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Abstract

This paper discusses how to construct approximations to a unimodal hidden Gaussian Markov random
field on a graph of dimensionn when the likelihood consists of mutually independent data. We demonstrate
that a class of non-Gaussian approximations can be constructed for a wide range of likelihood models.
They have the appealing properties that exact samples can be drawn from them, the normalisation constant
is computable, and the computational complexity is onlyO(n2) in the spatial case. The non-Gaussian
approximations are refined versions of a Gaussian approximation. The latter serves well if the likelihood
is near-Gaussian, but it is not sufficiently accurate when the likelihood is not near-Gaussian or ifn is large.
The accuracy of our approximations can be tuned by intuitive parameters to near any precision.

We apply our approximations in spatial disease mapping and model-based geostatistics models with
different likelihoods. We also present procedures for block-updating and construction of Metropolised
independence samplers for such models. These sampling schemes are major improvements compared to
the single-site schemes commonly used.
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1 Introduction

Gaussian Markov Random fields (GMRF), or conditional autoregressions, is finite Gaussian fields, where the
field has a Markov property; the conditional density for one component given the rest, depends only on its
neighbours (Cressie, 1993; Besag and Kooperberg, 1995). In this paper we will focus on spatial GMRFs, al-
though our results also apply to GMRF on general graphs. GMRFs have the convenient property that general
fast algorithms based on sparse numerical algebra exist (Rue, 2001). This makes fast sampling and computa-
tion of the normalisation constant possible. An important application is the case when the GMRF is observed
indirectly through additive Gaussian noise. The conditional density for the hidden GMRF (HGMRF) is still a
GMRF, and the same algorithms apply. Conditioning on the observations can also be extended to condition-
ing on other parameters in the model, as GMRFs are often used as building blocks in spatial models, see for
exampleHeikkinen and Arjas(1998), Wikle et al.(1998), Besag and Higdon(1999) andFerńandez and Green
(2002).

A Gaussian likelihood is not a requirement for doing inference, since this also can be done using MCMC-
methods (Robert and Casella, 1999). Single-site MCMC-algorithms often mix quite slowly in such problems
due to the strong interaction within the HGMRF, and in particular between the HGMRF and (some of ) its
(hyper-)parameters (Knorr-Held and Rue, 2002; Gamerman et al., 2003). MCMC-algorithms performing
block-updating on the HGMRF, or better, the HGMRF and its hyper-parameters jointly, may have much better
convergence compared to single-site algorithms (Carter and Kohn, 1994; Gamerman, 1998; Knorr-Held and
Rue, 2002). Regarding block-updates, it is required that the HGMRF, or an approximation to it, can be
sampled exactly. For joint updates, we also need to know the normalisation constant as this is required in
the acceptance probability in the MCMC-algorithm. In practise, it is quite hard to draw samples from the
HGMRF or construct approximations to it. The only known candidate that we are aware of in the spatial case,
is a GMRF approximation (Knorr-Held, 1999; Knorr-Held and Rue, 2002; Rue and Tjelmeland, 2002). This
is however not always accurate enough, as it may produce near zero acceptance-rate in MCMC-algorithms
when the likelihood is not near-Gaussian or the dimensionn is large.

This paper demonstrate how to construct a class of non-Gaussian approximations to a unimodal HGMRF that
have the important properties that they can be drawn from and have computable normalisation constants. The
approximations are all based on a GMRF approximation. The algorithm for constructing such approximations
is fast and of same order as sampling from a GMRF, seeRue(2001). Another advantage is that the same
computer code for constructing our approximations can be applied to GMRF-models on general graphs, like
models in time or space-time. The computational cost is (most often)O(n) in time andO(n2) in space.

The outline of the paper is as follows. In Section2 we present some background for the problem considered,
and in Section3 our class of approximations is introduced with discussion of some computational issues. In
Section4, we discuss how to do block-updating and construct Metropolised independence samplers for some
models relevant for applications in spatial disease mapping and model-based geostatistics. We conclude with
a discussion in Section5.

