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Abstract

This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random
field on a graph of dimensiomwhen the likelihood consists of mutually independent data. We demonstrate
that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models.
They have the appealing properties that exact samples can be drawn from them, the normalisation constant
is computable, and the computational complexity is ofly1?) in the spatial case. The non-Gaussian
approximations are refined versions of a Gaussian approximation. The latter serves well if the likelihood
is near-Gaussian, but it is not sufficiently accurate when the likelihood is not near-Gaussiarsiaifge.

The accuracy of our approximations can be tuned by intuitive parameters to near any precision.

We apply our approximations in spatial disease mapping and model-based geostatistics models with
different likelihoods. We also present procedures for block-updating and construction of Metropolised
independence samplers for such models. These sampling schemes are major improvements compared to
the single-site schemes commonly used.
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1 Introduction

Gaussian Markov Random fields (GMRF), or conditional autoregressions, is finite Gaussian fields, where the
field has a Markov property; the conditional density for one component given the rest, depends only on its
neighbours Cressie 1993 Besag and Kooperber@995. In this paper we will focus on spatial GMRFs, al-
though our results also apply to GMRF on general graphs. GMRFs have the convenient property that general
fast algorithms based on sparse numerical algebra &isg 2001). This makes fast sampling and computa-

tion of the normalisation constant possible. An important application is the case when the GMRF is observed
indirectly through additive Gaussian noise. The conditional density for the hidden GMRF (HGMRF) is still a
GMRF, and the same algorithms apply. Conditioning on the observations can also be extended to condition-
ing on other parameters in the model, as GMRFs are often used as building blocks in spatial models, see for
exampleHeikkinen and Arja§1998, Wikle et al.(1998, Besag and Higdo(i1999 andFerrandez and Green

(2002.

A Gaussian likelihood is not a requirement for doing inference, since this also can be done using MCMC-
methods Robert and Caselld999. Single-site MCMC-algorithms often mix quite slowly in such problems

due to the strong interaction within the HGMRF, and in particular between the HGMRF and (some of ) its
(hyper-)parametersKfiorr-Held and Rug2002 Gamerman et al.2003. MCMC-algorithms performing
block-updating on the HGMRF, or better, the HGMRF and its hyper-parameters jointly, may have much better
convergence compared to single-site algorith@arfer and Kohn1994 Gamermanl1998 Knorr-Held and

Rue 2002. Regarding block-updates, it is required that the HGMRF, or an approximation to it, can be
sampled exactly. For joint updates, we also need to know the normalisation constant as this is required in
the acceptance probability in the MCMC-algorithm. In practise, it is quite hard to draw samples from the
HGMRF or construct approximations to it. The only known candidate that we are aware of in the spatial case,
is a GMRF approximation Knorr-Held, 1999 Knorr-Held and Rug2002 Rue and Tjelmeland®0032. This

is however not always accurate enough, as it may produce near zero acceptance-rate in MCMC-algorithms
when the likelihood is not near-Gaussian or the dimensidslarge.

This paper demonstrate how to construct a class of non-Gaussian approximations to a unimodal HGMRF that
have the important properties that they can be drawn from and have computable normalisation constants. The
approximations are all based on a GMRF approximation. The algorithm for constructing such approximations
is fast and of same order as sampling from a GMRF,Ree(200]). Another advantage is that the same
computer code for constructing our approximations can be applied to GMRF-models on general graphs, like
models in time or space-time. The computational cost is (most oftém) in time andO(n?) in space.

The outline of the paper is as follows. In Sect®we present some background for the problem considered,
and in SectiorB our class of approximations is introduced with discussion of some computational issues. In
Section4, we discuss how to do block-updating and construct Metropolised independence samplers for some
models relevant for applications in spatial disease mapping and model-based geostatistics. We conclude with
a discussion in Sectidh

2 Background

Let G be a graph witm nodes, where for example a node denotes a spatial region, a pixel in a lattice or a
tile in a tessellation. Two noddsj are defined as neighbouis; j, if they share a common edge or pixéds

close to pixelj. Letx denote a zero mean Gaussian Markov Random Field (GMRFj,aneaning that its

n x n precision matrix (inverse covarianc€), has the property thad;; # 0 iff i ~j ori =j. The Markov
properties ok is given by G asx; andx; are conditionally independent given the restiiffj. The precision
matrix often depends on further paramet@rsvhich we denote by (0). Definex;; as(xi,xi+1,... ,xj)T.

