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Abstract

The inverse problem in cross well tomography is solved by a Bayesian
methodology in a Gaussian framework. A finite element approach is used
to resolve the variational structure given by Fermat’s principle, as a re-
sult the approximate forward map is piecewise affine. In the Gaussian
framework the posterior distribution can be calculated as a mixture of
truncated Gaussian distributions. A sampling algorithm that exploit this
structure is proposed. The methodology is tested in a small synthetic
example.
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1 Introduction

Cross well tomography is an important source of information about elastic pa-
rameters of the earth. Both the direct problem of wave propagation (Langan,
Lerche and Cutler 1985; Vidale 1988; Auld 1990) and the inverse problem in
cross well tomography (Menke 1984; Berryman 1990; Langan and Bube 1998)
are subject to substantial research interest.

The direct problem in cross well tomography is nonlinear, the solution is given by
the minimum of a set of linear functionals. In linearized cross well tomography
the solution to the direct problem is approximated by picking one of the linear
functionals in the set.

The primary goal in cross well tomography is to stably estimate material pa-
rameters of the earth based on traveltime observations. Linearized cross well
tomography gives a qualitative understanding of the problem. Menke (1984)
show that linearized cross well tomography resolves the material parameters of
an isotropic earth poorly, especially in the horizontal direction. The case for
anisotropic case is even worse (Bube and Meadows, 1998). Further, related op-
erators such as X-ray and Radon transforms have unbounded inverses (Faridani,



1997). The inverse problem of cross well tomography is hence ill-posed, since it
is both underdetermined and unstable.

Ill-posed inverse problems is commonly solved by regularization or equivalently
by introducing rigid boundaries on the parameter space (Bertero, 1989). The
solution is then obtained by minimizing an objective function. For nonlinear
problems such as cross well tomography, iterative solvers are frequently used.
Berryman (1990) notice that this formulation does not fully appreciate the vari-
ational structure that is present in the problem of cross well tomography. The
first arrival time obeys Fermat’s principle, i.e. it is the shortest traveltime that
is physically possible (Aronsson 1970). Berryman (1990) uses Fermat’s prin-
ciple to construct feasibility constraints for the solution. When he uses the
feasibility constraints to determine the step size in his solver he obtain a stable
reconstruction.

A secondary and frequently equally important objective in cross well tomog-
raphy is to assess the uncertainty of the estimate. Common approaches are
resolution theory (Menke, 1984) and a singular value decomposition (Michelena
1993), in either case the operator is linearized. In nonlinear problems such as
cross well tomography, it is hard to describe the underdetermined and badly
determined features exactly, since they do not span a linear space.

The current work apply a Bayesian approach to the inverse problem of cross well
tomography. In Bayesian analysis a likelihood is defined according to the sta-
tistical link between the parameter of interest and the observations and a prior
distribution is defined for the parameter of interest. The prior distribution is
frequently criticized by non-Bayesians. However for ill-posed inverse problems,
such as cross well tomography, the prior distribution plays an essential role. The
prior distribution stabilizes the solution and resolves the problem of underde-
termination. The prior hence serve the purpose of regularization and define soft
boundaries on the parameter space. In a specific case there is often available
information about the scales of the slowness, either based on general geological
knowledge or analog reservoirs. This information can be included through the
prior distribution. The effect of the assumptions can be visualized by random
samples from the prior distribution.

The Bayesian solution to the inverse problem, is the posterior distribution which
is formally proportional to the product of the likelihood and the prior. For most
practical problems it is beneficial to approximate the posterior distribution by
a finite representation. In the current work the posterior distribution is approx-
imated by random samples assigned equal weight. This approach apply to both
linear and nonlinear problems. The Bayesian approach achieve both goals in
cross well tomography. The posterior mean is a stable estimate. The posterior
distribution itself describes the uncertainty of the estimate. Bayesian uncer-
tainty assessment is hence case specific. The posterior distribution is relative to
the observation at hand and depend on the prior distribution and the likelihood
which are defined such that their characteristics are adapted to the case under
study.