2 Background

Let G be a graph withn nodes, where for example a node denotes a spatial region, a pixel in a lattice or a
tile in a tessellation. Two nodesi, j are defined as neighbours,i ∼ j, if they share a common edge or pixeli is
close to pixelj. Let x denote a zero mean Gaussian Markov Random Field (GMRF) onG , meaning that its
n×n precision matrix (inverse covariance)Q, has the property thatQij 6= 0 iff i ∼ j or i = j. The Markov
properties ofx is given byG asxi andxj are conditionally independent given the rest iffi 6∼ j. The precision
matrix often depends on further parametersθ, which we denote byQ(θ). Definexi:j as(xi,xi+1, . . . ,xj)

T .

A HGMRF is a GMRF observed through datay. We assume throughout that the likelihood is such thatyi
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only depends onxi andy are mutually independent givenx, so

π(y | x) =
∏

i

π(yi | xi).

We assume further thatπ(yi | xi) as a function ofxi, is strictly positive and absolutely continuous wrt the
Lebesgue measure, such that the posterior density for the HGMRF is

π(x|θ,y) ∝ exp

(
−

1

2
xTQ(θ)x−

∑
i

gi(xi,yi)

)
, (1)

for some functionsgi(xi,yi). In Section3 we show how to construct approximations to (1) when the it is
unimodal. If not, our approximations may still be good if the different modes are close or one of the modes is
dominant in terms of probability mass. Otherwise, our approximations are less accurate. A sufficient criteria
for (1) to be unimodal, is that−gi(xi,yi) as a function ofxi, is concave for alli.

3 Approximations to a HGMRF

3.1 A GMRF Approximation

Before discussing approximations, we make some assumptions. Note thatQ is a sparse matrix; if each site has
a fixed number of neighbours, there are onlyO(n) non-zero terms inQ. We assume there exists a permutation
of the indices, such thatQ is a band-matrix with a small bandwidthbw, and thatx is indexed according to this
permutation. The motivation for such a permutation, algorithms and further details and motivation, are given
in Rue(2001). In the spatial casebw = O(

√
n), and computation of the Cholesky factorisationQ = LLT can

then be computed using onlyO(nb2
w) = O(n2) operations compared toO(n3) in the general case. Note that

L is a lower triangular matrix with the same bandwidth asQ.

A zero mean GMRFx with precisionQ can be sampled by samplingz ∼ N (0,I), and then solveLTx = z

(Rue, 2001). If the mean ofx is non-zero, we need to add the mean tox. For those cases where the mean is
given implicit byQµ = b, we solveLu = b, LTµ = u. The normalisation constant is available fromL, since
log|Q| = 2

∑
i log(Lii).

We want to find an approximation toπ(x|θ,y) in (1). The natural candidate is a GMRF, which can be
constructed in the following way. First find the modexm = xm(θ,y) in (1). We assume thatxm = 0, as it
simplifies the notation later on. Replacegi(xi,yi) by the Taylor expansion in the mode,ai + cix

2
i /2. Our

GMRF approximationπG(x|θ,y) has precision matrixQG = Q+diag(c) and the modexm as mean. Note
thatQG has bandwidthbw, the same asQ. Let LG be the Cholesky factorisation ofQG.

The GMRF approximationπG, can be computed fast, sampled exactly from and the normalisation is known
and computable. The approximation does however have a major drawback; we cannot tune the accuracy.

SinceLG is a lower triangular matrix with bandwidthbw, a sequential representation ofπG is also directly
available by

πG(x | θ,y) =

1∏
t=n

πG(xt | x(t+1):n,θ,y),

where

πG(xt | x(t+1):n,θ,y) = N

xt; −
1

LG,tt

min{t+bw,n}∑
j=t+1

LG,tjxj,
1

L2
G,tt

 , (2)

and N (xt;µ,σ2) is the Gaussian density. This is a non-homogeneous autoregressive process of orderbw

defined backward in time. This representation will prove useful in the next section.
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3.2 Improved Approximations

When constructing improved approximations based onπG, note that (1) can be written in the following two
ways:

π(x | θ,y) =

n∏
t=1

π(xt | x(t+1):n,θ,y) (3)

∝
n∏

t=1

πG(xt | x(t+1):n,θ,y)exp(−ht(xt,yt)) (4)

whereπG is defined in (2), and
ht(xt,yt) = gt(xt,yt)−ctx

2
t/2.

