = ZwiN(Nz’; %i)(z) for z € R, (17)

i=1

where N(p,X)(-) denotes the density function of a bivariate normal distribution with mean u
and covariance matrix ¥. Let pg,...,u9 be equal to (0,0), (—0.1,-0.1), (0.1,-0.1), (—0.1,0.1),
(0.1,0.1), (=1,-1), (1,-1), (=1,1) and (1,1), respectively, set ¥; = diag(0.0052,0.005%) for i =
1,6,7,8,9 and ¥; = diag(0.1%,0.1%) fori = 2,3,4,5, and wy = 1/3, ws = w3 = wy = ws = 1/9 and
wg = wy = wg = wyg = 1/18. Thus, the target distribution has 9 well separated modes. It should
be noted how modes 2, 3, 4 and 5 lie around and have larger variances than mode 1, Thereby,
mode 1 is hidden by these four modes in the optimisations and reduce the “attraction area” of
this mode.

We simulate from the specified target distribution with six different simulation algorithms, the
three first of which are within the class defined in Section 3. Algorithm) uses no approximation
g(x), i.e. it has p?(0lz) = & = 0. Algorithm %) has a g(x) with three of the modes in 7 (z)
represented, namely modes number 4, 5 and 7. Algorithm 4i7) uses a g(x) where seven modes are
represented, all except modes number 1 and 6. All other parameters are identical for algorithm
i), 4t) and 444). Ideally, at least parameters &3 and &4 should be tuned according to the quality
of the g(x) available, but our focus here is to show that the same parameter values can give
reasonable results for approximations of different quality. In practice, the quality of the available
g(z) will typically be unknown. The parameter values used are & = 1/100, & = 1/4, & = 0.9,
& = 0.5, e = 0.01 and v = 10. In each iteration, ¢; and ¢, are sampled independently from
a N(0,diag(22,22)) density and for optimisation we use a Newton algorithm with line search.
Algorithm iv) is an independent proposal Metropolis-Hastings algorithm where new states are
proposed from a N(0, diag(22,22)) distribution. Algorithm v) uses tempered transitions (Neal,
1996) to propose new values. To define the details of this algorithm, we follows the principles used
in the article mentioned. We use 120 temperature levels, T; = 1.1% for i = 1,2,...,120 and on
each level we do ten random walk proposals. On temperature level i, the potential new state is

generated from the current one by adding a N(0, diag(0.0052 - T}, 0.0052 - T;))-variate. Algorithm
vi) is the adaptive Markov chain algorithm defined in Section 4.2. For &, & and £ we use the
same values as for algorithms), #4) and iii), whereas &, 3 and & are adaptive as specified in
Appendix B. For go(z) we use a multivariate ¢-distribution centered at the origin and with 0.5
degrees of freedom, start with g(z|f) = go(z) and have a* = 0.01. Again we do not claim these
parameter values to be optimal in any sense. Our focus is rather to demonstrate the robustness
of the proposed algorithms.

To compare the six algorithms we first run 10,000 runs for each of them, starting from a
N(0, diag(22,22)) density, and estimate the convergence by dividing 2 into 152 regions and cal-
culating, as function of iteration number,

152

d=Z|%j—ﬂ'j|, (18)
j=1

where 7; is the fraction of the 10,000 states within region number j and =; is the corresponding
correct probability (found by numerical integration). The 152 regions used are defined by dividing
each of the two coordinate directions at —1.005, —0.995, —0.55, —0.11, —0.09, —0.05, —0.005,
0.005, 0.05, 0.09, 0.11, 0.55, 0.995 and 1.005. For a fair comparison of the algorithms one must
take into account the computer resources required for each of them. For typical target densities
where MCMC are used, evaluation of h(z) will dominate the cpu time of our algorithms. Thus,
even if evaluation of g(z) also contributes significantly to the computation time for our very
simple target distribution, we use number of evaluations of h(z) (or first or second derivatives)
to measure the computer resources for each algorithm. The mean number of target evaluations
varies with iteration number, but are around ¢) 170, i7) 215, i7) 186, iv) 2286, v) 1 and vi) 192.
For algorithm vi) the given figure is only representative for the beginning of a simulation. As the
number of iterations increases and g(z) stabilises, the number reduces to about 57 evaluations
per iteration. Figure 3(a) shows the estimated convergences as function of the (mean) number of
evaluations of h(zx). We observe that algorithms fv) and v) converge much slower than the others.
For the independent proposal algorithm, this should come as no surprise. The slow convergence
of the tempered transition algorithm is because of the very high number of target evaluations
per iteration. Measured in number of iterations, the tempered transition algorithm has far the
best convergence. The difference in convergence between algorithms), i1), 4i7) and vi) is quite
small, with algorithm 7) in fact being the best. For more realistic target densities we do not expect
algorithm %) to have the best convergence. For our very simple target density, In(h(x)) is essentially
quadratic close to each of the modes and this give a fast convergence of the optimisations, which
will not be generally true.