A HGMRF is a GMRF observed through daja We assume throughout that the likelihood is such that



only depends or; andy are mutually independent given so
mi(y [ x) Hﬂ Yilxi).

We assume further that(y; | x;) as a function of;, is strictly positive and absolutely continuous wrt the
Lebesgue measure, such that the posterior density for the HGMRF is

7(x[0,y) [ exp<_xTQ Zgl X, Ui ) ) 1)

for some functiongyi(xi,yi). In Section3 we show how to construct approximations fi when the it is
unimodal. If not, our approximations may still be good if the different modes are close or one of the modes is
dominant in terms of probability mass. Otherwise, our approximations are less accurate. A sufficient criteria
for (1) to be unimodal, is that-gi(xi,yi) as a function ok, is concave for all.

3 Approximations to a HGMRF

3.1 A GMRF Approximation

Before discussing approximations, we make some assumptions. No ihatsparse matrix; if each site has

a fixed number of neighbours, there are o@lyn) non-zero terms ilQ. We assume there exists a permutation

of the indices, such th& is a band-matrix with a small bandwidth,, and thai is indexed according to this
permutation. The motivation for such a permutation, algorithms and further details and motivation, are given
in Rue(2007). In the spatial cask,, = O(y/n), and computation of the Cholesky factorisati@n=LL' can

then be computed using ony(nbZ,) = O(n?) operations compared 0(n?3) in the general case. Note that

L is a lower triangular matrix with the same bandwidth(as

A zero mean GMRF with precisionQ can be sampled by samplirg~ A((0,1), and then solvd."x = z
(Rue 2001). If the mean ofx is non-zero, we need to add the mearnxtd-or those cases where the mean is
given implicit byQu = b, we solveLu = b, LTu =u. The normalisation constant is available frépsince

IOg|Q‘ = ZZiIOg(Lu)

We want to find an approximation ta(x|0,y) in (1). The natural candidate is a GMRF, which can be
constructed in the following way. First find the mog® = x™(0,y) in (1). We assume that™ =0, as it
simplifies the notation later on. Replaggxi,yi) by the Taylor expansion in the model+cle/2. Our
GMRF approximationtg(x|0,y) has precision matriQQ ; = Q + diag(c) and the moda&™ as mean. Note
that Q g has bandwidtlb,,, the same a®. Let L be the Cholesky factorisation @ ;.

The GMRF approximatiomg, can be computed fast, sampled exactly from and the normalisation is known
and computable. The approximation does however have a major drawback; we cannot tune the accuracy.

SinceLg is a lower triangular matrix with bandwidth,,, a sequential representationm, is also directly
available by

1
TEG(X ‘ 9>U) :HWG(Xt|X(t+1]:n»9)U),

t=m
where
1 min{t+b,, ,n} 1
6 (xe [ X(41)m, 0,Y) = A | x5 —¢ > Lewx, = | (2)
G,tt — G,tt

and A (xg 1, 02) is the Gaussian density. This is a non-homogeneous autoregressive process bf,order
defined backward in time. This representation will prove useful in the next section.
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3.2 Improved Approximations

When constructing improved approximations basedrgnnote that {) can be written in the following two
ways:

n

nix10,y) = [][nxt!X(ts1m0,9) 3)

t=1
n

N HWG(Xt | X (41 0, Y) exp(—h(xt,Yt)) (4)
t=1

whererg is defined in 2), and
he(x,Ut) = ge(xe,yt) — CtX%/z-

Each of the terms in the sequential representaBrdn be represented by means4fds

(%t [ X(e41)m, 0,Y) O wa(Xe [ X(e41)m, ©,Y) €Xp(—hi(xt,yt))

1
X JﬂG(Xutantme,y)eXp —Zhj(xj,yj) dxq.(¢1), (5)
=1

where all the conditional densities o, can easily be derived fron2). This representation has the important
property that the mode of the integrand is reasonably close to the modg(©f.(._1) [ xtn,8,y), since ()

is assumed to be unimodal. In the sequel this enables us to produce accurate, sample-based approximations to
the integral as a function of;.

