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Abstract

Analyses of spatial variation in disease risk based on area-level summaries of dis-
ease counts are most often based on the assumption that the relative risk is uniform
across each region. Such approaches introduce an artificial piecewise-constant relative
risk-surface with discontinuities at regional boundaries. A more natural approach is to
assume that the spatial variation in risk can be represented by an underlying smooth
relative risk-surface over the area of interest. This approach was taken by Kelsall and
Wakefield (2002), who used an underlying Gaussian random field (GRF) to derive a mul-
tivariate log-Normal distribution of the risk at the regional level. The derivation rely on
the approximation

���������
	�� ���� �����
	������ ��
, which is frequently used in similar contexts

in the geostatistics literature, but the different sizes and shapes of the regions typically
found in disease mapping applications indicate that the validity of the approximation is
questionable.

We propose an approach to the modelling of a smoothly varying risk surface based on
aggregated data avoiding this approximation. We also derive computationally efficient
block MCMC-algorithms using a re-formulation of the geostatistical GRF model using
Gaussian Markov random fields (GMRFs). We make extensive use of recent develop-
ments for GMRFs, including a method for fitting GMRFs to Gaussian random fields and
computationally efficient algorithms for GMRFs based on numerical methods for sparse
matrices. We demonstrate our approach on simulated data as well as a set of German
oral cavity cancer mortality data from the period ������� – ��� , which have been previously
analysed in the literature.

1 Introduction

Disease maps displaying the geographical variability of disease incidence or mortality rates
across a region of interest, are valuable tools in spatial epidemiology. By studying a disease
map, regions with particularly high or low rates can be identified, and this information can
be used as input to ethological studies as a guideline in defining and validating hypotheses
about a disease. For an overview of the history of disease mapping, see e.g. Walter (2000).
Disease incidence or mortality data can be available as point data for which the exact location
of each case is known, or more commonly as aggregated or areal summary data, often due
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to confidentiality reasons. For rare and non-infectious diseases, the aggregated incidence
or mortality counts ���������
	��������� in a set of � regions are commonly assumed to be
conditionally independent given the stratum-weighted relative risks ��� of the regions, and to
follow Poisson distributions with mean given by ������� . The value ��� represents the expected
number of cases in region � , typically given as a population-weighted sum of stratum-specific
probabilities of disease, computed from the data assuming uniform risk across the study
area. The maximum likelihood estimate of the relative risk in region � is the standardised
mortality (or incidence) ratio SMR ��������� . Figure 1 shows the observed aggregated counts
and SMR for a set of data on mortality from oral cavity cancer in Germany, that will be
analysed in Section 6 (Knorr-Held and Raßer, 2000). From Figure 1 we observe that there
is a tendency toward high risk in the north-east and in the south-west and low risk in the
east. However, for small populations at risk and for rare diseases, the SMR as an estimator
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Figure 1: The observed counts (left) and the standardised mortality ratio (SMR) (right) for
the German oral cavity cancer data.

of the relative risk can be highly variable. It can give rise to spurious estimates of high
risk in regions with low populations, masking the true spatial pattern of the risk over the
area of interest. Therefore, conclusions drawn from maps of the SMR can be misleading.
To overcome this problem, a number of authors have developed statistical approaches to
improve on raw estimates of disease risk. Reviews of statistical methods for mapping disease
risk are provided by e.g. Diggle (2000), Wakefield, Best and Waller (2000) and Mollié (1996),
the latter two focusing on Bayesian approaches.

Taking a Bayesian approach, the risk estimates of sparsely populated or low frequency re-
gions are smoothed toward an overall prior mean. Since it is often the case that the relative
risk tend to be similar in neighbouring regions, disease maps can also be improved on by
adding spatial correlation to the prior model. The estimates of the risk in each region can
then ”borrow strength” from neighbouring regions. This can be accommodated by includ-
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ing a spatially structured component within a random effects model for the disease risk, an
approach first taken by Clayton and Kaldor (1987). A commonly used approach, proposed
by Besag, York and Mollié (1991), is to model the log relative risk as

������� ����� �
	��� ����� ������� � (1)

where  � is a vector of covariates, including an intercept term, and � � and ��� are spatially
structured and unstructured random effects, respectively. The spatially structured random
effect is assigned a Gaussian Markov random field prior, such that � � � ��� ��� ��� ��� � � ����� � � � ,
where � � � denotes all elements of the vector � except element � , and ! � �"� is the set of neigh-
bouring regions of region � . To specify the Markov random field prior, we need to define
which regions are neighbours. The level of aggregation of areal summary data is often
defined by administratively specified regions, and therefore alternative definitions to the
square neighbourhoods often used in the case of lattice data are needed. An approach taken
by many authors, e.g. Clayton and Kaldor (1987), Bernardinelli, Pascutto, Best and Gilks
(1997), Knorr-Held and Besag (1998) and Waller, Carlin, Xia and Gelfand (1997), is to define
two regions as neighbours if they share a common boundary. This will work well if the
regions do not differ much in size and shape, but this is often not the case. An alternative
to the adjacency approach is to specify the joint distribution of the heterogeneity effects � � ,
defining spatial structure of the covariance matrix as a function of differences between the
region centres (e.g. Wakefield and Morris, 2001; Wakefield and Morris, 1999). However, sim-
ilar objections apply to this method as to the adjacency based methods, as the size and shape
of the regions are still not taken into account, and in both cases the inference will depend on
the level of aggregation of the data.

The method of Besag et al. (1991) does not naturally allow for discontinuities in the spatial
structure of the risk. In a recent paper, Fernández and Green (2002) present an alternative
approach, developing a spatially structured mixture model where GMRF priors are specified
for the weights in the mixture. Using a mixture of Poisson distributions, the method is
applied in a disease mapping context, and it is illustrated how the approach represents an
improvement over the method of Besag et al. (1991) in cases where the spatial pattern has
step-like discontinuities. The approach is related to that of Knorr-Held and Raßer (2000)
identifying clusters of constant risk.

In general, spatial heterogeneity of the disease risk will be a confounder for unmeasured
spatially structured factors influencing the disease risk. In most cases, there is no reason
that these risk factors are region specific and discontinuous at region boundaries. Thus, the
relative risk is not expected to be constant within regions and disjoint across regions. On the
contrary, it seems reasonable to believe that the underlying risk surface is varying contin-
uously over the region of study. In cases where the observations can be regarded as point
data, a smoothly varying risk surface and the corresponding hyper-parameters can be esti-
mated using extensions of classical geostatistical or point process approaches. Using data
for which the exact locations are known, Diggle, Tawn and Moyeed (1998) propose a model-
based geostatistical approach embedding the classical linear geostatistical methods for Gaus-
sian data within a framework analogous to the generalised linear models (McCullagh and
Nelder, 1989) for mutually independent data. Consequently, they allow for data for which
the stochastic variation is assumed to be non-Gaussian. Another approach is taken by Best,
Ickstadt and Wolpert (2000), who specify a Poisson-Gamma random field model for the dis-
ease risk. The approach is based on the methodological framework presented in Wolpert
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and Ickstadt (1998) and extended in Ickstadt and Wolpert (1999) to include location-specific
covariates measured at different levels of spatial aggregation and individual attributes like
age and gender. The point locations of individual cases and the corresponding attributes are
regarded as a marked point process, and the spatial structure of the residual risk surface is
represented by a kernel smoothed Gamma random field. The risk surface can be estimated
at any level of spatial aggregation.