To evaluate also the mixing properties after convergence we run one more (long) run, where we
initiate the chains correctly according to the target density and estimate the resulting autocorrela-
tion functions for the indicator function I(||z|| < 0.025%). Again we scale the results corresponding
to the mean number of target density evaluations used, see Figure 3(b). For algorithm vi), we
only used the last portion of the run, after g(z) seemed to have stabilised, for the estimation. It
should be noted that the mode centered at the origin is included in g(z) for none of the algorithms
used. After convergence the adaptive algorithm use a g(z) where all 9 modes are well represented
and the autocorrelation of this algorithm becomes far better than the others. Again algorithm
i) is the best of the non-adaptive algorithms and we believe the explanation to be as discussed
above.

To get a better understanding of how the algorithms work it is also of interest to monitor
the fraction of different moves used for the different algorithms and the corresponding acceptance
probabilities. Table 1 gives these figures for algorithms), 1), ii¢) and vi), where the figures for
the adaptive algorithm are after g(x) has stabilised. Algorithms iv) and v) have acceptance rates
of 0.014% and 29%, respectively. From the figures in Table 1, one can observe how the fraction
of (0,0)-moves increases as the approximation g(z) improves. The much higher fraction of (1,2)-
moves relative to (2, 1)-moves is a consequence of our choice of p?(f, b|z). Whenever no other good
alternative can be found, we choose a (1,2)-move with high probability. This also explains the

1.5

1.0

00 05

10000 15000

0.8

0.4

0.0

Figure 3: For each of the six simulation algorithms: (a) estimated convergence and (b) estimated
autocorrelation function after convergence. The horizontal axis is scaled and shows the (mean)
number of evaluations of the target density. The symbols used are O, A, 4+, x, ¢ and V for
algorithms 1) to vi), respectively.

(f.b) without g(z) with g(z) with adaptive

’ g(x) three modes seven modes algorithm
(0,0) — 25.3% (90.0%) | 53.3% (91.6%) | 95.9% (92.3%)
(0,1) - 4.9% (33.5%) | 3.6% (25.1%) | 0.01% (50.0%)
(1,0) — 2.8% (58.8%) | 5.7% (15.2%) | 2.0% (30.0%)
(1,2) | 89.1% (7.5%) | 61.9% (2.8%) | 33.8% (0.4%) | 1.7% (10.0%)
(2,1) | 10.9% (61.1%) | 5.1% (32.9%) | 3.6% (5.4%) | 0.3% (0.0%)

Table 1: Fraction of (f,b)-moves in algorithms), i), 47¢) and vi) and corresponding acceptance

rates in parenthesis.

10

quite low acceptance rates for (1,2)-moves. The reduced acceptance rates for (2,1)-moves when
the quality of g(x) improve can also be understood. The modes in the approximation g(z) do not
fit exactly with the modes in A(z) and in U(z) this results in small local minima. As more modes
are included in g(z), U(z) contains more such “fake” minima and in turn increase the rejection
rate for (2, 1)-moves.