If we neglect the dependency gfin g and the possible non-boundedness-bf,(xi,yi), the rhs of 4) can
be interpreted as the posterionoWwith a GMRF priorrtg(x) and mutually independent observatianswith
log-likelihood —h;(xi,yi). These log-likelihood terms are neglected in the GMRF approximatgnOur
improved approximations rectify this approximation error.

Our approach is to construct univariate approximation§)odenoted byt(x¢ | X(14+1)m,0,Y), and join them
together into an approximation tdx | 0,y) based onJ):

n
x| 0,y) =] [Alx %41, 0,1). (6)
t=1

Note that 6) can be sampled sequentially backward in time, and its normalising constant is the product of
univariate normalising constants. We will now discuss how to construct these univariate approximations, by
removing what can be considered as less important terms in the rbs of (

A1) The crudest approximation is to neglect boththéx:,y+)-term and the integral-term %),

TiAT(Xt | X (14 1)m 0,Y) = 6 (Xt | X (t41)m, 0, 1) (7)
This gives the GMRF approximation in Secti8riL

A2) A simple, but significant improvement t@)(is to include thév(x¢,y¢)-term, which can be considered
as the second most important term &, (

Tia2(Xt | X(t41)m, 0,Y) O ma(Xe | X (t41)m, ©,Y) exp(*ht(xt,yt)) (8)

Eq. 8) can be well approximated using log-quadratic splines; compute the logarithm of the 8pfoof (
x¢ in some evaluation poin{.}, and interpolate using piecewise quadratic polynomials. This spline is
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A3)

easily integrated and can be sampled exactly from by use of the real and complex complementary error-
function. We choose the evaluation poifits} in the following manner; lefi; be the conditional mean
ando? the conditional variance in the GMRF approximation, then chgogeas the sefji; £ ko,

for some fixed factof and number of knotk. Beyondyi; + Kfoy, we extrapolate log-linearly in order

to ensure infinite support and not too light tails.

We can show thatt(x|y, 0)/7t(x|y, 0) is bounded, if the likelihoodt(y|x) is bounded inx for fixed

y, and we replac&? with min{G%,S?} whereS? is a fixed but finite constant. This is the case for all
our examples in Sectiohand is needed for geometrically ergodicity of the Metropolised independence
sampler.

The improved approximatior8) can be a significant improvement to the GMRF approximation. As-
sumeQ = kP, for a scalak. As k — 0, the likelihood dominates inlj and the GMRF approximation
can be quite poor. (This is illustrated in Figu2en Section4.2) The error of the approximatiorB)
depends almost only on how accurate the log-spline representation is.

In all further improvements td8jj, we include the integral term irbY which may be written as

E[exp(—fhj(xj,yj)ﬂ, 9
=1

where the expectation is witg (x1.(t—1) [ Xtn, ©,Y). We need estimates o8)as a function ok, but
only for x; € {x¢}, ie. in the2K + 1 points the log-spline approximation is based on.7gx|0,y) is

a GMRF, we expect neighbouring sites to be most correlated. Hence, as a functignnvef expect
important terms ing) to be thosé’s that are neighbours tosmaller thart, or have a common neighbour
and so on. Lef (t) be the set of sites which we want to include in our approximatiof)td/f/e estimate
this approximation using the average computed flehsamples fromrg(xq.¢—1) [ Xtn, ©,y). Our
estimate of Q) is up to a multiplicative constant,

M
1M > exp(— Y mixi). (10)
i=1 )

jeg(t

Here,x}, is thej’th component of the'th sample fromrtg, which is obtained by successively usirg) (
from timet until ming 7(t). If (1) is not unimodal, the estimat&@ will be less accurate.