When the disease incidence or mortality data are only available as aggregated counts, the
approaches to risk-surface estimation described above are not directly applicable. Kelsall
and Wakefield (2002) propose a geostatistical approach to modelling the joint distribution of
the area-level relative risks in such situations. They specify a model for an underlying con-
tinuously varying risk surface � ��� � � �����

, assuming the log risk surface � ��� ��� log
� � ��� � �

to be a realisation of a Gaussian random field (GRF). Based on this GRF model, area-level
relative risks � � in a set of regions

� � � � � 	��������� , forming a partition of the study region�
, are defined by

��� �
�	��


� ��� � ��� ��� �� � � (2)

where � � ��� � � � � 	��������� are weight functions depending on the stratum-specific population
density distribution in region

� � . Conditionally on these relative risks, the data are assumed
to be independent realisations from a Poisson distribution with mean ��� ��� . To allow for
computational feasibility, they approximate the joint distribution of the region-level risks
��� � ��� 	��������� by a multivariate log-Normal distribution with moments that are derived
from the moments of the Normal distribution of � ��� � , using numerical methods to evaluate
the integrals involved. The approximation is essentially equivalent to approximating the
distribution of � � � ����� � � � � by the distribution of � ��
 ����� � ��� � � � ��� �� � . As pointed out by
the authors, the approximation is best when the size of the regions are relatively small and
the regions are of about the same shape, and the log-Gaussian assumption is exact only in
the limit when the regions are of the same shape and size, and the size tends to zero. The
parameters of the model, including the log-risk surface at a set of locations

�	�
, are estimated

by Markov chain Monte Carlo methods (Gilks, Richardson and Spiegelhalter, 1996), using
Gibbs sampling in combination with adaptive rejection sampling.

We propose an alternative approach to the estimation of a smooth risk surface based on ag-
gregated count data, representing the Gaussian random field defining the prior for the log-
risk surface by a Gaussian Markov random field defined on a lattice. The basis of the model
formulation is as in Kelsall and Wakefield (2002), but while they use the geostatistical model
to derive an approximation to the joint distribution of the regional-level log-risk, and base
the inference on the resulting regional-level stochastic model, we avoid the approximation
by working directly on a lattice representation of the model. We replace the integral expres-
sion (2) for the regional level relative risk � � by a sum over the exponentiated values of the
GMRF for the lattice nodes falling within

� � . Due to the conditional independence structure
of the GMRF, using a GMRF proxy to the GRF allows for the use of computationally efficient
algorithms for sampling based inference. However, the spatial structure is often intuitively
easier to specify and interpret using a geostatistical GRF formulation than the conditional
formulation represented by the GMRF. Therefore, we specify the spatial structure of the ran-
dom field in terms of the correlation function for the GRF, using the procedure in Rue and
Tjelmeland (2002) to fit the GMRF to the GRF. Thus, our approach relies on the assumptions
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that the smooth relative risk surface can be represented on a lattice and that the GRF as
defined on this lattice can be well estimated by a GMRF.

Drawing on the routines for fast and exact simulation of GMRF implemented in Rue and
Follestad (2002), we develop an efficient block-sampling algorithm for estimating the log-
risk surface and the parameters of the model. For each block, the elements of the lattice based
log-risk surface are updated using a Metropolis-Hastings step, generating a proposal from a
Gaussian approximation to the full conditional distribution. This can be done efficiently after
re-formulating the problem of sampling from the proposal distribution to a computationally
convenient conditional sampling problem.

The report is organised as follows. In Section 2 we present the statistical model, and an
overview of our approach to estimating the log risk surface and the hyper-parameters is
presented in Section 3. More details on the estimation algorithm are given in Section 4. In
Section 5 we present results for a simulated data set, and results for the German oral cavity
cancer data are given in Section 6. The method and the results are summarised and discussed
in Section 7.

2 The statistical model

The statistical model is based on disease incidence or mortality data available as aggregated
counts � � in a set of � disjoint regions denoted

� ������� 	����� ��� , such that
� ��� � � � is the

overall region of study. Following the approaches of Kelsall and Wakefield (2002), Best et al.
(2000) and Diggle et al. (1998) we assume that the geographical variation in the risk of the
disease can be represented by a smoothly varying surface � ��� � � � � �

. In this section we
specify a lattice based model for the risk surface, first presenting a Gaussian random field
model, and then a Gaussian Markov random field proxy to this model.

2.1 A Gaussian random field model on a lattice

The log-risk surface � ��� � � log � ��� � is assumed to be a realisation of a Gaussian random
field. The basis of our modelling approach is as in Kelsall and Wakefield (2002), but we
explicitly define the Gaussian random field model on a lattice overlaying the study region�

. Throughout our study, using simulated data as well as the real dataset, we use the 544
districts of Germany for which the German oral cavity data are defined as our region of
interest. A map of the study region with an overlaying lattice consisting of ������� � 	
	�����
nodes is given in Figure 2. For a better visual impression of the resolution of the lattice, see
the top right panel of Figure 6. The number of lattice nodes within each region is in the range
1 to 136, with a median number of 29.

The multivariate Normal joint prior distribution of the log-risks � ����� � ��� � 	����� ��� ����� is
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Figure 2: The map of Germany with its 544 districts, overlaid by the lattice for the GRF.

given by the moments

E
� � ����� � � � � � �

Var
� � ����� � � � � � � (3)

Corr
� � ����� � � � ��� � � � � � � � � ��� � � � ���	� � 

The correlation function is assumed to be isotropic. The mean vector 
 , the marginal vari-
ance � � and the parameters ��� of the correlation function � are taken to be unknown and
are assigned prior distributions as described in Section 3. Thus, our prior model of the risk
surface and the corresponding hyper-parameters is the lattice analogue of the geostatistical
model of Kelsall and Wakefield (2002). Given the log-risk surface, the data are assumed to
be conditionally independent realisations from Poisson distributions given by

� � ������ Pois
� ��������� � (4)

where the regional level relative risks � � are computed from the underlying lattice-based
risk surface by

� � �
�

��� �����
��

� ��� � ��� ��� � �  (5)

Here, the population density distributions ��� ��� � of the continuous surface analogue (2) are
replaced by a set of weights � ����� � which should satisfy the constraint

�
��� �����

��

� ����� � � 	���� �  (6)
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Figure 3: The neighbours ( � ) of an arbitrary lattice node ( � ) using a

� � �
neighbourhood

scheme for the GMRF.

In the approach by Kelsall and Wakefield (2002), the GRF prior model for the log-risk sur-
face is used to generate a multivariate log-Normal approximation to the regional-level rel-
ative risks. To avoid computing such an approximation, we base inference directly on the
risk surface model as defined on the lattice. However, for the lattice model to be a rea-
sonable approximation to the smooth surface, the resolution should be relatively high, and
consequently the number of nodes of the lattice will typically be large. Using the Gaussian
random field representation of the prior model, estimation routines will be computationally
expensive since we need to perform matrix operations on the � ������� � ����� covariance ma-
trix � , which in general is a full matrix. Moreover, using MCMC methods with single-site
updating, the convergence will be slow, due to the high correlations inherent in the prior
model. Similar problems arise when estimating the hyper-parameters, because of the strong
interaction with the elements of the risk surface. On the other hand, due to the high dimen-
sionality and the full structure of the covariance matrix, updating all elements of the surface
in one block will be prohibitive. In the next subsection we describe how the GRF can be
represented by a more computationally convenient Gaussian Markov random field on the
lattice.