Each of the terms in the sequential representation (3) can be represented by means of (4) as

π(xt | x(t+1):n,θ,y) ∝ πG(xt | x(t+1):n,θ,y)exp(−ht(xt,yt))

×
∫

πG(x1:(t−1) | xt:n,θ,y)exp

−

t−1∑
j=1

hj(xj,yj)

dx1:(t−1), (5)

where all the conditional densities ofπG can easily be derived from (2). This representation has the important
property that the mode of the integrand is reasonably close to the mode ofπG(x1:(t−1) | xt:n,θ,y), since (1)
is assumed to be unimodal. In the sequel this enables us to produce accurate, sample-based approximations to
the integral as a function ofxt.

If we neglect the dependency ofy in πG and the possible non-boundedness of−hi(xi,yi), the rhs of (4) can
be interpreted as the posterior ofx with a GMRF priorπG(x) and mutually independent observationsyi with
log-likelihood−hi(xi,yi). These log-likelihood terms are neglected in the GMRF approximationπG. Our
improved approximations rectify this approximation error.

Our approach is to construct univariate approximations to (5), denoted bỹπ(xt | x(t+1):n,θ,y), and join them
together into an approximation toπ(x | θ,y) based on (3):

π̃(x | θ,y) =

n∏
t=1

π̃(xt | x(t+1):n,θ,y). (6)

Note that (6) can be sampled sequentially backward in time, and its normalising constant is the product ofn

univariate normalising constants. We will now discuss how to construct these univariate approximations, by
removing what can be considered as less important terms in the rhs of (5).

A1) The crudest approximation is to neglect both theht(xt,yt)-term and the integral-term in (5),

π̃A1(xt | x(t+1):n,θ,y) = πG(xt | x(t+1):n,θ,y). (7)

This gives the GMRF approximation in Section3.1.

A2) A simple, but significant improvement to (7) is to include theht(xt,yt)-term, which can be considered
as the second most important term in (5),

π̃A2(xt | x(t+1):n,θ,y) ∝ πG(xt | x(t+1):n,θ,y) exp
(

−ht(xt,yt)
)
. (8)

Eq. (8) can be well approximated using log-quadratic splines; compute the logarithm of the rhs of (8) for
xt in some evaluation points{x̌t}, and interpolate using piecewise quadratic polynomials. This spline is
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easily integrated and can be sampled exactly from by use of the real and complex complementary error-
function. We choose the evaluation points{x̌t} in the following manner; let̃µt be the conditional mean
andσ̃2

t the conditional variance in the GMRF approximation, then choose{x̌t} as the set{µ̃t±kfσ̃t}
K
k=0

for some fixed factorf and number of knotsK. Beyondµ̃t±Kfσ̃t, we extrapolate log-linearly in order
to ensure infinite support and not too light tails.

We can show thatπ(x|y,θ)/π̃(x|y,θ) is bounded, if the likelihoodπ(y|x) is bounded inx for fixed
y, and we replacẽσ2

t with min{σ̃2
t ,S

2} whereS2 is a fixed but finite constant. This is the case for all
our examples in Section4 and is needed for geometrically ergodicity of the Metropolised independence
sampler.

The improved approximation (8) can be a significant improvement to the GMRF approximation. As-
sumeQ = κP, for a scalarκ. As κ → 0, the likelihood dominates in (1) and the GMRF approximation
can be quite poor. (This is illustrated in Figure2 in Section4.2.) The error of the approximation (8)
depends almost only on how accurate the log-spline representation is.

A3) In all further improvements to (8), we include the integral term in (5) which may be written as

E
[

exp
(

−

t−1∑
j=1

hj(xj,yj)
)]

, (9)

where the expectation is wrtπG(x1:(t−1) | xt:n,θ,y). We need estimates of (9) as a function ofxt, but
only for xt ∈ {x̌t}, ie. in the2K+ 1 points the log-spline approximation is based on. AsπG(x|θ,y) is
a GMRF, we expect neighbouring sites to be most correlated. Hence, as a function ofxt, we expect
important terms in (9) to be thosej’s that are neighbours tot smaller thant, or have a common neighbour
and so on. LetJ (t) be the set of sites which we want to include in our approximation to (9). We estimate
this approximation using the average computed fromM samples fromπG(x1:(t−1) | xt:n,θ,y). Our
estimate of (9) is up to a multiplicative constant,

1

M

M∑
i=1

exp
(

−
∑

j∈J (t))

hj(x
i
j,yj)

)
. (10)

Here,xi
j, is thej’th component of thei’th sample fromπG, which is obtained by successively using (2)

from timet until mint J (t). If (1) is not unimodal, the estimate (10) will be less accurate.