The computation ofX0) is potentially quite costly and must therefore be done carefullyl(tj are
those neighbours tbsmaller thart, we needO(/n) evaluations ofZ), each containing(\/n) terms

in the sum. Repeating afl nodes require®)(2KMn?) operations. This is the same order as factorising
Q. Two adjustments reduce this cost@Mn?). First, note that the conditional meandg, is linear

in x¢ and the conditional covariance does not dependorsecondly, use the same stream of random
numbers to makelQ) continuous writc¢. The estimation ofX0) is then done as follows. Compute the
conditional mean foj € 7(t) using @) for two values ofx¢. The conditional mean for all other values
of x¢ is a linear combination of these two. Sampleindependent samples with zero mean, then and
add the conditional mean, dependingxanto it.

Additionally, we make use of antithetic ideas which provide three extra samples (for each fef our
samples) for free@urbin and Koopmanl997); Let v be a sample from a zero mean Gaussian vector,
u a sample from uniforifd, 1), f; the u-quantile in ay,-distribution andf;, the 1 —u quantile, then
+f1v/vVvTv and+f,v/vvTv have the correct distribution.

An improvement to 10) is to useA2 as the sampling distribution instead @§. This require some
obvious changes ir9f and (L0) and cost)(2KMn?) operations. We do not discuss this option further.

The approximation®) is indexed by the sequence of random numbers use)ngnd by keeping this
sequence fixed we can produce several samples from the same approximation.
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We have implemented the algorithm dnas a part of the open sourGeRFLib-library (Rue and Follestad
2002, which is available from the first author's homepage. The algorithm is written for general graphs and
great effort was made to make the algorithm run efficiently.

4 Examples

We now demonstrate our new approximations on three spatial models with different likelihoods, showing
how to do joint updating and construct Metropolised independence samplers for such models. The first is
motivated from a Bayesian model for mapping of dise&ssag et a).1991; Molli & 1996, while the other

two are model-based geostatistical mod&ggle et al, 1998. In the last example an additional feature is
introduced to construct approximations.

4.1 Bayesian mapping of disease

A spatial region (land or part of it) is divided into contiguous areas labelléd=1,...,n. In each area we
observey;i; the number of deaths from the disease of interest during the study period. When the disease is non-
contagious and rare, we assume that the deaths in each area are mutually independent and Poisson distributed
with meane; exp(xi). Here,e; is the known “expected” counts assuming constant risk for all areas;;ahd
log-relative risk. To estimate, we borrow strength from spatial neighbouring areas and assuming an intrinsic
GMRF model forx, defining area to be a neighbour df, 1 ~ j, if they share a border. The full posterior reads

mx, k| y) Ok 2exp| =2 3 (xi—x;) = }_(esexpixi) —yoxi) | 7lx) (12)

i~j i
wherek is the precision of the GMRF prior, with priat{ k). The full conditional ofx is on the form {), with
Qi = —«if i~j, Qi is k times the number of neighbourspfandg;(xi,yi) = eiexp(xi) —yixi.

The model known as the BYM-moddBésag et a).1991]) also include an additional unstructured heterogene-
ity term in the log-relative risk. This term should always be included.it) (vhen applied to data. We ignore

it here only for the purpose of avoiding unnecessary complications illustrating our approximations. We will il-
lustrate our approximations on some data on oral cavity cancer mortality for males in Gelf&éw { 990),
analysed bnorr-Held and Ral3g2000 and shown in Figuré.

4.2 Approximating m(x|k,y)

We will now demonstrate how various improved approximations compare to the GMRF approximation when
k is fixed. We construct various approximations for= 0.1,1 and10. These choices correspond to very
small, small and reasonable valuesofvhich will become apparent in Sectidi3. For each of these values

of k, we construct four different approximations#éx|k,y): Al is the GMRF approximationA2 the one
including only the likelihood term%), A3a the one including alsalQ) with 7(t) as the neighbours to node

less thart, usingM = 1, andA3b the same as3a) but with M = 100. ApproximationsA3a andA3b also

use extra antithetic variables for each sample, as described in S8@ide useK = 20 knots andf =6 in

the log-spline approximation.