2.2 A Gaussian Markov random field proxy to the Gaussian random field model

To reduce the computational cost of the inference, we propose to represent the log-risk sur-
face by a vector variable � ���	� ��
 ������������ � ������� , which is assumed to be a realisation of a Gaus-
sian Markov random field (GMRF). A GMRF is a GRF with the additional property that the
conditional distribution of the GMRF at lattice node � , given the values at all other lattice
nodes, only depends on the values at the nodes within a neighbourhood ! � � � of � . Different
definitions of neighbourhoods are possible, but we choose to define the neighbourhood ! � � �
of node � to be an

� � �
square neighbourhood, as illustrated in Figure 3. Since we are deal-

ing with a finite lattice, the number of neighbours of the lattice nodes along the boundary of
the lattice will be different from the number given by the

� � �
neighbourhood scheme, see

Figure 4. To reduce the impact of any boundary effects induced by using a finite lattice, we
extend the support of the GMRF to include a set of nodes outside the region of interest. We
will denote the sub-vector corresponding to the nodes falling within the region of interest by

7



�
�

, and the nodes external to this region by � �
�

, such that � � � � �
�
� � � �

�
� � . The extended

lattice, consisting of ��� � 	�� ��� nodes, is shown in Figure 5.

 

 

 

 

Figure 4: The neighbouring scheme along the boundary of the study region. The neighbours
of a node (triangle) at the boundary are partly within the study region (x) and partly outside
the region (+).

For a general GMRF � , the joint distribution is given by

� ��� � 
��	� �
�
� � (7)

where the mean vector 
 � 
 � � � and the precision matrix � �
� � � � both may depend on
a set of unknown parameters � . Because of the conditional independence structure of the
GMRF, only the elements � � � of the precision matrix for which � and � are neighbours are
non-zero. The nodes of the lattice can be re-ordered such as to minimise the bandwidth of the
corresponding precision matrix (Knorr-Held and Rue, 2002), and due to the band-structure
of the matrix, working with a GMRF instead of a GRF can lead to significant reductions
in computational cost. This fact is utilised in our sampling based estimation approach de-
scribed in Sections 3 and 4. There, we make extensive use of efficient algorithms for gener-
ating samples from joint and conditional distributions of a GMRF as well as for generating
samples conditionally on linear constraints. A sample from the joint distribution of � can be
generated by � �� �

�
 � 
�� (8)

where  is a vector of � independent realisation from the standard Normal distribution, and
� is the Cholesky factor of the precision matrix � . For a banded symmetric positive definite
matrix � with bandwidth ��� , the Cholesky factorisation

� ���� � (9)

can be computed in O
� ��� �� � flops (Rue, 2001), such that as long as the bandwidth is kept

small, efficient samples can be generated from the joint distribution. In our application, we
need to generate conditional samples for a subset of the lattice nodes, given the realisation
of the GMRF for the remaining nodes. The conditional distribution � � ��� � ����� � , where � is a
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Figure 5: The map of Germany with its 544 districts, overlaid by the lattice GMRF model
including a boundary region.

subset of
�

, is Normal with moments

E
� � � � ����� � � 
 � � � �

�
� � � � � � ��� � � ��� � 
 ��� � � (10)

Var
� � � � ����� � � � �

�
� � �  (11)

Here, � � � � is the � � � � � diagonal block of � corresponding to the subset � , with bandwidth
less than or equal to the bandwidth of � . Each element

�
of the mean vector 
 ��� ��� � E

� � � ������ � will only depend on elements of � ��� � 
 ��� at the nodes within the neighbourhood of
node

�
.

We also need to generate samples from a GMRF � conditionally on a linear soft constraint� � ��� ��� for a 	 � � matrix
�

, a 	 -vector � and � � � ��
 � � � . This constraint can be inter-
preted as a generalisation of the hard constraint

� � ��� , where the quantities representing
the linear combinations defining the constraint are observed with noise. In general, a sam-
ple conditionally on a soft constraint can be generated by first generating an unconditional
sample �� for � from (7) and an � � � ��
 � � � , and then computing the conditional sample��� from � � � �  � � �

� � � � � � �
� � � � � � �

� � � � � � � � �  (12)

In geostatistics, this result is referred to as conditional simulation using kriging (Cressie,

9



1993, Section 3.6.2) and the validity of (12) as a sample from � � ��� � � � � � ��� follows di-
rectly from Normal distribution theory, as shown in Appendix A.3. As long as the number
of constraints 	 is relatively small compared to the number of nodes in the lattice, all compu-
tations involved in evaluating (12) can be done efficiently using the Cholesky factorisation
(9).

To fully specify the joint distribution (7) we need to specify the non-zero elements of the pre-
cision matrix � . However, based on prior information it is often intuitively easier to specify
a model for the correlation structure for a Gaussian random field than to specify the ele-
ments of the corresponding precision matrix for the GMRF. Rue and Tjelmeland (2002) show
how the elements of the precision matrix � of a GMRF can be estimated from the covariance
function that defines the elements of the covariance matrix � � � �

�
. Let � ��� ��� � � be the

correlation function specifying the correlation between two points of distance
�

, where
�

is
measured in lattice coordinates. Further, let

� ������� ���	� � � (13)

where � is the correlation matrix of the GRF and � � 	�� � � is the marginal precision. For
a given value of the parameter vector �� , Rue and Tjelmeland (2002) estimate the non-zero
elements of the standardised precision matrix � � by matching the correlation function as
defined by these elements to the correlation function � of a Gaussian random field. For the
exponential, Gaussian, spherical and Matérn classes of correlation functions, they conclude
that using a

� � �
neighbourhood the approach gives a good fit to the target correlation

function. Among these four classes of functions, the exponential is the one with the best fit.

Using the GMRF prior model for the log relative risk surface, expression (5) for the relative
risk � � at the regional level is replaced by

� � �
�
� �
� 
�
��� � � � � � ��� � � � (14)

where the sum is taken over the � � nodes of the lattice falling within region
� � . In what

follows we will assume that the weights are constants given by � ��� � ��� 	�� � � � � � � � . This
corresponds to an assumption of uniform population density which is often made in disease
mapping applications. This does not represent any loss of generality, since the method can
easily be modified to allow for non-uniform population distributions by replacing the GMRF� by another GMRF � � with elements � �� � � � � log

� � ����� � � . In terms of the log-risk surface� , the Poisson likelihood model for the incidence counts becomes

� � � � � Pois

��
���
� �

�
� �
� 
 
��� � � � ����  (15)

For notational convenience we define � �� � ��� � � � , such that in what follows, � �� is to be
interpreted as the expected number of cases per lattice node falling within region

� � .
Let ��� � � ��� � � ��� � � � � denote all unknown hyper-parameters of the model, including the pre-
cision � , the parameters � � of the correlation function and any parameters � � defining the
mean vector 
 . We take a fully Bayesian approach to parameter estimation, and the Bayesian
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Likelihood: � � � � � Pois
� � ���� � �

��
 
��� � � � � �
GMRF prior: �
� � � � � 
 � � � �	��� ��� �

�
�

Hyper-prior: � � � � � �

Table 1: A summary of the Bayesian hierarchical model.

hierarchical model for the disease mapping problem is summarised in Table 1. The prior dis-
tribution � � � � of the hyper-parameters is specified in Section 3.