Bayesian approaches to problems in tomography is developed by several authors,
(Natterer 1980; Carfantan and Mohammad-Djafari 1997), most authors only
consider the maximum posterior estimate and does not use the full power of
the Bayesian analysis. In the current work the Bayesian inversion, i.e. an
algorithm to sample the posterior, is worked out in a Gaussian framework, taking
account of the nonlinear features. In Kolbjgrnsen and Omre (2002) the theory
of piecewise affine inverse problems in a Gaussian framework is presented. The
posterior distribution is a mixture of truncated Gaussian distributions in this
case. The contribution in the current work is to use the Fermat’s principle to
phrase cross well tomography as a piecewise affine inverse problem and develop
the methodology of Kolbjgrnsen and Omre (2002) for this problem.

Section 2 describes the problem of cross well tomography. In section 3 the
problem of cross well tomography is formulated as an piecewise affine inverse
problem, by using a finite element approach to approximate Fermat’s principle.
Section 4 describes the statistical models that are used, and section 5 contains
the posterior distribution together with the sampling approach. Section 6 dis-
cuss a generalization of the approach. In section 7 two small examples are
investigated. Section 8 contain a discussion of the results.

2 Problem description

The current section gives a brief introduction to the problem of cross well to-
mography. The slowness, the inverse of the velocity, is the material parameter of
relevance. In the current presentation the medium is assumed to be isotropic,
but the approach can easily be extended to media with elliptical anisotropy
(Bube and Meadows, 1998).

The objectives in cross well tomography is to reconstruct the slowness field in a
region, R, between two wells based on imperfect observations of traveltimes from
sources in one well to receivers in the other well, and to assess the uncertainty
of the reconstruction. Figure 1 illustrates the situation. A source is placed in
one well at the location (zg,zs), a receiver is placed in the other well at the
location (z,,z2,). The traveltime is the time it takes for a wave to propagate
from the source to the receiver.

For simplicity the earth is considered to vary only with depth, 2z, and the
lateral component describing the inter distance between the two wells, z, i.e.
s(z,y,2z) = s(x,z). Further the slowness is assumed to be twice continuously
differentiable, i.e. s € C2(R).

The traveltime between a source and a receiver is denoted the Fermat time
because it obeys Fermat’s principle. That is, it is the minimum traveltime from
the source to the receiver. To make this precise Berryman (1997) introduce
two types of functionals for traveltime. Let I' be the set of continuous paths
connecting the source and the receiver. For a given v € I' define the traveltime



functional, 7(v, -), associated with this path by its action on a slowness field, s,

7(7, 5) =[Ys(a:,z) dl”

with dl7 being the infinitesimal distance along 7. Define now the traveltime

functional, 7%, corresponding to the Fermat time. For given slowness field, s,
this is defined as,

7*(s) = minT(v, s) . 1

(5) = min(y,) (1

The Fermat time is the minimum path integral of the slowness along any con-

tinuous path connecting the source and the receiver. The Fermat path, ~*, is
defined as the path where this minimum occur,

7" (s) = argmin7(y, s).

The Fermat path need not be unique, but for a given source/receiver pair it
almost surely is so. The Fermat time can be expressed as

T(s) = / s(z, 2) div (s) ,
v*(s)

that is, if the Fermat path is known the traveltime is a linear functional of s.

In a medium of constant slowness, the Fermat paths are straight lines connecting
the source and the receiver. A perturbation argument (Boyse and Keller 1995)
show that the bending of the Fermat path is a second order effect, hence the
traveltime can be approximated to the first order by the line integral along
the straight line connecting the source and the receiver. This is the argument
used in linearized cross well tomography to pick a particular path. Figure 2
show a slowness field where the perturbation argument is not valid due to large
deviations from a constant background. Figure 2(a) show the linear paths for 16
source/receiver pairs. Figure 2(b) show the Fermat paths for the same slowness
field. For such cases other approximations are needed.

3 Cross well tomography as a piecewise affine
inverse problem

To phrase cross well tomography as a piecewise affine inverse problem, each
traveltime is approximated by a piecewise affine functional. In the current work
the Fermat time, 7*(s) in Expression (1), is approximated by a finite element
approach.

o (8) = qnéirrt 7(7,8) , (2)



with 75 (s) being the approximate Fermat time; and I'y being the set of finite
elements. The set I'y consist of piecewise linear paths, parameterized with d
internal nodes. The nodes are equispaced in the lateral directions and free to
move in the vertical direction, see Figure 3. Each path is hence parameterized
by a d dimensional parameter, v = (1,72, .., 74 ), being the vertical coordinate
of each node. In what follows there will not be made any notationally distinction
between the parameter v and the piecewise linear path that is associated with
it. The path parameter is a vector with d components but it is denoted by a
normal type letter to avoid confusion when several traveltimes are considered.
Further let v} (s) € I'y denote the path where the minimum in Expression (2)
occur. The path 7;(s) is hence the approximate Fermat path.