5.2 Bayesian analysis of mixtures

In this section we study the performance of the simulation algorithms for the Bayesian model for
mixtures defined in Richardson and Green (1997). We present simulation results for the acidicity
data set used in this article, see also Crawford et al. (1992) and Crawford (1994). The data
set concerns an acidity index measured in 155 lakes in Wisconsin. We limit our attention to a
model with a fixed number of components in the mixture, whereas Richardson and Green (1997)
consider the more general problem when also the number of components is stochastic. Except
for the fixed number of components, we adopt the exact same model as in Richardson and Green
(1997), including values for hyper-parameters. Therefore, we give here only a very brief description
of the model and refer to the article mentioned for a detailed presentation and discussion of the
model.

The data set consists of N = 155 observations, y1,... ,ynx, which in the model are assumed to
be generated independently from a K-terms Gaussian mixture,

K

yi|{wk7uk7gl?:}kK:1 ~ ZwkN(ukaalzc)(yl)a (19)
k=1

where Eszl wy, = 1. The prior for {wg, g, o2} | is defined by independent priors for the
three groups (wi,... ,wk), (t1,--. , k) and (0%,... ,0%). The weights (wy,... ,wk) are assign
a symmetric Dirichlet distribution, D(1,...,1). The prior distribution for pi,...,ux assumes
them to be independently sampled from a N(&, k71) density, restricted to the ordering constraint
p1 < pe < ... < pg. The hyper-parameters £ and « are fixed and their values are chosen to give a
rather flat prior over the interval of the observed values. The 0%, ... ,0% are assigned independent
T'(2, 8)-priors, where § is again assigned a gamma distribution.

Our simulation algorithms with optimisations and ¢-proposals are most easily used when
the sample space is all of R™, i.e. without restrictions on legal values. We therefore define

a reparameterisation of the model. For wi,...,wx we use the logistic transformation, v; =
In(w;) — In{wg) for s = 1,... ,K — 1 and transform pq,...,ux by setting u; = my and u; =
pi—1 +exp{m;} for i = 2,... K. Finally, for 07,... ,0% and 3 we use a log-transformation
and set 7; = In(o?) for i« = 1,...,K and b = In(8). Thus, the vector to simulate is z =
(viy... , UK—_1,M1,... ,MMK,T1,-..,TK,D) and its posterior density is strictly positive in all of
RIK,

We compare simulation results with K = 3 for six different simulation algorithms. The two first
are within the class defined in Section 3. Algorithm ¢) has no approximation g(-), i.e. p?(0|z) =
& = 0, whereas algorithm i) has a g(-) which is generated via five optimisations and corresponding
adaptations of § as defined in Appendix B. The resulting g(+) is as given by equation (20) with i = 2.
For both algorithms ¢) and i), @1 and ¢, are sampled independently from a Gaussian distribution
centered at (0,0,5,0,0,0,0,0,0) and with covariance matrix diag(22,22,32,22,22 22 22 22 2?).
These variances are larger than we expect necessary, but are chosen to reduce the risk of missing
some posterior modes. Note that the third component, m; = p;, is assigned a different mean
and variance from the rest because the reparameterisation leaves this element unchanged. The
remaining algorithmic parameters are identical to the one used for algorithm ¢), #¢) and 4ii) in
Section 5.1. Algorithm 447) is an independent proposal Metropolis-Hastings algorithm, where
potential new states are generated from the same Gaussian distribution used to sample ;1 and o
for algorithms i) and i4). Algorithm 4v) is a random walk proposal Metropolis-Hastings algorithm
where potential new states are produced by adding a N(0,0.05%)-variate to each element of the
state vector. Algorithm v) is an adaptive Markov chain algorithm defined as in Section 4.2, where

11

Figure 4: Biplot with 1,000 (independent) pairs (v;,72) simulated via one very long run with
algorithm v3)

1 and s are generated as for algorithms) and 47) and the remaining parameters are identical
to the values used for the adaptive algorithm in Section 5.1. Finally, algorithm vi) is a mixture
of algorithms 4v) and v), where each iteration consists of one (adaptive) update followed by 100
random walk proposal updates. We also tried to use tempered transitions to generate potential new
states, but did not succeed in getting this to work satisfactory and therefore omit this algorithm
from the simulation study.