We end this section by pointing out some computational pitfalls that are still present using
the GMRF representation of the model in combination with an MCMC based approach to pa-
rameter estimation. In our approach to estimation of the risk surface and the corresponding
hyper-parameters we need to sample from the posterior distribution of the log-risk surface� given count data � . In Knorr-Held and Rue (2002) it is illustrated how the use of block-
sampling leads to substantial improvement in mixing for MCMC updating schemes for a
similar model, but where the GMRF prior for the log-risk is defined on the same level of ag-
gregation as the data, using a common boundary neighbourhood specification. The observa-
tions are conditionally independent given the regional risks and the hyper-parameters, and
thus the conditional independence structure for the posterior is the same as for the GMRF
prior. Since the data in our case are aggregated in regions that in general extends over the
size of the local neighbourhoods of the GMRF model for � , conditioning on the data will
destroy the computationally convenient local neighbourhood structure inherent in the prior.
For an illustration, consider the plots in the bottom panels of Figure 6. There, we have visu-
alised the conditional independence structure of the prior model and of the posterior model
conditioning on the data for a subset of the study region. The subset is given by the lattice
nodes within the shaded region in the top left panel, plotted in larger scale and overlaid by
the GMRF lattice in the top right panel. Consequently, to preserve computational efficiency,
alternative methods are needed.

We have pointed out the potential problem of slow convergence of the hyper-parameters
using MCMC methods with the Gaussian random field. Inference for the hyper-parameters
will still be problematic using the lattice based GMRF modelling approach, unless we are
able to update the hyper-parameters jointly with a subset of the GMRF. Finally, introducing
the additional boundary region nodes to reduce the impact of boundary effects, might slow
down the convergence and mixing for the hyper-parameters.

In the next sections we present our sampling based approach to parameter estimation, and
discuss how the potential problems listed above can be handled within our sampling algo-
rithm. We first give an overview of the method, and then present the approach in more detail
in Section 4.
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Figure 6: A subset of the region of study (shaded region, top left), with the lattice nodes
added (top right). The bottom panels illustrate the conditional independence structure of
the prior model (bottom left) and when conditioning on the data (bottom right), for the
subset of lattice nodes corresponding to the shaded region.
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3 A sampling based estimation approach

In this section we present a sampling based approach to the estimation of the unknown
quantities of the model. These are the log risk surface represented by � and the hyper-
parameters � .

Given the Poisson likelihood, the GMRF prior (7) of � and the joint prior distribution � � � �
of the parameters � , the joint posterior distribution of � and � given the data � is given by

� � ����� � � � ���
�
� � � � � � � ��� � 
 � � � � � � � � � �  (16)

We will estimate the log risk surface and the hyper-parameters using Markov chain Monte
Carlo methods. As pointed out in Section 2, using single-site updating will typically lead
to poor mixing and slow convergence due to strong correlations in the prior model. On the
other hand, updating � or � and � in one block requires careful choice of the proposal dis-
tribution to obtain a reasonably high acceptance rate. Knorr-Held and Rue (2002) illustrate
the use of block-updating in Markov random field models for disease mapping applications
where the relative risk is defined at the regional level. In their case, the Poisson likelihood
is given by (4) with � � �


��� � � � � , where � � is the log-risk of region � . The joint proposal of
the log relative risks � conditional on a proposed value of � is generated by using a local
quadratic approximation to the posterior. Utilising the band structure of the prior precision
matrix � they obtain computationally efficient samples from the proposal distribution. Ap-
plying the approach to a dataset on Insulin dependent Diabetes Mellitus in 366 districts of
Sardinia, it is shown that the convergence and mixing of the hyper-parameters are greatly
improved by blocking. However, since the spatial model is specified on the regional level,
the total number of parameters to be updated are much smaller than in our application,
where the Markov random field is specified on a lattice of � � � 	�� ��� nodes. As a conse-
quence, the acceptance rate of a joint proposal is likely to be reduced compared to the ones
reported in their study, and the computational cost of generating the sample is increased.
Also, the efficiency of the approach as applied to our problem is reduced because the level
of aggregation of the data typically extends the size of the neighbourhood of the GMRF
model, as discussed at the end of Section 2.

As a compromise between a full block sampler and the single site Gibbs sampler, we update
the hyper-parameters and a subset of the elements of � in one block. We split the vector � in
the two sub-vectors �

�
and � �

�
, representing the lattice nodes within the region of study

�
and in the boundary region respectively, and choose to block-update the hyper-parameters
jointly with the subset ���

�
. As we show in Section 3.3, this is equivalent to updating the

hyper-parameters by sampling from the marginal posterior of � given �
�

. Conditionally on���
�

and � , the elements of �
�

are updated in sub-blocks corresponding to the lattice nodes
within one or more regions.

In the following subsections we describe our approach to estimation of the log-risk surface as
well as the hyper-parameters, and discuss how the potential computational pitfalls pointed
out at the end of Section 2 can be handled.
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3.1 Step 1: The log risk surface

The sub-vector �
�

corresponding the elements of � falling within the study region for which
data are available, are updated conditionally on � �

�
and the hyper-parameters � . We up-

date �
�

in blocks defined in terms of the regions corresponding to the level of aggregation
of the data, using a Metropolis-Hastings step for each block. In this section we give an
overview of the approach for a general likelihood, deferring a more detailed description of
the sampling procedure for the Poisson likelihood case to Section 4. Also, we first describe
the method in terms of � blocks, where each block is made up from the elements of �

�
falling within a single region. In Section 3.2 we describe the straightforward extension of the
method to blocks made up of from several regions, and discuss briefly considerations to be
made by choosing the size of the blocks.

The full conditional distribution for the � � elements � �


� ����� 	��������� � within region

� � is
given by

� � �
��

� ���

��

��� � � � � � � �

� 

� ���

��

��� � � � � � ���

��

��� �  (17)

Here we denote by � �
��


all elements of the vector � except for the elements within region
� � .

The posterior distribution is in general non-standard, and we use a Metropolis-Hastings step
to generate an update of �

��

. As a proposal distribution for �

� 

we use a quadratic approx-

imation to (17), and we illustrate below that by re-formulating this quadratic approximation
to the distribution of a conditional sampling problem, sampling can be done efficiently.

The conditional prior distribution � � �
��

�����

� 

��� � of �

� 

is Gaussian with mean 


��

� ���



de-
pending on the values of � in the set of nodes given by !

��

� � � �

�
� ! � � � , and precision matrix

�

��

given by the � � � � � diagonal block of � corresponding to the nodes within region

� � .
The matrix �

��

� �

��

� � � and the vector 


� 

� � �


� 


��

� � �


� � � will both in general depend

on � , but for notational convenience we suppress explicit reference to the dependency on �
in what follows. Thus, the log-posterior distribution corresponding to (17) becomes

����� � � � �
��

�����

��

��� � � � � �

� 	

� �
��


� 

��

� ���


� � �

��

� �
��


� 

��

� ���


� � � � � ��� � const � (18)

where
� � � � � is the log-likelihood of the observed count for region

� � . Introducing the vector
� � given by

� � � �
��



��

� ���



and re-arranging terms, the log-posterior distribution (18) can
be written in the form

� ��� � � � �
��

� ���

��

��� � � � � � � 	

 � �
��

�

��

�
� 

� � � � �

��

� � � � � � � const  (19)

A Gaussian approximation to (19) can be found by replacing the term
� � � � � by a quadratic

approximation � � � � ��� � 	
 � �

��

� � �

��

� � � � �

��

� (20)

where
� � and � � in general depend on the observation ��� and the parameters � . We use a

second order Taylor expansion of
� � � � � to define the quadratic approximation, as will be

described in Section 4 for the Poisson likelihood case. Substituting (20) for
� � � � � in (19) and

14



collecting terms that are linear and quadratic in �
� 


, a quadratic approximation to the full
conditional density (19), which we denote by ��� � �

��

� ���

��

� � � , is

������� ��� � �
� 

� ���

��

��� � � � � � � 	

 � �
��

� �
��

� � � � �

� 

� � � ������� ��� �

��

� const

� � 	
 � �

��

� �
��

� � � � �

� 

��� � � �

� 

� const � (21)

where we have defined ��� � � � � � � . This Gaussian approximation is to be used as a proposal
distribution in a Metropolis-Hastings step for updating �

��

. However, the precision matrix

�
��

� � � of the Gaussian distribution defined by (21) is in general a full matrix, such that

the computationally convenient band structure of the prior precision matrix �

��

is lost. This

effect of conditioning on the data was illustrated in Figure 6. If the elements of � are updated
for each region

� � in turn, this does not necessary imply any significant loss of efficiency,
since the number of lattice nodes within each region is typically relatively small and not
very much larger than the number of neighbours of a lattice node. But in the general case
when elements are updated in larger blocks, preserving the band structure might lead to
substantial computational savings.