Figure 4 and 5 visualize the finite element approximation for the slowness field
in Figure 2. Figure 4 show how the traveltime approximation improve with an
increasing number of internal nodes for the 16 traveltimes indicated in Figure
2. Figure 5 show how one Fermat path change as the number of internal nodes
increase. In this particular case the approximation is good even with a low
number of internal nodes.

Note that the finite parameterization of the path does not force any particular
parameterization of the slowness, this is in contrast to approaches that use block
models and Snell’s law for ray bending at the block boundaries. The accuracy of
the approximation will of course depend on the slowness field. In the continuous
formulation of the problem, paths between different source/receiver pairs can
cross one time at most. This ordering is forced also in the discrete problem even
if several crossings could occur for this case.

According to Kolbjgrnsen and Omre (2002) a piecewise affine operator is defined
as

Definition 1 (Piecewise affine operator) An operator K : Z — R", is said
to be piecewise affine, if it can be represented in the following way:

K(z)=K,z+k; for z€ Ay ; z€X

with X being an index set, { Ay }zex being a partition of Z; K, : Z — R" being
bounded linear operators on Z and k, being r dimensional vectors. The in-
dezed set of triplets { Ay, K, ks }zex are the parameters of the piecewise affine
operator.

The finite element approximation to the Fermat times is a piecewise affine op-
erator with a continuous index set, I'y. For operators having a continuous index
set a special type of partition is treated in Kolbjgrnsen and Omre (2002).

Definition 2 (Restricted linear partition) A partition {A;}.cx with
X C R? of Z is a restricted linear partition if,

A, ={R;z+ 71, =0} NC,,



with R, : Z = RY being a bounded linear operator; v, being a d-dimensional
vector function; and C, is any subset of Z. The set of triplets {Ry,74,Cstzex
are the parameters of the restricted linear partition.

The approximate traveltime, 75 (s) in Expression (2), can be represented as
15 (s) =7(v,s) for se A,; v€ly (3)

with
Ay ={s € C*(R) : 7(7,5) < 7(7,5) for 7€To},

hence s € A, & v = 7§(s). That is, v is the approximate Fermat path of s,
using the predefined resolution given by I'y. Note further A, C {V,7(v,s) = 0}
with V,7(7, s) being the gradient of 7(v, s) with respect to the path, evaluated
for the Fermat path, 7. The operator V., 7 : T'g x C?(R) — R? is linear in the
second argument, i.e. slowness, for any value of the first, i.e. path. The partition
{A,}yer, in Expression (3) is hence a restricted linear partition according to
Definition 2. Further the Hessian of the traveltime with respect to the path,
V,V,7, is of importance. Note that due to the parameterization, the Hessian
is tridiagonal.

For each traveltime there are two functionals, 7(v, s) and 7 (s), and two oper-
ators g(v,s) = V,7(v,s) and h(vy,s) = V,V,7(7,s), that are of importance.
The operators g(v, s) and h(vy,s) are both linear in the second argument and
produce row vectors and matrices respectively. When r traveltimes are consid-
ered, the paths corresponding to each of the traveltimes are collected to form
one large index, v = [y1, V2, .--,7r], this should not be confused with the pa-
rameterization of the individual paths; i.e. v; = (i1, ...,7iq) for i = 1,..,r. The
traveltime functionals are stacked to form vector valued operators, 7(v, s) and
74(s), and the relevant operators are joined,

gv,s) = [ gln,s) glrs) ... glms) | (4)
h(y1,s) 0 0
0 h(’)’?as)
h(v,s) = : SR ,
0 0 h(’)’r,s)

further

Ay = ﬂA% :
i=1

The traveltimes are hence approximated by a piecewise linear operator with a
linear restricted partition, and can thereby be solved in a Gaussian framework
by the methodology of Kolbjgrnsen and Omre (2002). The Gaussian framework
is defined next.



4 Statistical models

In Bayesian analysis knowledge and uncertainty is quantified by probability
distributions. A generic distribution and a generic probability is denoted by p
an P respectively. The relevant random variable will occasionally be displayed
in the argument of p to clarify which distribution that is referred.