To compare the five algorithms we first run 5,000 runs for each of them, starting from a
N((0,0,5,0,0,0,0,0,0), diag(22,22,32,22 22 22 22 22 22)) density. Preliminary runs indicated v;
and 73 to be two of the elements with the longest autocorrelations ranges and we therefore estimate
focus on the bivariate distribution for these two elements when estimating convergence. We define
13 x 11 = 143 regions in the (vy, 72)-plane by dividing at —4 + 2;2 = 0,1,... ,11 for v; and for
—-25+2/2;2 = 0,1,...,9 for 7, and estimate the convergence with a formula similar to the
one in equation (18). However, computation of 7; by numerical integration is now infeasible and
we instead estimate 7; from one very long run with algorithm vi). A biplot of 1,000 simulated
pairs (v1,72) are shown in Figure 4. For each of the six algorithms used, Figure 5(a) shows the
estimated convergences as function of the (mean) number of density evaluations. We observe
that the random walk proposal algorithm, v), performs quite well, but have an overall slower
convergence than the mixture algorithm, vi). A closer study of the optimisations in algorithm i)
shows several local maxima for the target distribution. Thus, to be able to explain the merits of
algorithms v) and vi), the local maxima must be separated with areas with a density low enough
to make a hinder for the movement of the random walk proposal algorithm, but the density in the
low density areas is not sufficiently low to totally block the motion between modes in algorithm
iv). The quite slow convergence of algorithms 7) and i7) should also be noted, even if we expect
somewhat better performances also here if we combine them with local walk proposals.

To evaluate the mixing properties after convergence we again run one long run for each of the
six algorithms and estimate the autocorrelation for 7, see Figure 5(b). To initiate these runs, we
start with 1,000 iterations of algorithm vi). The independent proposal algorithm had no accepted
moves in 50,000 iterations and is therefore omitted in Figure 5(b). The mean number of density
evaluations, used to scale the autocorrelation functions plotted, are i) 706, i1) 557, 4i) 1, iv) 1, v)
243 and vi) 446. It should be noted that for the adaptive algorithms these numbers will vary from
one run to another, because one will end up with different approximations g(z) in different runs.
This explains why the difference between the figures for algorithms v) and vi) is not one hundred

12

1.5

- \
— \ > o
<
O
? x Hg
x o
gv o DDDDDD
8 =
Lo ‘v DDDDDDDDDD
A, <, Doooo
. S >5<, CO0oooon
o AAAMA%) "o o B o e e TR SN I
LA, A,
Voo %AAAAAAAAAAAAAAAAAAAAAAAAA ABAAANBAAADAAA
v, 0O
VYo SO ,',’c,::“.:gg.‘,n,.‘..‘“u‘uunnunnouw.
o EAAAALA A - il $SO000¢ R
NAAAAAAA AL vavavavs TV AAadivg

o T T T T T
o T

o 20000 40000 60000 80000

(b)

Figure 5: For each of the six simulation algorithms: (a) estimated convergence and (b) estimated
autocorrelation function after convergence. The horizontal axis is scaled and shows the (mean)
number of evaluations of the target density. The symbols used are O, A, 4+, x, ¢ and V for
algorithms 7) to vi), respectively.

13

b) without with g(z) adaptive mixture
g(x) non-adaptive algorithm algorithm
0) — 14.8% (30.9%) | 66.9% (31.7%) | 52.5% (32.1%)
1) — 6.2% (1.6%) | 0.2% (6.8%) | 0.3% (2.0%)
,0) — 9.7% (1.0%) 1.4% (1.0%) | 1.1% (0.9%)
2) | 80.9% (0.5%) | 59.7% (0.007%) | 27.2% (0.1%) | 39.2% (0.1%)
1) | 19.1% (2.2%) 6.0% (0.2%) 3.4% (0.8%) | 5.1% (0.7%)

Table 2: Fraction of (f,b)-moves in algorithms i), i), 4i¢) and vi) and corresponding acceptance
rates in parenthesis.

as one should expect. In Figure 5(b) we can observe how the autocorrelation function for the
random walk proposal algorithm drops quickly for small lags, indicating good mixing properties
within each mode, but also has small positive correlations for quite large lags, induced by the low
density hinders between modes. Combining random walk proposals with the adaptive moves gives
an algorithm which both jumps efficiently between modes and have good mixing properties within
each mode. Table 2 gives fractions of different moves and corresponding acceptance probabilities
for algorithms %), 44), v) and vi), from which we also can see that our runs for algorithms v) and
vi) end up with different g(x). Acceptance rates for random walk proposals were 40.5% for both
algorithms 4v) and v3).