The accuracy of the approximations is measured by the accept-rate using the approximation in a Metropolised
independence sampler for This is advocated bRobert and Caselli999 Section 6.4.1), but they also note

that the expected accept-rate does not give any upper bound pn(sii,y)/7t(x|«,y), which controls the
convergence of the algorithm.



Figure 1: The map of Germany with = 544 regions displaying the number of oral cavity cancer cases in
each region males in the perid@86 — 1990. The data hasst quantile?, median19, mean28 ad3rd quantile
33. The graph has average?, minimum1 and maximumi 1 neighbours.

Average accept-ratg k=0.1 | k=1 | k=10
ApproximationA1l 0.01 | 0.11 0.47
ApproximationA2 0.94 | 0.80 0.78
ApproximationA3a 0.96 | 0.87 0.86
ApproximationA3b 0.92 | 0.96 0.90

Table 1: The average accept-rate for four different approximations; The GMRFafid improved onesA2,
A3a andA3b).

Table 1 displays an estimate of the accept-rate for the four approximations averageti0oQeiterations.
For A3a and A3b, we use different random numbers to generate each of @@ approximations, hence
we average over that source of randomness as well. The results obtained are quite typicak i$\&raall,
7t(x|k,y) is dominated by the non-Gaussian likelihood, and the accept-rafel favill decrease for decreasing
k. This is illustrated in Figur@ which shows the joint posterior for =2,y = (1,0), e = (3,5), for k = 0.1
andk = 1.

The inclusion of the likelihood term i 2, raise the accept-rate froth01 to 0.94. For increasing, Al
becomes better, whild2 have a slight decrease in the accept-rate. This is due to the increase of the relative
influence of the GMRF prior. Approximatiof3a andA3b demonstrate further improvements, by accounting

for the spatial dependency in addition to the likelihood by includit@.(Increasing the number of samples

Figure 2: The contour-plot of(x|k,y) whenn =2,y = (1,0), e = (3,5), for k = 0.1 (left) andx =1 (right).
Increasingc makes the density closer to the Gaussian.



from 1 to 100 improves the approximations. However, the improvemerit3d andA3b overA2, is less than
how muchA2 improve overA1. The higher the accept-rate, the harder it seems to improve the approximation.
For increasing, the accept-rate for all approximations eventually tends to one.

The computational cost in this example o 200MHz laptop is0.06 seconds pr iteration fok 1, while A2,

A3a andA3b requirel0, 30 and1900 times this, respectively. Each iteration requires the construction of two
approximations and two optimisations. The computational efficiency obtainé®andA3a compared to

Al, is to us quite impressive.

Although this example is typical, it does not demonstrate the effect of the parameters controlling the approxi-
mation. Our experience is as follows. A higher number of kixogenerally improves the approximation and
most notably when the accept-rate is high. In most ca8dse 20 knots are sufficient. The inclusion of the
likelihood-term in @) can give a huge improvement compared to the GMRF approximation. Correcting us-
ing (10) generally helps, but is less important compared to the likelihood2 ifives too low accept-ratd ()

is required. ComputinglQ) can be expensive, as demonstrated in this example. We have good experience
using only one sampleMl = 1) in (10), and letting this be the conditional mean (computed under the GMRF
approximation) or mode. This correction usually gives a positive influence on the accept-rate while further
improvements require relative much more computing. We generally recommendfisjras the neighbours

of nodet less thart, but speed-up can be gainedift) = {t—1,t—2}, say, is sufficient to obtain a reasonable
accept-rate. The computational costign?) for the first choice, but only(n3/2) for the second one.

Itis our experience that parameters can be selected to fit the application in hand and tuned to near any required
accept-rate. The cost however, can be relatively high if we require an accept-rate closghite cheap
approximations can produce a reasonable accept-rate and can give significant improvements compared to the
GMRF approximation.