The likelihood is the statistical link between the parameter of interest and the
observation. In Bayesian analysis it is given the interpretation of being the con-
ditional distribution of traveltimes for a given slowness. In the current Gaussian
framework, the observations are assigned additive Gaussian errors. Let T de-
note the random variable that is observed. The conditional distribution of T
for a given s is then

p(t*|s) = Np(15(s), 2e) ()

with * being the outcome of T*; s being a slowness field; N, denoting the
r dimensional multinormal distribution; 7{(s) being the approximate Fermat
times for the slowness field s; and 3. being the covariance for the observation
error. Define also the indexed set of random variables T'(«y), that is defined
for each « by the conditional distribution that correspond to observation of the
path integrals, (7, s),

p(tyls) = Ne(7(7,5),Xe) ,

with ¢., denoting the outcome of T'(y); s being a slowness field; 7(v, s) being
the traveltimes in s along -; and 3. being as in Expression (5). The marginal
distribution of T™ is dependent on the distribution of the slowness and does
not have an explicit representation in the current analysis. The marginal dis-
tribution of each of the random variables T'(7y) will however be Gaussian if the
slowness is so. The additive error term is modeled by a random error, it includes
both observation errors and model errors.

In the current Gaussian framework the slowness, S, is assumed to be a Gaussian
random field (Vanmarcke, 1983). The prior distribution is formally denoted
p(s), but is symbolic and not a density since S is a random field. The slowness
to be reconstructed is assumed to be two times continuously differentiable, see
Section 2. Gaussian random fields are well suited to represent different degrees
of smoothness. In the presentation below it is assumed that the slowness field is
almost surely two times continuously differentiable, i.e. P(S € C?(R)) = 1, see
for example Stein (1999) for details about how to define such a Gaussian random
field. This smoothness criterion is somewhat relaxed in Section 6, however.

The random variables that are defined by randomizing g(+, s) and h(v, s), see
Expression (4), over the prior distribution of S for a fixed selection of paths,
are denoted by capital letters, i.e. G(v) and H(v). Because the operators,
g(v, s) and h(+, s), are linear in the second argument the corresponding random
variables are Gaussian. These random variables are used to decompose the
posterior distribution.



5 Representing the posterior distribution

The posterior distribution in the inverse problem of cross well tomography is de-
composed as a mixture of truncated Gaussian distributions. This representation
is in turn used to define an algorithm to sample the posterior distribution. The
samples from the posterior distribution yields an approximation of the posterior
distribution.

The theory of piecewise affine inverse problems, is developed in a Gaussian
framework in Kolbjgrnsen and Omre (2002). Using the notation introduced
above, the posterior distribution of S can be represented as a mixture distribu-
tion

p{S=s5€e€Ay,H(v)=h|T" =t}
=p{S=s|5 €Ay, (T(7),G(7),H(7)) = (¢*,0,h)} (6)

xP{5 € A[(T(7),G(7), H(7)) = (t*,0,h)}

Ndet(m)p{(T(7), G(), H(7)) = (t*,0,h)}
p{T" ="}

The distribution on the left hand side is the posterior distributions of S when
S € A, and H(v) have the value h. The marginal posterior distribution of
S is obtained by randomizing Expression (6) over «v and h. The first term in
Expression (6) is a truncated Gaussian distribution, since the equality constraint
is linear. The second term is a probability and the third term is a non-negative
measure on I'g x R(24~17 with d being the number of internal nodes and r being
the number of observations. The product of the second and third term is the
posterior density for S being in A, with H(v) having the value h. Note that
h is fully described by (2d — 1)r values, see Section 3. In addition a necessary
condition for S € A, is that H () is positive definite. The mixing distribution
of Expression (6), provides a sampling strategy for the posterior.

Algorithm 1 CTGM-algorithm (Continuous Truncated Gaussian Mizing)
1. Sample v# b ~ q(~, h) with
(7, h) o |det(h)[p{(T'(7), G(7), H(7)) = (t*,0,h)}
2. Sample s* Np{S = s|(T(v%), G(v*), H(v*)) = (t*,O,h#)}
3. If S* € A# stop.