6 Closing remarks

This paper discusses how local optimisation can be included in a Metropolis-Hastings algorithm to
produce better mixing. Relative to most other proposal mechanisms commonly used in MCMC,
optimisations are computer intensive and its use in Metropolis-Hastings can not be justified unless
the target density is particularly difficult to sample from. Multi-modal distributions is the typical
example of such a situation. We have discussed both a non-adaptive and an adaptive Metropolis-
Hastings algorithm. As briefly discussed in Section 1, Gelman and Rubin (1992) has previously
suggested to approximate m(-) with a density g(-) based on a number of prior optimisation runs
and thereafter use g(-) as a proposal mechanism in Metropolis-Hastings. Our non-adaptive al-
gorithm can be seen as a robustification of this procedure. It should be noted that even this
non-adaptive Metropolis-Hastings algorithm has a flavour of adaptiveness, in that it automati-
cally adjust the fraction fast (0,0)-moves to the quality of the approximation g(-) available. The
examples in Section 5 clearly demonstrates this effect. The examples also demonstrates the im-
portance of measuring convergence and mixing in terms of computer time and not number of
iterations. Algorithms that are clearly Peskun sub-optimal can still be the best in simulation
time.

The effect of including local optimisation in Metropolis-Hastings is most clear when the target
density has several modes separated with very low density areas which effectively acts as barriers
when using local moves only. Our example in Section 5.1 falls within this class and it is there
unnecessary to include a random walk proposal algorithm in the simulation study as it is obvious
that this will not be able to move between modes. However, the example in Section 5.2 shows
that to include optimisation based moves can also give significantly better convergence and mixing
properties when the density between the modes is not low enough to totally block the motion via
local moves.

In addition to the examples presented, we have also used the algorithms for the model in Section
5.2 for other values of K and for two other data sets. The behaviour is essentially the same for
all three data sets. Our proposed algorithms works satisfactory when K is low enough, but when
K becomes large the acceptance rates for the mode jumping proposals becomes very low and the
adaptive algorithm is not able to obtain a good approximation to the target density. We believe
this is because the posterior becomes almost degenerate for large K’s, so that approximation to

14

it by t-densities is no longer possible.

A requirement for the proposed optimisation based algorithms is that we have available a
prior approximation g(z) (or go(z) in the adaptive algorithm), for which inf[g(z)/h(z)] > 0. In
practice, we do not expect this to be a problem. If this requirement is not fulfilled this will
quickly be revealed when starting to simulate, as then some optimisations will return U (z) equal
to infinity.

Appendix A

This appendix contains a proof for Theorem 1. By assumption, P(-|z,, §) fulfils detailed balance
and thereby has #(-) as an invariant distribution for any v € R™ and 6 € ©. Thus, result (a)
follows by induction.

To prove (b), we start to consider the conditional transition kernel for z given 7 and 6.
Let Poo(:|z,7,6) be the transition kernel corresponding to a (0,0)-move. Our assumptions for
q0('|$a’770) gives
%o (ylz,7,0) 4 (y|x) Qo(ylz,,6)

ﬂ_(y) - c(fy,é?) ﬂ_(y) + (1 c(fy,H)) ﬂ_(y) Z IBC(Va 6)

for all z,y € ", v € R™ and 6 € ©. Thus, go(-|z,~,) can be rewritten as

qo(ylz,7,0) = Be(y,) n(y) + (1 — Be(,0))q0 (ylz, v, 0)

for some density function go(-|z,~,). In obvious notation, this gives

POO(A|$7770) = / qo(y|m777 9)a(y|m,7,0,0,0)dy + I(.CE € A)’I'(.CC"}/,H,0,0)
A

- /A ﬁ min{m(z) (Be(y, B)n(y) + (1 — Be(r,0))do(ylz,7,6)),

m(y)(Be(v, 0)m(x) + (1 = Be(y,0))q0 (Y2, v, 0)) dy + I(x € A)r(z]v,6,0,0)