4.3 Approximating 7t(x, k|y)

This section demonstrate how our approximations(®/x,y) can be used to construct a Metropolised in-
dependence sampler farandk, jointly. We do this by constructing an approximation7ttx|y), and then
combine it with7t(x|k,y). We start by stating the seemingly obvious,

mi(x,k|yY)

o lKy)’ (12)

n(k|y) =
which is valid for anyx such that the denominator is non-zero, see &eeag(1989. The implication
of (12) is that we can replace integration owein 7t(x, k | y) with conditioning. The commonly used Laplace
approximation for integrationlferney et al. 1989, is the same as constructing a Gaussian approximation to
the denominator in our case. L@tx|k,y,x™(k)) be an approximation ta(x|k,y) around the mode™ (k).
A natural candidate for an approximationztéx | y), is

m(k)m(x|k)7t(ylx)
x|k, y,xM(x))

7k |y) O

(13)

x=x"(k)

An important ingredient in3) is thex-dependent computable normalisation constant in the denominator. The
rhsis evaluated ir™, the point we think gives the most accurate result, followiregney et al(1989. We fix

the random numbers used in the approximation to make the denominator continuausAnvtetropolised
independence sampler can now be constructed, by samplfrgm a log-quadratic spline approximation

to (13) and then sampling from 7t(x|x,y,x™(k)).

Figure 3 shows the estimated posterior marginal kofor a I'(0.0001,0.0001)-prior using three of the four
approximations in Sectioh.2 The three approximations for the marginal appear as one curve. This contrasts
the accept-rate in Tablg which vary withk and which approximation is used. The interpretation is that
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Figure 3: The estimated posterior marginal densitypcomputed usingl@) andA1, A2 andA3a. The
three estimates nearly coincide.

the denominator in13) have about the same functional form wf(evaluated inx™(k)) for the different
approximations. The constant of proportionality of this function will cancel when normaliB)g (

A Metropolised independence sampler usiky, A2 and A3a, gave an accept-rate 6f43, 0.82 and0.86
averaged ovel 000 iterations, respectively. The auto-correlation faait lagk > 0 is approximately( 1 — x)*

wherex is the average accept-rate. Hence, the sampler seems to converge quite fast for all three approxima-
tions.

The delayed rejection algorithnM{ra, 2001) could also have been used here, usfnigto sample the first
proposal, and then us®2, say, if the first proposal is rejected. There is no extra cost involved as the GMRF
approximation is needed in any case.

To get more insight into the convergence of the Metropolised independence sampler in this example, we will
use the empirical supremum rejection sampler as introducedaffp et al.(2009. Their algorithm is the
standard rejection sampler, but where the supremunixfk|y)/7t(x, k|y) is replaced with the largest value
observed so far. Lat,, denote this quantity aften trials. They study the convergence rat€gf asm — oo,

and based on this argue that we can treat the output of this algorithm as random samples from the target when
the samples are used to estimate expectations wrt to it. We applied their algorithm, and edfirtatsel

25.0, 1.47 and 1.39 for the joint approximation based ohl, A2 and A3a, after 1000 iterations. We also

ran the one based oh3a for a very long time, with virtually no change in the estimatédAlthough these
estimates are surely somewhat optimistic, they give anyway an estimate of the accuracy of the approximations
in the most important areas and the ability to produce exact samples in these areas. The behaviour of the
approximations in areas with low probability are always more questionable. If we believe in the estimated
C’s, we can sample exactly from the joint posterior using rejection sampling.

The convergence of the Metropolised independence sampler in total variation norm, is bounded by
1/C)#iterations (\engersen and Tweedi@99§. Comparing this bound with our estimated valuesCofwe

note that Approximation 2 is about 3 times more efficient compared to the GMRF one, taking the computation
cost into account.