The algorithm splits the sampling into a nonlinear step, a linear step and an
acceptance step. In the nonlinear step a value for the the Fermat paths and



the Hessian of the traveltimes along the Fermat paths is proposed. The matrix
h* is restricted to be positive definite, hence the paths v# are local minima.
In the second step a slowness field, s, that have local minima along the paths
~#, with h(y#, s#) = h* is drawn. In the third step it is controlled that #
in fact is the Fermat paths, if not the sampled slowness is rejected and a new
pair of (-, h) must be drawn. Since the proposed paths are guaranteed to be
local minima, there is usually a high acceptance rate in the third step. The
nonlinear step in the algorithm is the challenge. To sample the distribution
q(v, h) a McMC algorithm is used. The decomposition given in Expression (6),
can also be exploited in other types of algorithms. The benefit of using the
decomposition is that it uses the global structure of the inverse problem.

6 Generalization to a non-smooth slowness

The smoothness assumption regarding the slowness is common in a continuous
formulation of cross well tomography. In the current work it is however imposed
by the solution method and is hence undesirable. In this section the theory is
extended to account for small perturbations from a smooth background, let

s(z,z) = sp(z,2) + esy(z, 2),

with sz, being a lowfrequent background model; and € sy being a highfrequent
perturbation with € being a small number. By a standard perturbation argu-
ment, similar to the one used in Boyse and Keller (1995), the traveltime can be
expanded in an asymptotic series in powers of €. Including only the first order,
this reads

T*(sp +espg) = 7(sz) + eT(v*(s1), sm) + O(€)

with 7*(sy) being the Fermat times in the lowfrequent part of the slowness;
~v*(sz) being the Fermat path in the lowfrequent part; 7(v*(s1), sg) being the
line integral of sy along v*(sr); and O(e2?) being higher order terms which are
neglected in what follows. The likelihood in Expression (5) is now replaced by

p(*|sL, sa) = Nr (To(sz) + e7(vo(s2), sm), Be)

with 7§(sz) and «§(s.) being the approximate Fermat times and paths in the
lowfrequent part of the slowness respectively.

The sampling of the the lowfrequent and highfrequent part is done sequentially.
For a fixed low frequent part the problem of sampling the highfrequent part is
the linearized problem for a non-constant back ground. The challenge is hence
to sample the lowfrequent part in the presence of the highfrequent part. This
can be done by computing the marginal likelihood of s;,. Assuming Sz to be a
Gaussian random field independent of sy, this can be done analytically. If Sg
is centered the marginal likelihood for sz, € A, is,

p(t*[s) = Np(75(s2), B(7) + Ze) ,



with 3(+) being the covariance of line integrals of ¢Sy along the paths, . As-
suming that Sy, is a Gaussian random field, this formulation is still within the
scope of the theory of piecewise affine inverse problems developed by Kolbjgrnsen
and Omre (2002).

The characteristic that allows for the generalization is that the highfrequent
part have an additive effect for which the statistical properties only depend on
the index of the piecewise affine inverse problem, i.e. the Fermat paths. Sglna
and Papanicolaou (2000) find a similar result for a different type of deviation
from a smooth background.

7 Example

In the current section a synthetic example is investigated to highlight some of
the differences between the current approach and a linearized problem. The
traveltimes investigated relates to the slowness in Figure 2.

The slowness is a stationary Gaussian random field and is defined by its mean,
variance and spectral density, these are denoted by us, 0% and ¢g(ks, k) re-
spectively. It is convenient to specify the correlation in terms of the spectral
density since this makes it easier to control the differentiability of the random
field. The spectral density is assumed to have the form

95 ks, ks) o< (14 (ko L) + (ko Lo)?) "¢ 1972,

with k, and k, being spatial frequencies; L, and L, being scales in depth
and lateral direction respectively; and v being the parameter that controls the
smoothness. In the subsequent examples the prior distribution is defined by
ps = 0.5ms/m, og = 0.06ms/m, L, = 225m, L, = 130m and v = 18.
Figure 6 show the resulting covariance function for the depth, 2, and the lateral
component, x. The slowness field in Figure 2 is a random sample from this prior
distribution.

The observations have variance ¥, = 021, ,, with 0 = 0.1 ms being the stan-
dard deviation of the error; I,x, being the r X r identity matrix; and r being
the number of observations. The observations are hence recorded with a high
precision since the travel times are ranging from 48.1 ms to 76.6 ms

7.1 One observation

In this paragraph only one observation is considered. The source is in the left
well at the depth 150 m and the receiver is in the right well at the depth 50 m.
The approximation of the Fermat path in the true slowness field is displayed
in Figure 5 for a variable number of internal nodes. The approximation of the
Fermat time as a function of the number of internal nodes is displayed in the

10



top right corner in Figure 4. The observed traveltime is 76.6 ms. One traveltime
observation hardly provide any information regarding the slowness field, hence
no features of the true slowness can be expected to be retrieved. The exam-
ple highlight differences between linear and nonlinear cross well tomography,
however.