1
> /A P Om(@)r)dy = Bel,6) /A r(y)dy
Thus, for P(:|z,~,8) one gets
P(Alz,,8) > p(0, 0]z, 7,6)Be(, 6) /A r()dy,

which, when integrating out v, gives

Plr.0) = [P(Ala 107100

> B Elp(0, 0}, 7,00 0)l6] [o)y > 5 inf (EIp(0,01z,7.0)c(.0)18} [w(1)d.

where the expectations are with respect to the conditional distribution for v given 6, 7(-|6). This
implies that P(:|z,6) can be expressed as

P(A[z,0) = Br(6) /A r(y)dy + (1 — Br(8))P(Alz,6),

15

where k(0) = infyexn {E[p(0, 0|z, v, 0)c(7,0)|0]} and P(-|z,8) is some transition kernel on ™.

Now we consider the convergence of the x chain conditioned on the 6 sequence. Thus, let
0 = {6;}2, and let v;(:|0) denote the conditional density of x; given 8. Using the above, it then
follows

Ivs42(46) = 7911 = || B6)7C) + 1= 80 [Pl Bwitalo)az — ()|

= (1-Br(6:)) H/w P(-|z,6;)(vi(2|0) — m(2))dz|| < (1 — Br(6:) ||vi(-10) — 7 (]I

Thus, by induction on i it follows
1i(-10) = ()]l < TT [t - Br(6;)]-
=1

The last step is to integrate out each 8; in turn. To integrate over all §;, j > 4 is immediate as the
independence graph in Figure 2 gives v;(+|6;—1) = v;(:|0), where 8; = {0;}_,. Thus,

[[vi(:|0i-1) — 7 ()| < H [1—Bk(8;)]-

Next, integrating out ;1 gives

i—1
[1vi(-16:-2) = 7 ()| < [T [1 = Br(6,)] (1 = B jnf {s(0)})-
j=1
Continuing like this, integrating out 8;_; for j =i —1,9—2,...,1 one gets

1) = 7 ()]l < (1 = 6 jnk {s(0)})'

as required.

Appendix B

In this appendix we specify the precise adaptation procedure we have used in the simulation
examples. Let © = U2,0;, where ©¢ = {(k, &2, &s,84)|k > 0,&,&3 € (0,1),&4 € (&2,1)} and

®i = {(k7§27€37€47a07{ajall’jazj}j':l) |k > 0762763 € (07 1)764 € (€271)7a0 € (Oé*,l],a]’ € (07]-]
for j=1,2,... i,a0+ ...+ o; = 1, € R",E; € R™*™ positive definite for j =1,2,... i},

for i =1,2,.... The k in 6; is the one used to define p?(0|z) in equation (11), &,&; and & are
the parameters used to define P(-|z,~,8) in equation (16) and a* > 0 is a fixed parameter. We
let g(z|6) be given as

go(x) if i =0,

) . 2
a0go(z) + 25— ajtu(py, Bj)(¢) otherwise, (20)

a(al6) = {
where v > 0 is fixed parameter and go(-) is a fixed density function on R", for which we require

inf [9"(“’")] > 0. (21)
zeRn | w(x)
Whenever uq > & in a Metropolis-Hastings update, u(p1) and (1) can be used to update
6. We do this by first increasing ¢ by one and setting pu; = u(p1) and ¥; = X(p1). Thereafter,
to avoid i growing to large we reduce i again if this seems not to worsen the approximation too
much. Our exact algorithm to update 8 is

16

1. Set i := i+ 1 and thereafter u; = u(y1) and ¥; = X(¢1).

2. Set
a:=argmin | min [In(g(k;]0)) —In(h(y;))]| ,
a‘QOZO‘* J=1, 8
where @ = (ag, a1, ... ,®;). Remember that « is included in 6, so g(z|6) is a function of .