The computation of (10) is potentially quite costly and must therefore be done carefully. IfJ (t) are
those neighbours tot smaller thant, we needO(

√
n) evaluations of (2), each containingO(

√
n) terms

in the sum. Repeating alln nodes requiresO(2KMn2) operations. This is the same order as factorising
QG. Two adjustments reduce this cost toO(Mn2). First, note that the conditional mean inπG is linear
in xt and the conditional covariance does not depend onxt. Secondly, use the same stream of random
numbers to make (10) continuous wrtxt. The estimation of (10) is then done as follows. Compute the
conditional mean forj ∈ J (t) using (2) for two values ofxt. The conditional mean for all other values
of xt is a linear combination of these two. SampleM independent samples with zero mean, then and
add the conditional mean, depending onxt, to it.

Additionally, we make use of antithetic ideas which provide three extra samples (for each of ourM

samples) for free (Durbin and Koopman, 1997); Let v be a sample from a zero mean Gaussian vector,
u a sample from uniform(0,1), f1 theu-quantile in aχn-distribution andf2 the 1−u quantile, then
±f1v/

√
vTv and±f2v/

√
vTv have the correct distribution.

An improvement to (10) is to useA2 as the sampling distribution instead ofπG. This require some
obvious changes in (9) and (10) and costsO(2KMn2) operations. We do not discuss this option further.

The approximation (6) is indexed by the sequence of random numbers used in (10), and by keeping this
sequence fixed we can produce several samples from the same approximation.
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We have implemented the algorithm inC as a part of the open sourceGMRFLib-library (Rue and Follestad,
2002), which is available from the first author’s homepage. The algorithm is written for general graphs and
great effort was made to make the algorithm run efficiently.

4 Examples

We now demonstrate our new approximations on three spatial models with different likelihoods, showing
how to do joint updating and construct Metropolised independence samplers for such models. The first is
motivated from a Bayesian model for mapping of disease (Besag et al., 1991; Molli é, 1996), while the other
two are model-based geostatistical models (Diggle et al., 1998). In the last example an additional feature is
introduced to construct approximations.

4.1 Bayesian mapping of disease

A spatial region (land or part of it) is divided inton contiguous areas labelledi = 1, . . . ,n. In each area we
observeyi; the number of deaths from the disease of interest during the study period. When the disease is non-
contagious and rare, we assume that the deaths in each area are mutually independent and Poisson distributed
with meanei exp(xi). Here,ei is the known “expected” counts assuming constant risk for all areas, andxi the
log-relative risk. To estimatex, we borrow strength from spatial neighbouring areas and assuming an intrinsic
GMRF model forx, defining areai to be a neighbour ofj, i ∼ j, if they share a border. The full posterior reads

π(x,κ | y) ∝ κ(n−1)/2 exp

−
κ

2

∑
i∼j

(xi −xj)
2 −

∑
i

(ei exp(xi)−yixi)

 π(κ) (11)

whereκ is the precision of the GMRF prior, with priorπ(κ). The full conditional ofx is on the form (1), with
Qij = −κ if i ∼ j, Qii is κ times the number of neighbours ofi, andgi(xi,yi) = ei exp(xi)−yixi.

The model known as the BYM-model (Besag et al., 1991) also include an additional unstructured heterogene-
ity term in the log-relative risk. This term should always be included in (11) when applied to data. We ignore
it here only for the purpose of avoiding unnecessary complications illustrating our approximations. We will il-
lustrate our approximations on some data on oral cavity cancer mortality for males in Germany (1986−1990),
analysed byKnorr-Held and Raßer(2000) and shown in Figure1.