The inversion procedure is carried out for zero, one and seven internal nodes.
The case with no internal nodes correspond to the linear case and is not dis-
cussed in any further detail. When only one internal node is considered, the
mixing distribution g(v, h) is two dimensional, the density for the current case
is displayed in Figure 7. To sample the mixing distribution for the case of seven
internal nodes, a Markov chain is constructed. The algorithm use a diffusion
step to sample the path. For a given path, -y, the distribution ¢(~, h) is approx-
imated by a Gaussian distribution, this distribution is sampled sequentially to
assure h to be positive definite. One sample is extracted for every 200 iteration,
extracting a total of 3000 samples. Figure 8(a) show the value of the 2end,
4th and 6th internal node, and Figure 8(b) show the corresponding diagonal
elements of h. The plots show that the algorithm is slowly mixing. Figure
9(a)-(c) show the paths used in the inversion when zero, one and seven internal
nodes are used respectively. For the case of one and seven internal nodes these
are the samples from the corresponding mixing distribution in Step 1 of the
CTGM-algorithm. For comparison the true path is plotted in the same figures.
The uncertainty of the path is clearly illustrated by the figures. The acceptance
rate in the third step of the CTGM-algorithm is 96% and 92% for the case with
one and seven nodes respectively.

Figure 10(a)-(c) show the final estimates using the three strategies. The estimate
for zero internal nodes is obtained analytically. Visually the estimates appear
to be similar. All estimates increase the slowness along the line connecting the
source and the receiver. The main effect of the internal nodes are better seen
in cross sections of the estimates. Figure 11(a)-(c) show cross sections of the
estimates at £ = 10m, £ = 50m and z = 75m respectively. The nonlinear
estimates are consistently larger, and have a larger region of influence. The
deviation from the background is 20% larger for the case with seven internal
nodes than it is for the linear estimate. Much of the nonlinear effect on the
estimate is present in the case with only one internal node.

The main effect of the nonlinearity is however hidden by the averaging that is
done in the estimation. The nonlinearity is present in the individual samples. To
illustrate the differences, 500 samples from the three conditional distributions
are used. Let vy denote the direct line from the source to the receiver. For each
sample, s¥, the two traveltime functionals 7(7o, s%) and 7*(s#) are computed.
That is the line integral of the slowness along 79 and the Fermat time. Figure
12(a)-(c) display the scatter plot of these two functionals evaluated for each
sample using three approaches. In linear tomography the line integral remains
stable and the Fermat time fluctuates, whereas in the case with seven internal
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nodes the opposite effect is observed. For the case with one internal node the
Fermat times are quite stable, but some large deviations are present. Compare
also some of the conditional probabilities that is illustrated in Figure 12. The
percentage of the samples having Fermat time less than 75 ms is 29%, 5% and
0%, and the percentage of the samples having have line integral larger than
78 ms is 0%, 16% and 24% for the case with zero, one and seven internal nodes
respectively. Much of the nonlinear effect is hence gained by including just one
internal node.

In the algorithm, the Fermat path is drawn conditioned to the observed travel-
time. The mixing distribution of the Fermat path, ¢(+y, k), is hence dependent
on the observed value of the traveltime. Figure 13(a) and (b) visualize this
effect in the case with one internal node. The figures show g(, h) for ¢ = 50 ms
and ¢ = 100ms. Note that ¢(v,h) is not the posterior distribution of (v, h)
since the acceptance probability is factored out, but g(v, h) still indicate the
general shape of the distribution since the acceptrate in the third step of the
CTGM-algorithm is large. When the observed value of ¢ is small, i.e. £ = 50 ms,
it is likely that the path has followed the direct line from source to the receiver.
This is illustrated in Figure 14(a) where 1000 paths sampled from g(~,h) are
displayed. Notice the low spread of the samples that, indicate a channel of high
velocity connecting the source and receiver. When the observed value of of ¢
is large, i.e. t = 100 ms, it is likely that the Fermat path is bent either up or
down as is indicated by the bi-modality in Figure 13(b). This is illustrated in
Figure 14(b) where 1000 paths sampled from ¢(-, h) are displayed. Notice how
most paths avoid the middle of the figure. This indicate a bump of low velocity
located on the direct line connecting the source and the receiver.