The general idea of our sampling approach is to re-formulate the problem of sampling di-
rectly from the Gaussian proposal distribution (21) to a conditional sampling problem for
which the band structure of the precision matrix �

� 

is preserved. The symmetric matrix

� �
can be expressed by

� � � � � � � � � � � � (22)

where
� � is a � � � � � diagonal matrix, possibly with zeros on the diagonal, and

� � is a 	 � � �
matrix. Substituting (22) for

� � in (21) and re-arranging terms, we arrive at the expression

������� � � � �
��

��� �

��

��� � � � � � � 	

 � �
��

� �
��

� � � � �

��

��� � � �

��

� 	
 � �

��

� � � � � �

��

� const  (23)

As long as the matrix �
��

� � � is positive definite, a requirement that is discussed in Sec-

tion 4.2, the first two terms on the right define the log-density of a Gaussian variable for
which the precision matrix �

��

� � � has the same bandwidth as �

��

. The last term can

be recognised as the log density, up to a constant, of a Gaussian variable with mean
� � �

��

and covariance matrix � , evaluated in



. Sampling from (23) is shown in Section 4.2 to be

equivalent to sampling from the conditional distribution

� � �
��

� ���

��

� � ������ 
 � � (24)

where  � � �
��


� � � � � �
� 

�	� � . In Section 4.2 we further illustrate that because of the band

structure of �

� 

� � � , sampling from (24) is computationally much more efficient than sam-

pling directly from the Gaussian approximation as defined by (21), for which the precision
matrix is in general a full matrix.

The proposed method for sampling from the full conditional distribution for �
� 


, given by
� � �

��

� ���

� 

��� � � � in (19), can be summarised in the following steps.

1. Approximate the likelihood part of the full conditional distribution by a quadratic
function in �

��

, obtaining a Normal approximation to the full conditional distribution.

The quadratic approximation is computed by Taylor expansion around the conditional
mode.
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2. Re-formulate the problem of sampling from this Normal approximation as a condi-
tional simulation problem, where the band structure of the precision matrix is pre-
served.

3. Generate a sample from the Normal approximation based on the re-formulated prob-
lem. This can be done using efficient algorithms utilising the band structure of the
precision matrix, described in Section 2.2.

4. Use the sample from 3. as a proposed value for �
� 


in a Metropolis-Hastings step,
compute the acceptance probability and accept or reject this value.

3.2 Updating blocks of general subsets of �

In Section 3.1 we described our approach to updating the elements of � for each region sep-
arately. An equivalent approach can be taken to update larger subsets of �

�
or all elements

of �
�

jointly, given the parameters � and the boundary elements ���
�

of the random field.
The full conditional distribution of � � for a general subset � of

�
given � ��� , the data � and

the hyper-parameters � , is given by

� � � � � ����� ��� � � � � � � � � ������� ��� � �
� �
��

� �
� � � � � � � � ����� ��� �  (25)

In analogy to (19), the corresponding log-density can be written as

����� � � � � � � ����� � � ��� � � � � 	
 � � � � � � � �

� � � � � � �
� �
��

� �
� � � � � � const � (26)

where
� � � � � is the log-likelihood of the observed count for region

� � , and the sum is taken
over the � � regions corresponding to the subset � . By substituting a quadratic approxi-
mation computed by a second order Taylor expansion for � � � � � � � in (26) and re-arranging
terms, it is shown in Appendix A.2, using a Poisson likelihood, that the corresponding Gaus-
sian approximation to (26) can be expressed by

����� � ��� � � � ������� ��� � � � � �
� 	
 � � �

� � � � � � � � � ��� � � � � � 	
 � � �

� � � � � � � � const � (27)

where
� � is a diagonal matrix and

� � a � � � � � matrix, with � � equal to the number of
lattice nodes within the subset � of regions. This Gaussian distribution is of the same form
as (23) for the single region case, and the approach for generating samples from (27) to be
described in Section 4.2 can be applied in the case of general subsets as well.

An extension of single region blocks to larger blocks can be generated by including the lat-
tice nodes corresponding to the neighbours of the region, where we define two regions as
neighbours if they share a common boundary, and further extensions can be made by adding
the neighbours of the neighbours and so on. In Figure 7 we illustrate the size of the blocks
corresponding to different choices of the number of neighbours to include in each block. We
define the term 1. order neighbourhood to mean all neighbours of a region, 2. order neigh-
bourhood to mean all neighbours as well as all neighbours of the neighbours and so on. The
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3.order neighbours

2.order neighbours

1.order neighbours

single region

Figure 7: Different possible structures of the blocks for block-updating the log-risk surface.
The 1. order neighbours are additional nodes from the 1. order neighbourhood of the sin-
gle regions, 2. order neighbours are additional nodes in the 2. order neighbourhood and
3. order neighbours the nodes added to the 2. order neighbourhood from the 3. order neigh-
bourhood.

choice of the number of regions to be updated in each sub-block is a trade-off between com-
putational cost and the acceptance probabilities of the Metropolis-Hastings steps. Using the
sampling approach outlined in Section 3.1, the problem of reduced computational efficiency
due to the fact that the band structure of the precision matrix was not preserved in the Gaus-
sian approximation to the posterior, has been handled. Therefore, the computational cost
is expected to be reduced by increasing the size of the blocks and thus reduce the number
of blocks. On the other hand, although increased block size might improve mixing due to
larger differences between proposed and current values, increasing the number of elements
of each block will reduce the quality of the Gaussian approximation, such that the accep-
tance rate is typically reduced. This should be kept at a reasonable level to ensure proper
mixing of the MCMC algorithm.

3.3 Step 2: The hyper-parameters

The hyper-parameters � are updated jointly with the remaining elements � �
�

of the GMRF.
As pointed out in the beginning of this section, updating all element of the GMRF in one
block will most likely lead to low acceptance rates, and therefore we block the hyper-parameters
with a subset of the elements of � .