4.2 Approximating π(x|κ,y)

We will now demonstrate how various improved approximations compare to the GMRF approximation when
κ is fixed. We construct various approximations forκ = 0.1,1 and10. These choices correspond to very
small, small and reasonable values ofκ, which will become apparent in Section4.3. For each of these values
of κ, we construct four different approximations toπ(x|κ,y): A1 is the GMRF approximation,A2 the one
including only the likelihood term (5), A3a the one including also (10) with J (t) as the neighbours to nodet
less thant, usingM = 1, andA3b the same asA3a) but withM = 100. ApproximationsA3a andA3b also
use extra antithetic variables for each sample, as described in Section3.2. We useK = 20 knots andf = 6 in
the log-spline approximation.

The accuracy of the approximations is measured by the accept-rate using the approximation in a Metropolised
independence sampler forx. This is advocated byRobert and Casella(1999, Section 6.4.1), but they also note
that the expected accept-rate does not give any upper bound on supx π(x|κ,y)/π̃(x|κ,y), which controls the
convergence of the algorithm.
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Figure 1: The map of Germany withn = 544 regions displaying the number of oral cavity cancer cases in
each region males in the period1986−1990. The data has1st quantile9, median19, mean28 ad3rd quantile
33. The graph has average5.2, minimum1 and maximum11 neighbours.

Average accept-rate κ = 0.1 κ = 1 κ = 10

ApproximationA1 0.01 0.11 0.47

ApproximationA2 0.94 0.80 0.78

ApproximationA3a 0.96 0.87 0.86

ApproximationA3b 0.99 0.96 0.90

Table 1: The average accept-rate for four different approximations; The GMRF (A1) and improved ones (A2,
A3a andA3b).

Table1 displays an estimate of the accept-rate for the four approximations averaged over1000 iterations.
For A3a andA3b, we use different random numbers to generate each of the1000 approximations, hence
we average over that source of randomness as well. The results obtained are quite typical. Whenκ is small,
π(x|κ,y) is dominated by the non-Gaussian likelihood, and the accept-rate forA1 will decrease for decreasing
κ. This is illustrated in Figure2 which shows the joint posterior forn = 2, y = (1,0), e = (3,5), for κ = 0.1

andκ = 1.

The inclusion of the likelihood term inA2, raise the accept-rate from0.01 to 0.94. For increasingκ, A1

becomes better, whileA2 have a slight decrease in the accept-rate. This is due to the increase of the relative
influence of the GMRF prior. ApproximationA3a andA3b demonstrate further improvements, by accounting
for the spatial dependency in addition to the likelihood by including (10). Increasing the number of samples

−2 −1 0 1
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−
2

0
2
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−
8

−
6

−
4

−
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0
2

Figure 2: The contour-plot ofπ(x|κ,y) whenn = 2, y = (1,0), e = (3,5), for κ = 0.1 (left) andκ = 1 (right).
Increasingκ makes the density closer to the Gaussian.
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from 1 to 100 improves the approximations. However, the improvement ofA3a andA3b overA2, is less than
how muchA2 improve overA1. The higher the accept-rate, the harder it seems to improve the approximation.
For increasingκ, the accept-rate for all approximations eventually tends to one.

The computational cost in this example on a1200MHz laptop is0.06 seconds pr iteration forA1, while A2,
A3a andA3b require10, 30 and1900 times this, respectively. Each iteration requires the construction of two
approximations and two optimisations. The computational efficiency obtained byA2 andA3a compared to
A1, is to us quite impressive.

Although this example is typical, it does not demonstrate the effect of the parameters controlling the approxi-
mation. Our experience is as follows. A higher number of knotsK generally improves the approximation and
most notably when the accept-rate is high. In most cases10 to 20 knots are sufficient. The inclusion of the
likelihood-term in (8) can give a huge improvement compared to the GMRF approximation. Correcting us-
ing (10) generally helps, but is less important compared to the likelihood. IfA2 gives too low accept-rate (10)
is required. Computing (10) can be expensive, as demonstrated in this example. We have good experience
using only one sample (M = 1) in (10), and letting this be the conditional mean (computed under the GMRF
approximation) or mode. This correction usually gives a positive influence on the accept-rate while further
improvements require relative much more computing. We generally recommend usingJ (t) as the neighbours
of nodet less thant, but speed-up can be gained ifJ (t) = {t−1,t−2}, say, is sufficient to obtain a reasonable
accept-rate. The computational cost isO(n2) for the first choice, but onlyO(n3/2) for the second one.