7.2 Several observations

In this paragraph all 16 traveltimes, see Figure 2, are considered. Compared to
the results of the previous paragraph, more of the structure of the slowness field
is expected to be recovered.

The inversion procedure is carried out for zero and one internal node. The
results for zero internal nodes are obtained analytically. The results for one
internal node is obtained using the CTGM-algorithm. To sample the mixing
distribution in Step 1 of the CTGM-algorithm a Markov chain is constructed in
the same manner as in the previous paragraph. In each step a change is proposed
in all the paths simultaneously. For the given path proposal the distribution
q(v, h) is approximated by a Gaussian distribution and sampled sequentially to
assure h to be positive definite. A sample is extracted after every 400 iteration,
extracting a total of 2000 samples. Figure 15 show the mixing plot of the 32
random variables that are sampled. In general the mixing plots are satisfactory,
but the internal node in the path that start in the left well at depth 150 m and
arrive in the right well at depth 50 m to is however mixing slightly slower than
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the other parameters. The mixing plot for this parameter is in the top right
corner in Figure 15(a). The acceptance rate in the third step of the CTGM-
algorithm is 98%.

Figure 16(a) and (b), show the estimates from the two models. Visually the
estimates appear to be similar and have captured some of the features of the
slowness. A high slowness region in the true slowness is located is located from
depth 60 m to 120 m and at lateral position 30 m to 100 m. This is also present
in the estimates, but the shape is slightly wrong. At the depth of 150 meters the
estimates have a high value at the left and a low value at the right. This is also so
for the true slowness. Comparing the two different estimates closely, the features
are more diffuse in the nonlinear estimate than in the linear estimate. When
the deviation from the true surface is measured, the nonlinear estimate improve
the quadratic loss by 10%. It is however substantially more time consuming to
compute the nonlinear estimate.

As a measure of the variability, the pointwise variance is integrated. The pos-
terior in the linear case has 30 % lower integrated variance than the posterior
in the nonlinear case. This does not necessarily mean that the full posterior is
better determined in the linear case, since the integrated variance only respond
to the marginal posterior distributions. In the linear case each observation will
reduce the posterior integrated variance. This is generally not true for nonlinear
observations.

8 Discussion

The inverse problem in nonlinear cross well tomography is solved by a Bayesian
methodology in a Gaussian framework. The traveltimes obey Fermat’s principle.
This variational structure is approximated by a finite element method. Under
the finite element approximation the forward map of nonlinear cross well tomog-
raphy is piecewise affine. For a test example the approximation is reasonable
even for a coarse resolution of the finite elements.

The estimate is taken to be the posterior expectation which is optimal un-
der quadratic loss. The posterior distribution is explored by sampling and the
expectation is approximated by the sample average. When the conditional ex-
pectation is used as estimator, the estimated slowness field will not reproduce
the Fermat times in the case of exact observations. This is due to the convexity
of the problem. Each individual sample will have a Fermat time corresponding
to the observed time, but the Fermat path will differ between samples. When
all the samples are averaged the Fermat time will be a lower bound for the path
integral along any path, hence the Fermat time in the average medium will be
larger. In general it is difficult to preserve nonlinear properties in an estimator.
In nonlinear cross well tomography this can however be done by estimating the
Fermat paths and then average the slowness for the given Fermat times under
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the given selection of Fermat paths. This will however raise issues on estimating
the Fermat paths. This is further complicated by the fact that the posterior
distribution of the Fermat paths can be multi modal, see Figure 13.

The ray paths are flexible in the current nonlinear approach whereas in a linear
approach, they are fixed. When studied in an example with one observation
the nonlinear estimate have a deviation from the background that is 20% larger
than the linear estimate. When studied in an example with 16 observations,
the nonlinear estimate perform 10% better in terms of quadratic loss compared
to the linear estimate. In both cases however the estimates look similar and
only a small amount is gained by using the methodology in this respect. The
major impact of the nonlinearity is however regarding typical deviations from
the estimate, i.e. in the uncertainty.