Furthermore, let [be the minimum value attained, i.e. [= minj;—; . ;[In(g(p;|6)) — In(h(g;))].

3. Check if ¢ can be reduced via the following algorithm

(a) for j =1,... 4, compute
I(j) = argmin - min [In(g(x;6)) — In(h(k;))]| ,
a|a02a*,aj:0 Jj=1,...,%

and j* = argmin;—y . ;[l(4)].
(b) if I(5*) <1+ 0.01:
i.seti:=7—1
ii. for j =4,9—1,...,5%, set pj := pj41 and ¥; := ¥
iii. goto 2
(c) compute j* = argminj—, . ;[c;]
(d) if aj- < 0.001:
i.seti:=9—1
ii. for j =4,i—1,...,5% set puj := pjy1 and X; := ;4
iii. goto 2
4. To generate a new value for k, first generate 21, ... , z; independently from g(-|6) and there-
after set k = median;—,... s[h(2;)/9(2;)]

5. If the resulting p; and X,’s are unchanged by the above steps, set & = min{{ + (1 —
&)/10,0.98} and otherwise set &2 := max{{; — &/3,0.02}. Finally, set & := min{5- (1 —
£)/(1+&),0.98} and & ==& + (1 — &)/2.

It should be noted that this updating procedure ensures that oy > a* and & < 0.02 as required
above. Thus, our adaptive Markov chain is of the type specified in Theorem 1(b) with ¢}(y|z) =

9o (y)a

0 if ug > &4,
c(v,0) =< 1 ifug < &4 and i =0, (22)
Qg otherwise
and
0,0,7,6) = & p*(0fa) - £ = €19 Ol). (23)

For 3*, k* defined in Theorem 1 this gives 8* > 0 by equation (21) and
k* = 0.02ea”, (24)

where we have used that p?(0|z) > ¢ for all z € R" and 0 € O.

17

References

Besag, J., Green, P., Higdon, D. and Mengersen, K. (1995). Spatial statistics and Bayesian
computation, Statistical Science 10: 3—66.

Chib, S. and Greenberg, E. (1994). Bayes inference in regression models with arma (p,q) errors,
Journal of Econometrics 64: 183—-206.

Crawford, S. (1994). An application of the Laplace method to finite mixture distributions, Journal
of the American Statistical Association 89: 259-267.

Crawford, S., DeGroot, M., Kadane, J. and Small, M. (1992). Modeling lake chemistry distribu-
tions: approximate Bayesian methods for estimating a finite mixture model, Technometrics
34: 441-453.

Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using multiple sequences
(with discussion), Statistical Science T: 457-472.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in
practice, London: Chapman & Hall.

Gilks, W. R., Roberts, G. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through
regeneration, Journal of the American Statistical Association 93: 1045-1054.

Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm, Bernoulli
7(2): 223-242.

Hastings, W. K. (1970). Monte Carlo simulation methods using Markov chains and their applica-
tions, Biometrica 57: 97-109.

Holden, L. (1998). Adaptive chains, SAND/11/98, Norwegian Computing Center, Oslo, Norway.
Available from http://www.statslab.cam.ac.uk/~mcmc/.

Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis
algorithms, The Annals of Statistics 24: 101-121.

Mykland, P., Tierney, L. and Yu, B. (1995). Regeneration in Markov chain samplers, Journal of
the American Statistical Association 90: 233-241.

Neal, R. M. (1996). Sampling from multimodal distributions using tempered transitions, Statistics
and Computing 6: 353-366.

Peskun, P. H. (1973). Optimum Monte-Carlo sampling using Markov chains, Biometrica 60: 607—
612.

Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with an unknown number of
components (with discussion), Journal of the Royal Statistical Society, Series B 59: 731-791.

Sahu, S. K. and Zhigljavsky, A. A. (1999). Self regenerative Markov chain Monte Carlo with
adaptation, Technical report, Faculty of Mathematical Studies, University of Southampton,
UK. Available from http://www.maths.soton.ac.uk/staff/Sahu/.

Tjelmeland, H. and Hegstad, B. K. (2001). Mode jumping proposals in MCMC, Scandinavian
Journal of Statistics 28: 205-223.

18