It is our experience that parameters can be selected to fit the application in hand and tuned to near any required
accept-rate. The cost however, can be relatively high if we require an accept-rate close to1, while cheap
approximations can produce a reasonable accept-rate and can give significant improvements compared to the
GMRF approximation.

4.3 Approximating π(x,κ|y)

This section demonstrate how our approximations toπ(x|κ,y) can be used to construct a Metropolised in-
dependence sampler forx andκ, jointly. We do this by constructing an approximation toπ̃(κ|y), and then
combine it withπ̃(x|κ,y). We start by stating the seemingly obvious,

π(κ | y) =
π(x,κ | y)

π(x | κ,y)
, (12)

which is valid for anyx such that the denominator is non-zero, see alsoBesag(1989). The implication
of (12) is that we can replace integration overx in π(x,κ | y) with conditioning. The commonly used Laplace
approximation for integration (Tierney et al., 1989), is the same as constructing a Gaussian approximation to
the denominator in our case. Letπ̃(x|κ,y,xm(κ)) be an approximation toπ(x|κ,y) around the modexm(κ).
A natural candidate for an approximation toπ(κ | y), is

π̃(κ | y) ∝
π(κ)π(x|κ)π(y|x)

π̃(x|κ,y,xm(κ))

∣∣∣∣∣
x=xm(κ)

(13)

An important ingredient in (13) is theκ-dependent computable normalisation constant in the denominator. The
rhs is evaluated inxm, the point we think gives the most accurate result, followingTierney et al.(1989). We fix
the random numbers used in the approximation to make the denominator continuous wrtκ. A Metropolised
independence sampler can now be constructed, by samplingκ from a log-quadratic spline approximation
to (13) and then samplingx from π̃(x|κ,y,xm(κ)).

Figure3 shows the estimated posterior marginal forκ for a Γ(0.0001,0.0001)-prior using three of the four
approximations in Section4.2. The three approximations for the marginal appear as one curve. This contrasts
the accept-rate in Table1, which vary withκ and which approximation is used. The interpretation is that
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Figure 3: The estimated posterior marginal density forκ, computed using (13) andA1, A2 andA3a. The
three estimates nearly coincide.

the denominator in (13) have about the same functional form ofκ (evaluated inxm(κ)) for the different
approximations. The constant of proportionality of this function will cancel when normalising (13).

A Metropolised independence sampler usingA1, A2 andA3a, gave an accept-rate of0.43, 0.82 and0.86

averaged over1000 iterations, respectively. The auto-correlation forκ at lagk≥ 0 is approximately(1−α)k

whereα is the average accept-rate. Hence, the sampler seems to converge quite fast for all three approxima-
tions.

The delayed rejection algorithm (Mira, 2001) could also have been used here, usingA1 to sample the first
proposal, and then useA2, say, if the first proposal is rejected. There is no extra cost involved as the GMRF
approximation is needed in any case.

To get more insight into the convergence of the Metropolised independence sampler in this example, we will
use the empirical supremum rejection sampler as introduced byCaffo et al.(2002). Their algorithm is the
standard rejection sampler, but where the supremum ofπ(x,κ|y)/π̃(x,κ|y) is replaced with the largest value
observed so far. LetCm denote this quantity afterm trials. They study the convergence rate ofCm asm → ∞,
and based on this argue that we can treat the output of this algorithm as random samples from the target when
the samples are used to estimate expectations wrt to it. We applied their algorithm, and estimatedC to be
25.0, 1.47 and1.39 for the joint approximation based onA1, A2 andA3a, after1000 iterations. We also
ran the one based onA3a for a very long time, with virtually no change in the estimatedC. Although these
estimates are surely somewhat optimistic, they give anyway an estimate of the accuracy of the approximations
in the most important areas and the ability to produce exact samples in these areas. The behaviour of the
approximations in areas with low probability are always more questionable. If we believe in the estimated
C’s, we can sample exactly from the joint posterior using rejection sampling.

The convergence of the Metropolised independence sampler in total variation norm, is bounded by(1 −

1/C)#iterations (Mengersen and Tweedie, 1996). Comparing this bound with our estimated values ofC, we
note that Approximation 2 is about 3 times more efficient compared to the GMRF one, taking the computation
cost into account.