4.4 Model-based Geostatistics

Diggle et al.(1999 discuss Bayesian models which combine traditional geostatistical methods with those of
generalised linear models. The common setting is a spatial Gaussian field with some unknown paéameters
(mean, precision and correlation-length) which is observed at some locations with a non-Gaussian likelihood.
The goal is to estimate and estimate the Gaussian field.



Figure 4: The outline of the campylobacter, salmonella and cryptosporidia infections data in north Lan-
caster Diggle et al, 1998. Each point is the location (given as post-codes) of the enteric outbreak.

4.4.1 Binomial likelihood

Consider the following example taken frobiggle et al.(1999. Figure4 shows the position of reported
outbreaks of campylobacter, salmonellae and cryptosporidia in north Lancaster (UK) between April and De-
cember 1994. Two or more persons can obtain the disease from the same source, and infections reported at the
same location in a five-day period is considered as the same outbreak. The data consists of 399 outbreaks in
236 different locations where 234 of them are campylobacter. The problem considered is to estimate a spatial
latent surface measuring the risk that an outbreak is campylobacter. The data comes in(tiplets:),
i=1,...,236 wherel, is the locationn; the number of enteric infections amg the number of them being
campylobacter. The probability of an enteric outbreak at posltiam the binomial likelihoodpy,, is linked

to the spatial field by logipy, ) = x,.

Diggle et al.(1998 analysed this model using single-site MCMC algorithms. There are reasons to believe
that such an approach encounters severe problems in mixing be@naethx, at least for cases with more

data. Although the number of lattice points)(covering the region of interest is large, the number of data is
small. We will now demonstrate how our approximations can be used to construct a joint approximation for
the spatial field and its hyperparameters following the approach in Settioihis joint approximation can

then be applied as a Metropolised independence sampler or used in an empirical supremum rejection sampler
to estimate expectations.

We follow Diggle et al.(1998 and use for the isotropic spatial Gaussian field, an exponential correlation
function with unknown precisiort, ranger (in pixels) and common mean. Our modification is to use
GMRF proxies for the Gaussian field on a fid@ x 100 lattice covering the region of interest, introduced

by Rue and Tjelmelan@002. Hence, we use a GMRE, with a5 x 5 neighbourhood and coefficients as
computed by their method, for a finite set of ranges with step.@f. This reduces the computational cost

with a factorn, when predictions for non-observed locations as well as parameter estimalesérequired.

If only © are of interest, we may use only the set of sites where we have observed data, but this option is not
considered here.

Figure5 shows the scaled marginal likelihood fdog(t),r) € [—2,7] x [0,50] wherepn = 0.35, the empirical

mean from the data. Here, we usekB)(with an obvious correction and2 as described in Sectioh 1

Using A1 gave similar results. Each evaluation in the grid of sele¢teg(t),r) values, required abod0
seconds of computing. The marginal likelihood is quite flat in a huge region demonstrating a small content of
information in the data regardini¢pgT, ). We could have included in our “x” by giving it a Gaussian prior

at essentially no extra codR(e 2001, Appendix), but our implementation does not support this option at the
time of the writing.

Based on the marginal likelihood in Figube we can construct a log-spline approximation to the marginal
density of6 and then construct a Metropolised independence sampler as in Skdtibtere, using a triangu-
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Figure 5. The marginal likelihood oflog(t),r) € [—2,7] x [0,50] for fixed u = 0.35 for the example in
Sectiord.4. The plot is scaled to have maximum value equal one.

larisation of the area of interest and log-linear splines within each triangle, is perhaps the simplest choice. We
easily get an accept-rate exceedddgo all depending on how well we tune the approximation. An alternative,

is to do a joint (log-)random-walk proposal on the hyperparameters, and conditionally on these values sample
the spatial fieldiKnorr-Held and Rug2003).

We also investigate the case where similar data to the observed ones, is added to all pixel®0n<théo

lattice. There are no problems constructing approximations for the spatial-field with accept-raté@¥ove

It requires about one minute to construct the GMRF approximation and slightly more for improved ones. As
long as the likelihood is reasonably close to a Gaussian, good enough approximations seem easy to construct.