Using the fact that � �
�

is conditionally independent of the data � given �
�

and � , the full
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conditional distribution of
� � � � �

�
� is

� � ���
�
��� � �

�
� � � �� � ���

�
��� ���

�
� � � � �

�
� ���

�
� � � � � � �  (28)

This distribution is in general a non-standard distribution, depending on the form of the
hyper-prior � � � � , and updates are generated using a Metropolis-Hastings step. First, given
the current value � of the hyper-parameters, a new parameter vector � � is sampled from a
proposal distribution � � ��� � � � , and then a proposed value � � � � is generated by sampling
from the conditional distribution � � � � � � � � � � � � � � � � � � � � � � � � � � � � � . Since the joint distri-
bution of � given � is Gaussian, it follows that the conditional distribution � � � � � � � � � � � � �
is also Gaussian, with a precision matrix that has the same bandwidth as � . A proposed
value can therefore be generated efficiently by sampling directly from this distribution. The
proposed value is accepted or rejected according to the acceptance probability� � � � � � ��� � � � � � � � ��� � � � � min

�
	�� �

� � � � � ��� � � � � � � � � � � � � � � � �
�
� � ��� � � � � � �

� � ���
�
��� ���

�
� � � � � � � � � � � � � � � � � ��� � ��� � � ���

� min

�
	�� �

� � � � � ��� � � � � � � � ��� � � � � �
�
�	� � � � � � �

� � ���
�
��� ���

�
� � � � � � � � � � � � � �	� � �
� � � � � � (29)

again utilising the conditional independence between ���
�

and � given �
�

.

Recall the potential pitfall listed at the end of Section 2, pointing at the fact that the inclusion
of the boundary region will in general be expected to slow down the convergence of the
hyper-parameters. However, writing out the expression for the acceptance probability, we
can show that blocking the hyper-parameters and the boundary nodes essentially eliminates
this problem. There is still an effect of the boundary nodes on the subset of �

�
corresponding

to the inner nodes close to the outer boundary of the study region, but this effect is supposed
to be minor. Expanding the distribution � � � �

�
��� � �

�
� , (29) can be expressed by� � � � � � ��� � � � � � � � ��� � � � � min

�
	�� �

� � � � � ��� � � � � � � � � � � � � � �
�
�	� � � � � � �

� � ���
�
��� ���

�
� � � � � � � � � � � � � �	� � �
� � � ���

� min

�
	�� �

� � � � � � � � � � � � � � � � ��� � � � � ��� � � � � �
�
��� � � � � � �

� � ���
�
� � � �

�
� � � � ���

�
� � � � � � � � � � � � � �	� � �
� � � � �

� min � 	�� � � � � � � � �	� � � � � � �
� � � ���

�
��� � �� � � ���  (30)

Consequently, sampling the hyper-parameters jointly with the elements of � outside the re-
gion of interest is equivalent to sampling the hyper-parameters from the marginal posterior
distribution � � � � �

�
� � � � � � � � �

�
� , integrated over the outer elements � �

�
. In effect,

using this approach the influence of the boundary nodes on the convergence of the hyper-
parameters should be insignificant.

4 Efficient sampling from the full posterior of the log risk surface

In this section we describe in more detail our approach to the generation of samples from
the full conditional distribution of �

��

given by (19), using the Poisson likelihood (15). We
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describe the sampling routine in terms of blocks made up from sets of lattice nodes corre-
sponding to single regions, but as we pointed out in Section 3.2, the sampling problem for
the general case has the same structure. In Section 4.1 we compute the quadratic approxima-
tion to (19) using Taylor expansion, and in Section 4.2 we describe the method for sampling
from the resulting Gaussian approximation.

4.1 A Taylor expansion based Gaussian approximation to the posterior

Here, we establish the quadratic approximation to the full conditional distribution of �
��


analytically by computing the second order Taylor expansion of the log-likelihood part
� � � � �

of (19). For the Poisson likelihood (15),
� � � � � becomes� � � � � � � � ������� � �� �� � ��
 
��� � � � � � �� �� � ��
 
��� � �  (31)

The expansion is computed around a point ���
��


taken to be the mode of the full conditional
distribution (19), found numerically given the current value of � . Expressing

� � � � � in terms
of the gradient (first order derivative) � � � �

��

� and the Hessian (second order derivative)� � � �

��

� of the Taylor expansion, we get� � � � � � �

� � �
��

������� � � � �

� 

� � �

��

� � �

� 

� � 	


� �
��


� � �
��

��� � � � � � � �

� 

� � � �

��

� � �

� 

� (32)

� � 	
 � �

��

� � � � � � �

��

� � �

��

� �
� � � � � �

��

� � � � �

��

� � � � � � �

��

� � �

��

� (33)

discarding terms not depending on �
��


. In terms of � � � ���
��

� and

� � � ���
� 

� , the matrix

� � and
the vector � � in the quadratic approximation

� � � � � �
� �
� � �
� 

� � �

��

��� � � �

��

are given by

� � � � � � � ���
��

� and � � ��� � � ���

� 

� � � � � ���

��

� ���
��


, such that the Gaussian approximation (21)
is

������� ��� � �
��

� ���

��

��� � � � � � � 	

 � �
��

� �
� 

� � � � � � � �

��

� � �

� 

��� � � �

� 

� const � (34)

with � � � � � �	� � � ���
��

� � � � � ���

� 

� ��
 . Thus, the full conditional distribution for �

� 

is approx-

imated by a Gaussian distribution with mean �
 � and precision matrix �� � , given by

�� � � �

��

� � � � � �

� 

� (35)

�
 � � ��
� �
� � � ����� � � � �

��

� � � � � � �

��

� � �
��

�  (36)

As shown in Appendix A.1, the gradient � � � � � and the Hessian
� � � � � , evaluated in the mode� �

��

, are given by

� � � � �
��

� � � � �� � � � �� 
 � � � �� ��� � � � �� 
 � (37)

� � � � �
��

� � � � �� � � � �� 
 � � � �� � diag

�
� � � � �

��

� � � � �� � � � ���
 � � � � � � �

��

�� � � � � �

��

� � (38)
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where we have used the definitions

� � � �
��

� � � 
��� � � � � � �� � ��
 � (39)

� � � �
��

� �

�
� �
��
 
��� � � � � �

�



�� ����� � �  (40)

The mean � � � � ��
 ��� � � � ��


� � �

� 
 
��� � � � � is equal to the relative risk in region
� � condition-

ally on � .

Observe that
� � � ���

� 

� is of the form

� � � � �
��

� � � � � ��� � ��� (41)

where
� � is a diagonal matrix and

� � a rank one matrix defined by

� � � � � � �� � � � �� 
 � � � �� � diag
�
� � � � �

��

� � (42)

� � � � �� � � � ���
 � � � � � � �
��

�� � � � � �

��

� � � � � � �� (43)

Here, we have introduced the 	 � � � matrix
� � given by

� � �
� � �� � � � �� 
 � � � � � � �

��

�  (44)

Both
� � and

� � depend on the observed count ��� and the point � �
� 


. Substituting the sum� � ��� � � � � for
� � ���

� 

� in (34) using the expression in (43) for

� � and re-arranging terms, we
arrive at the expression (23) for the proposal distribution. As we will describe in Section 4.2,
this re-formulation can be utilised to reduce the computational cost of sampling from (34).

4.2 Sampling algorithm

In Section 4.1 we re-formulated the problem of sampling from the Normal approximation
(34) to the full conditional distribution (19) in terms of the general problem of sampling
from a distribution on the form

������� � � � � � � � 	
 � �

� � � � � � ��� � � � 	
 � �

� � � � � const � (45)

where � � �
is a band matrix. Here, we have suppressed the subscripts

� � and � , the
dependency of � �

��

and the conditioning on �

��

, � and � for notational convenience.