4.4 Model-based Geostatistics

Diggle et al.(1998) discuss Bayesian models which combine traditional geostatistical methods with those of
generalised linear models. The common setting is a spatial Gaussian field with some unknown parametersθ

(mean, precision and correlation-length) which is observed at some locations with a non-Gaussian likelihood.
The goal is to estimateθ and estimate the Gaussian field.
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Figure 4: The outline of the campylobacter, salmonella and cryptosporidia infections data in north Lan-
caster (Diggle et al., 1998). Each point is the location (given as post-codes) of the enteric outbreak.

4.4.1 Binomial likelihood

Consider the following example taken fromDiggle et al.(1998). Figure4 shows the position of reported
outbreaks of campylobacter, salmonellae and cryptosporidia in north Lancaster (UK) between April and De-
cember 1994. Two or more persons can obtain the disease from the same source, and infections reported at the
same location in a five-day period is considered as the same outbreak. The data consists of 399 outbreaks in
236 different locations where 234 of them are campylobacter. The problem considered is to estimate a spatial
latent surface measuring the risk that an outbreak is campylobacter. The data comes in triplets(li,ni,yi),
i = 1, . . . ,236 whereli is the location,ni the number of enteric infections andyi the number of them being
campylobacter. The probability of an enteric outbreak at positionli in the binomial likelihood,pli , is linked
to the spatial field by logit(pli) = xli .

Diggle et al.(1998) analysed this model using single-site MCMC algorithms. There are reasons to believe
that such an approach encounters severe problems in mixing betweenθ andx, at least for cases with more
data. Although the number of lattice points (n) covering the region of interest is large, the number of data is
small. We will now demonstrate how our approximations can be used to construct a joint approximation for
the spatial field and its hyperparameters following the approach in Section4.1. This joint approximation can
then be applied as a Metropolised independence sampler or used in an empirical supremum rejection sampler
to estimate expectations.

We follow Diggle et al.(1998) and use for the isotropic spatial Gaussian field, an exponential correlation
function with unknown precisionτ, ranger (in pixels) and common meanµ. Our modification is to use
GMRF proxies for the Gaussian field on a fine200× 100 lattice covering the region of interest, introduced
by Rue and Tjelmeland(2002). Hence, we use a GMRF,x, with a 5× 5 neighbourhood and coefficients as
computed by their method, for a finite set of ranges with step of0.05. This reduces the computational cost
with a factorn, when predictions for non-observed locations as well as parameter estimates forθ are required.
If only θ are of interest, we may use only the set of sites where we have observed data, but this option is not
considered here.

Figure5 shows the scaled marginal likelihood for(log(τ), r) ∈ [−2,7]× [0,50] whereµ = 0.35, the empirical
mean from the data. Here, we used (13) with an obvious correction andA2 as described in Section4.1.
UsingA1 gave similar results. Each evaluation in the grid of selected(log(τ), r) values, required about30

seconds of computing. The marginal likelihood is quite flat in a huge region demonstrating a small content of
information in the data regarding(logτ,r). We could have includedµ in our “x” by giving it a Gaussian prior
at essentially no extra cost (Rue, 2001, Appendix), but our implementation does not support this option at the
time of the writing.

Based on the marginal likelihood in Figure5, we can construct a log-spline approximation to the marginal
density ofθ and then construct a Metropolised independence sampler as in Section4.4. Here, using a triangu-
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Figure 5: The marginal likelihood of(log(τ), r) ∈ [−2,7]× [0,50] for fixed µ = 0.35 for the example in
Section4.4. The plot is scaled to have maximum value equal one.

larisation of the area of interest and log-linear splines within each triangle, is perhaps the simplest choice. We
easily get an accept-rate exceeding40% all depending on how well we tune the approximation. An alternative,
is to do a joint (log-)random-walk proposal on the hyperparameters, and conditionally on these values sample
the spatial field (Knorr-Held and Rue, 2002).

We also investigate the case where similar data to the observed ones, is added to all pixels in the200× 100

lattice. There are no problems constructing approximations for the spatial-field with accept-rate above50%.
It requires about one minute to construct the GMRF approximation and slightly more for improved ones. As
long as the likelihood is reasonably close to a Gaussian, good enough approximations seem easy to construct.