The challenge in the methodology is to sample the mixing distribution g(=, k),
see Algorithm 1. In the current work this is done by a naive implementation of
a McMC algorithm, the resulting chain is slowly mixing. Efficient exploration
of g(«, h) is of high importance for further development of the methodology.

The prior distribution of the slowness field is Gaussian. Gaussian random fields
constitute a large class of prior distributions and is in particular well suited for
modeling of smoothness. The methodology can also be extended to priors being
mixtures of Gaussian distributions.
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Tables and figures

Figure 1: Cross well tomography.

receiver is recorded.

16

(X 2)

The two vertical lines are boreholes, the
region between the two boreholes is R. A source is situated in one well at the
the location (zs, 25), a receiver is situated in the other well at the the location
(zr,2r). The time it takes for a pulse to propagate from the source to the



i
I
(b)

Figure 2: Linear paths and Fermat paths. The paths used for linear tomography
(a); The Fermat paths for the superimposed slowness field (b).
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X, 2)

Figure 3: Finite element approximation to Fermat’s principle. The path between
the source and the receiver is restricted to be piecewise linear between internal
nodes. Two different paths are displayed for the case with two internal nodes.
The path is parameterized by the vertical distance to the knot point,(v1,72)
and (71, 4) for the two paths respectively
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Figure 4: Minimum traveltime, dependence of number of internal nodes. For
each of the 16 traveltimes, the minimum traveltime is plotted as a function of the
number of internal nodes. Increasing column number correspond to increasing
depth of starting point. Increasing row number correspond to increasing depth
of end point. The values where computed for zero, one, three, seven and 15
internal nodes to have a monotone decay.
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Figure 5: Minimum path, dependence of number of internal nodes. For one set
of endpoints, the minimum path is plotted for zero (dashed line), three (dotted
line) and 15 (full line) internal nodes.
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Figure 6: The correlation function used in the example of Section 7. The dashed
line being for the depth, z, and the full line being for the lateral direction, z.
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Figure 7: Proposal distribution for one internal node. The proposal distribution
in the nonlinear step in the CTGM algorithm for the actual observation; i.e.
t = 76.6 ms.
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Figure 8: Mixing plot for the Markov chain used in nonlinear inversion for
seven internal nodes. Three path parameters (a); three parameters for the
gradient of the constraint (b). In both (a) and (b) the top is for the parameter
corresponding to z = 25m the middle corresponding to z = 50m and the
bottom corresponding to £ = 75 m.
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Figure 9: Comparison of paths used for reconstruction. The red line is the
actual Fermat path in the problem, the black lines are the paths used in (a)
linear inversion; (b) nonlinear inversion with one internal node;(c) nonlinear
inversion with seven internal nodes. In (b) and (c) 3000 paths are displayed.
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Figure 10: Comparison of estimates. The conditional expectation using (a)
linear tomography; (b) nonlinear tomography one internal node; (c) nonlinear
tomography seven internal nodes.
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Figure 11: Cross sections of estimates. Dash/dot line - linear tomographys;
dashed line - nonlinear tomography with one internal node; full line - nonlinear
tomography with seven internal nodes. The cross sections show vertical slices
for lateral components (a) x = 10m;(b) z = 50m; (¢) x = 75 m.
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Figure 12: Comparison of results for linear and nonlinear inversion. The scatter
plot of the posterior distribution of the traveltime along the linear path and

the Fermat path for (a) linear tomography; (b) nonlinear tomography with one
internal node; (c) nonlinear tomography with seven internal nodes.
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Figure 13: Proposal distribution for one internal node. The proposal distribu-
tion in the nonlinear step in the CTGM algorithm for extreme observations (a)
t = 50ms; (b) t = 100 ms.
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Figure 14: Proposed paths with one internal node and extreme observations.
1000 proposed paths sampled from the proposal distributions plotted in Figure
13 in the nonlinear step in the CTGM algorithm for extreme observations (a)
t = 50.0ms; (b) ¢ = 100 ms.
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Figure 15: Mixing plot for the Markov chain used in nonlinear inversion for one
internal node and 16 observations. The path parameters i.e. 7y (a); the second
derivative i.e. h (b). In both (a) and (b) the ordering of the figures is such that
an increasing column number correspond to increasing depth of starting point
of the path. Increasing row number correspond to increasing depth of end point
of the path.
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Figure 16: Comparison of estimates 16 observations. The conditional expecta-
tion using (a) linear tomography; (b) nonlinear tomography one internal node.
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