The first two terms of (45) is the log-density function, up to a constant, of a Gaussian vector
variable � � with mean an precision matrix given by


 � � � � � � �
�
� � (46)

� �
� � � �  (47)
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Rewriting the last term of (45) as

� 	
 � �

� � � � � � 	

��
 � � � � � � ��
 � � � � � (48)

we observe that this term, up to a constant, is equivalent to the multivariate Normal log-
density of another vector variable  � with mean

� � and covariance matrix � , that is eval-
uated in the value  � 


. Thus, we have introduce two new variables � � and  � , with
distributions given by

� � � � � 
 � � � � � � �
�
� (49)

 � � � � � � � � � � � �	� � � (50)

where 
 � and � � are defined by (46) and (47). In terms of the variables � � and  � , the
distribution (45) is equivalent to the conditional distribution of � � given  � � 
 , evaluated
in � � � � . We denote this distribution by � ��� � �� � � � �  � � 
 � , and it can be expressed by

� � � �  � � ���  ��� 
 � � � � � � � � �  � � � � ��
 � � ��� � � � (51)

using a compact notation. Consequently, sampling from (45), and thus the Gaussian pro-
posal distribution (21), is equivalent to sampling from the conditional distribution given by
(51). Since

�� � � � � � � � � � � ��� ��
 �	� � � (52)

conditioning on  � � 

is equivalent to conditioning on

� � � � � � . In our application, we
have that � � � � � � � � ���
 � � � � � � �� � ��
 
��� � � � � � � � � (53)

is a weighted sum of the lattice specific log relative risks � � within each region. Conditioning
on
� � � � � � can be interpreted as generating samples for which E

� � � � � � 
 , and where the
elements of

� � � should be independent Gaussian variables with common variance 1.

To generate a sample � � from the conditional distribution � � � � � � � � � � � � , we use the
approach given by equation (12) in Section 2.2. We first generate an unconditional sample�� from � � � � � and an � � � � ��
 �	� � , and then compute � � by adjusting for the constraint� � � � � � using the expression

��� � �� � � � � � �
� � � � � � � � � �

� � � � � � �
� � � �� � � � � (54)

The precision matrix � � has the same bandwidth as the prior precision matrix � of � . Utilis-
ing the band structure of � � , samples from (51) can be generated efficiently using the meth-
ods described and implemented in Rue and Follestad (2002).

To compute (54) we need to evaluate the matrix expression
� � � � � � �

� � � � � � � � . The matrix� � � � � �
� � � ��� is in general a full matrix, but it is of dimension � � by � � , where � � is the

number of rows in
�

. So far we have considered the sampling problem updating one region
at a time, for which � � � 	 . But even for generalisations to larger subsets of regions, we
usually have that � � � � .
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As pointed out in Section 3, the matrix ��� � should be positive definite for the Gaussian
distribution defined by (46) and (47) to be proper. The matrix � � is positive definite iff� � � � ��� � � � ��� � . Substituting � � � for � � we get

� � � � � � � � � � � � � � �
� � � � � � � � �� � � � ���
 � � � �� � � � diag

�
� � � � �

��

� � �  (55)

Since all elements of � � � ���
��

� are strictly positive, the sign of the last term on the right is

determined by the sign of the factor

� �� � � � ���
 � � � �� � � � � � � � � � �� 
 ��� �� ��� � � � � ���
 � � � � � � E
� � � ��� �

��

� ��� � � � � ���
 �  (56)

This term can in general be of either sign, such that the precision matrix � � is not guaranteed
to satisfy the positive definiteness requirement. In the case where the prior variance 	�� � is
large, such that � � � � � is small, the second term of (55) will dominate, and the chance is
higher that the positive definiteness requirement is not met. However, this problem can in
general be dealt with by a slight modification of our sampling algorithm, replacing the diag-
onal elements � � � � of the matrix

�
by max

� � � � � � �  � � . The corresponding change in proposal
distribution is corrected for by the acceptance probability of the MCMC algorithm.

To summarise the sampling approach, a sample from the conditional distribution (45) can be
obtained by the following steps:

1. Sample a value �� from the unconditional distribution (49).

2. Sample an � � ��� ��
 �	� � .
3. Compute � � using (54). Then � � will be a sample from the posterior distribution given

by (51), and consequently from (45).

4.3 Some computational details

The sampling algorithm is implemented in C, and is based on the routines for fast and exact
simulation of Gaussian Markov random fields implemented in the library GMRFLib (Rue
and Follestad, 2002). The library provides general algorithm for generating samples from a
GMRF, including conditional samples for hard and soft linear constraints, and the algorithms
are based on the Cholesky factorisation (9) of the precision matrix � (Rue, 2001).

When applying the C-routines to our problem, we have utilised the structure of the specific
problem to further reduce the computational cost. Using the fact that the range of the corre-
lation function is given for a set of discrete values, the normalising constant of the posterior
distribution of � can be computed once at the beginning of a run, and stored for later use.
Also, the sub-graphs representing the subset of nodes in each block in the block-updates of
the log-risk surface � , as well as the sub-graph representing the boundary region nodes, are
computed only once. A timing of the computer program, running the program for 1000 iter-
ations, reveals that 32% of the time is spent evaluating the elements of the precision matrix
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� , and 12% in evaluating the log-likelihood. Further, about 21% of the CPU time is spent on
setting up the algorithm, including specifying the neighbourhood structure and computing
sub-graphs. Consequently, more CPU time is spent on setting up the problem than actually
performing the computations generating the samples.

5 Simulation study

In this section we illustrate the performance of the method by applying the sampling algo-
rithm to two simulated data sets, both generated using the study region of the real data. A
plot of the study region made up from the 544 districts of Germany, overlaid by a lattice
consisting of ��� � 	�� ��� nodes including boundary nodes, were shown in Figure 5.

The simulated data as well as the real data set are standardised such that the overall risk for
the region of study is 1. Therefore, no intercept term is included in the model for the log-
risk surface, and the prior mean 
 of � is taken to be



. The remaining hyper-parameters

of the GMRF prior are the precision � and the parameters specifying the spatial structure
of the random field. We model the spatial dependency using an isotropic one-parameter
exponential correlation function given by

� ��� ��� � � 
��� � � � � ��� �  (57)

Here
�

is the distance between two nodes of the lattice, and � is the distance for which
the correlation is reduced to 0.05. In the simulated data sets, the range parameter of the
exponential correlation function (57) is set equal to ��� � � measured in lattice coordinates
for both data sets. The precisions are taken to be different, and the chosen values are � � ��
and � � � , corresponding to standard deviations of 0.20 and 0.35 respectively. For each
data set, we first generate a realisation of the log-risk surface � from the GMRF prior (7),
and conditionally on � a set of regional count data is sampled from the Poisson distribution
given by the likelihood (15). We define the expected number of cases � � to be the ones
given in the data set used in Section 6, ranging from 3.0 to 393.1 and with a median of 19.
A summary of the two simulated data sets used in the study is given in Table 2, and the
realisations of

� 
��� � � � � � � ����������� � � and the corresponding regional relative risks, given by the
mean

� � � �
��
 
��� � � � � ��� � � over the � � lattice nodes within region � , are shown in Figure 8.

The prior distribution for the precision � and the range parameter � are assumed to be inde-
pendent. To reduce the computational burden, we use a discrete prior distribution for the
range parameter � , such that the determinant of the precision matrix, needed for the eval-
uation of normalising constants, can be computed once at the beginning of the sampling
procedure. The discretisation is done in �����  ��� 	 steps � � � � � 	����� ����� , where the range
at step

�
is equal to � � � ��� � 	 � �  � � measured in lattice coordinates. The discrete prior

distribution is defined on the indexes
�

, such that

� ��� � � 	� � � � 	������������ (58)

The precision � , which is constrained to be positive, is assigned a Gamma prior, � � Gamma
� �	� ��
 � � .