4.4.2 Double exponential likelihood

A more serious challenge is motivated from one of the examples inDryden et al.(2002), where the likelihood
is double exponential, ie

π(yi | xi) ∝ exp(− | xi −yi |). (14)

This makes (1) strongly non-Gaussian. We note in passing, that the marginal likelihood forθ computed with
our approximations is an alternative to the asymptotic motivated approximations studied byDryden et al.
(2002).

We sample a true spatial field on a50× 50 lattice with exponential correction function with range one third
of the horizontal length of the lattice, unit precision and zero mean. We then add independent noise according
to (14). Only the spatial field is treated as unknown in this example. The parameters selected, balance the
likelihood and the prior and makes the construction of good approximations harder.

Two practical problems arise due to the likelihood (14). The second derivative of the log-likelihood is zero
hence locating the mode is hard(er). For the same reason, the GMRF approximation constructed using Taylor-
expansion is quite poor. Both these problems are solved using the approximation idea inRue(2001); the
Taylor-expansion is replaced by a quadric expansion fitting the log-likelihood more accurately over a larger
range aroundxm, say in a range±2 of xm

i for all i.

Figure6 shows the true field in (a) and the data in (b). We use the same parameters as inA3a but withM = 10

samples. IncreasingM was needed to get a reasonable accept-rate of about30%, where the spatial fieldx
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Figure 6: Image (a) shows the true spatial field, (b) the observed data, (c) a sample from the Metropolised
independence sampler, and (d) two examples of the ratio of the estimated conditional in (5) and the conditional
density using the Gaussian approximation, for the centre pixel in the image. In (d) the horizontal axis is
standardised with the conditional mean and standard deviation of the Gaussian approximation.
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was sampled using a Metropolised independence sampler, at the cost of50 seconds/iteration. Figure6(c)
shows a sample from the Metropolised independence sampler. UsingA1 gave essentially zero accept-rate.
The reason is displayed in (d), showing two examples of the ratio of the estimated conditional in (5) and
the conditional density using the Gaussian approximation, for the centre pixel in the image. The horizontal
axis is standardised with the conditional mean and standard deviation of the Gaussian approximation. The
conditional density is skewed and the mode is slightly shifted. It is obvious thatA1 cannot be sufficiently
accurate in this case.

We now increase the lattice to100× 100. Quite accurate approximations is needed for the Metropolised
independence sampler to produce an accept-rate above zero. About 8 minutes of computing for each iteration
is needed to produce an accept-rate of about30%. However, it is encouraging that computing seems to be the
practical limit, not our approach to construct approximations.

5 Discussion

In this paper we have presented an approach to construct approximations to a unimodal hidden Gaussian
Markov Random field (HGMRF) on general graphs, which can be sampled exactly from and have computable
normalisation constants. The examples have demonstrated how to construct joint updates and Metropolised
independence samplers for spatial models. Such sampling schemes are major improvements compared to the
single-site schemes commonly used. Our approach can also be applied when the precision matrix is full, but
the computational cost is thenO(n3).

Another interesting case is GMRF models in time. Here, the cost is onlyO(n). As our method and computer
code are valid also in this case, we have experimented also with such models with various kinds of observation
models. Good approximations are much easier to construct compared to spatial ones. For GMRF models in
time, or dynamic models in general, there exists an extensive literature on sequential Monte Carlo methods,
seeDoucet et al.(2001) for an overview. These methods can also be used to construct Metropolised inde-
pendence samplers (although Gaussian approximations are often used, seeDurbin and Koopman(2000) and
Shephard and Pitt(1997)), and to analyse non-dynamic models (Chopin, 2002), but the dynamic nature of
these models makes it more natural to focus on filtering and prediction. Our approach have some similarities
with these methods, but we do not rely on the forward-filtering backward-sampling recursions that are inher-
ent in sequential Monte Carlo. This recursion requires densities of dimensionbw to be approximated. This
is hard forbw > 3, say, but our approach works fine even forbw = O(

√
n) and also for HGMRF models in

general where there is no natural time-ordering of the GMRF, as is the case for spatial GMRF models.
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