4.4.2 Double exponential likelihood

A more serious challenge is motivated from one of the examplBsyiden et al(2002, where the likelihood
is double exponential, ie
7i(yi | %) Oexpl— [ xi—yil). (14)

This makes 1) strongly non-Gaussian. We note in passing, that the marginal likelihoa ¢domputed with
our approximations is an alternative to the asymptotic motivated approximations studiydign et al.
(2002.

We sample a true spatial field orba x 50 lattice with exponential correction function with range one third

of the horizontal length of the lattice, unit precision and zero mean. We then add independent noise according
to (14). Only the spatial field is treated as unknown in this example. The parameters selected, balance the
likelihood and the prior and makes the construction of good approximations harder.

Two practical problems arise due to the likelihodd); The second derivative of the log-likelihood is zero
hence locating the mode is hard(er). For the same reason, the GMRF approximation constructed using Taylor-
expansion is quite poor. Both these problems are solved using the approximation Rea(@001); the
Taylor-expansion is replaced by a quadric expansion fitting the log-likelihood more accurately over a larger
range arounat™, say in a range-2 of x{" for all 1.

Figure6 shows the true field in (a) and the data in (b). We use the same parametefs3asint withM =10
samples. Increasiniyl was needed to get a reasonable accept-rate of a0étit where the spatial field

11
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Figure 6: Image (a) shows the true spatial field, (b) the observed data, (c) a sample from the Metropolised
independence sampler, and (d) two examples of the ratio of the estimated conditiG)ahd the conditional
density using the Gaussian approximation, for the centre pixel in the image. In (d) the horizontal axis is
standardised with the conditional mean and standard deviation of the Gaussian approximation.
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was sampled using a Metropolised independence sampler, at the dGissetonds/iteration. Figuré(c)

shows a sample from the Metropolised independence sampler. B3imgave essentially zero accept-rate.

The reason is displayed in (d), showing two examples of the ratio of the estimated conditioBabamd(

the conditional density using the Gaussian approximation, for the centre pixel in the image. The horizontal
axis is standardised with the conditional mean and standard deviation of the Gaussian approximation. The
conditional density is skewed and the mode is slightly shifted. It is obviousAhatannot be sufficiently
accurate in this case.

We now increase the lattice 00 x 100. Quite accurate approximations is needed for the Metropolised
independence sampler to produce an accept-rate above zero. About 8 minutes of computing for each iteration
is needed to produce an accept-rate of aBoUb. However, it is encouraging that computing seems to be the
practical limit, not our approach to construct approximations.

5 Discussion

In this paper we have presented an approach to construct approximations to a unimodal hidden Gaussian
Markov Random field (HGMRF) on general graphs, which can be sampled exactly from and have computable
normalisation constants. The examples have demonstrated how to construct joint updates and Metropolised
independence samplers for spatial models. Such sampling schemes are major improvements compared to the
single-site schemes commonly used. Our approach can also be applied when the precision matrix is full, but
the computational cost is thei(n?).

Another interesting case is GMRF models in time. Here, the cost is@fly. As our method and computer

code are valid also in this case, we have experimented also with such models with various kinds of observation
models. Good approximations are much easier to construct compared to spatial ones. For GMRF models in
time, or dynamic models in general, there exists an extensive literature on sequential Monte Carlo methods,
seeDoucet et al(200]) for an overview. These methods can also be used to construct Metropolised inde-
pendence samplers (although Gaussian approximations are often usBdyls@eand Koopmari2000 and
Shephard and Pi(1997), and to analyse non-dynamic modeGhppin 2002, but the dynamic nature of

these models makes it more natural to focus on filtering and prediction. Our approach have some similarities
with these methods, but we do not rely on the forward-filtering backward-sampling recursions that are inher-
ent in sequential Monte Carlo. This recursion requires densities of dimebgida be approximated. This

is hard forb,,, > 3, say, but our approach works fine even gy = O(,/n) and also for HGMRF models in
general where there is no natural time-ordering of the GMRF, as is the case for spatial GMRF models.
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