Based on the recommendations in Kelsall and Wakefield (1999) and the discussion of prior
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Figure 8: The true risk surfaces and corresponding regional level relative risks for the two
simulated data sets.
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Aggregated counts ( � � )
Data set � � Min. 2.5% quantile Median 97.5% quantile Max.

I 24 40 0 3 19 87 403
II 8 40 1 2 18 111 461

Relative risk ( ��� )
Data set � � Min. 2.5% quantile Median 97.5% quantile Max.

I 24 40 0.50 0.61 0.98 1.43 1.85
II 8 40 0.45 0.49 095 1.71 2.60

Table 2: The aggregated counts and the true relative risks of the simulated data sets. The
quantiles are given as the empirical quantiles of the simulated values.

sensitivity in Pascutto, Wakefield, Best, Richardson, Bernardinelli, Staines and Elliott (2000),
we choose the parameters of the Gamma

� � � ��
 � � -prior for � such that more weight is given
to small variances than the Gamma

� � � � � -prior for small � frequently used in this type of ap-
plications. Specifically, we choose � � � �   and 
 � � �  �����  . For the range parameter �
we use the discrete prior (58) on the range indexes

� � 	��  ������  ��� 	 corresponding to the
values �  � � �  � � � �  	�� �  	 � ��� �� 	����  � of the range, as measured in lattice coordinates.

The elements of �
�

, representing the log relative risk surface within the 544 regions, are up-
dated using the block-sampling approach described in Section 3.2. As pointed out in that
section, the optimal choice of block-size can be considered to be a trade-off between compu-
tational cost and the acceptance probabilities of the Metropolis-Hastings steps. To study the
effect of changing the block-size on the acceptance probabilities, we ran 11000 iterations of
the sampler on data set I of Table 2 for four different choices of blocks, keeping the hyper-
parameters fixed at their true values. The blocks are made up from single regions, 1. order
neighbourhoods, 2. order neighbourhoods and 3. order neighbourhoods respectively, using
the neighbourhood definitions given in Section 3.2 and Figure 7. The four different block
sizes are also illustrated in Figure 9. In our sampling algorithm, the blocks are slightly modi-
fied such that the different blocks of one run of the sampler are disjoint, and such that regions
with only one neighbour are added to one of the adjacent blocks. This last modification ap-
plies to city regions, like two regions within the 2. order neighbourhood block of Figure 9,
as well as some of the regions at the boundary. To avoid boundary effects between blocks,
we generate the blocks randomly, updating the partition into blocks at every 10th step of the
sampler.

The resulting acceptance rates for the four different choices of the block structure are dis-
played in Figure 10. We observe that the acceptance rates for the single region blocks are very
large, with a median acceptance probability of 0.95, indicating that the Gaussian approxima-
tion is a good approximation to the posterior distribution (19). For the blocks based on 1., 2.
and 3. order neighbourhoods, the median acceptance probabilities are gradually decreased,
taking the values 0.66, 0.35 and 0.16 respectively. The acceptance probabilities seem to be
independent of the size of the regions, represented by the number of lattice nodes within the
region, but they increase as the mean of the regional level risk approaches 1.0. This result is
as expected, since the Gaussian approximation (27) to the posterior distribution (25) of � � is
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expected to be better when the values of � � are small, and thus the corresponding regional
level relative risk close to 1.0. Based on these results, we choose to use blocks made up from
a region and its 1. order neighbourhood.

The convergence of the MCMC algorithm is assessed by visual inspection of trace plots.
The total number of parameters of the risk surface is too large for an inspection of all trace
plots to be feasible. So in addition to the hyper-parameters � and � , we study trace plots of
the relative risk � � of a selected number of regions, and for a subset of the corresponding
elements of the log-risk vector � . The values of the regional relative risks at iteration

�
,

denoted �
� ���
� � � � 	��������� , are generated from the current values of � by

�
� ���
� � 	

� �
�
� �
��
 
��� � � � ���� � � (59)

where � �
���� is the

�
’th update of � � . To get an impression of the behaviour of the algorithm

for the remaining regions, we compute the mean acceptance probability of the Metropolis-
Hastings steps for all regions.

In Figure 11, we show a subset of trace plots for data set I, after running the MCMC algo-
rithm for 101000 iterations. The convergence is fast and the algorithm mixes well for the
majority of the relative risk estimates, but the trace plots for region 16 indicate that although
the convergence seems to be fast, the mixing is relatively poor for this region. The mean
acceptance probability for the corresponding elements of � is 1.9%. The mean acceptance
probabilities for all regions are plotted in the top panels of Figure 12, and the acceptance rate
for region 16 is seen to be the lowest among the 544 regions, for which the second smallest
value is 8.9%. Region 16 corresponds to a region with a small true ( � ��� � �  	 	 ) as well as
estimated (

�
� ��� � �  	 � ) relative risk and a large aggregated count ( � ��� �  �  ). From Table 3

we observe that the true risk is relatively similar for region 16 and its neighbours, but the
expected and observed aggregated counts are an order of magnitude larger. From Table 2 it
is clear that the observed count of region 16 is in the tail of the empirical distribution of the
observed counts, and this might explain why the Gaussian approximation is relatively poor
for the elements of the log-risk within this region. (Region 16 includes Hamburg, and since
we use the expected counts of the German oral cavity cancer data to generate our simulated
data set, this explains the high count of this region).

Region no. ( � ) � � ��� ��� SMR
16 202 314.9 0.61 0.64
6 17 30.7 0.67 0.55
9 45 50.9 0.62 0.88

13 30 39.9 0.72 0.75
15 22 38.5 0.70 0.57
38 18 38.1 0.63 0.47
44 28 30.6 0.73 0.91

Table 3: The expected ( � � ) and observed
� � ��� aggregated counts, true relative risks ( � � ) and

SMR for region 16 and its neighbours for data set I.
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Single region 1. order neighbourhood

 

 

 

 

2. order neighbourhood 3. order neighbourhood

 

 

 

 

Figure 9: An illustration of the blocks used in the block-sampling of the log-risk surface. The
risk surface for the lattice nodes within the dark shaded regions are updated conditionally
on the nodes of all remaining regions as well as the boundary nodes.
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Figure 10: Histograms of the mean acceptance probabilities of the log-risk of the 544 regions
using the block-MCMC algorithm (left), the mean acceptance probabilities plotted against
the number of nodes within the region (middle), and the same values plotted against the
estimated log-risk (left). The plots are given for blocks of single regions and for 1. order,
2. order and 3. order neighbourhoods (from the top and downward), and are based on re-
sults from using data set I.
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The mixing for � and � is poorer, but the trace plot of � indicates that the algorithm has
converged for this parameter. For the range parameter � , the mixing is not uniform over
the range of possible values. The poor mixing for some neighbouring values for � is due
to larger differences between the corresponding neighbouring prior models than the typical
differences between neighbouring models over the range of values of � . This is a result of
the procedure used for fitting GMRFs to GRFs (Rue and Tjelmeland, 2002). The additional
constraint that the coefficients of the precision matrix of the GMRF, computed for each value
of the range, should also be near continuous with respect to the range, is not accounted for in
the fitting procedure. The effect could be reduced by increasing the resolution for the range
� in (58), but probably we need to add explicit smoothing constraints of the parameters with
respect to range in the fitting procedure.

To illustrate the effect of slow convergence and mixing of the hyper-parameters on the es-
timates of the log-risk surface, we have plotted the updated values of some elements of �
against corresponding values for � and � . From the resulting scatter plots shown in the top
two rows of Figure 13, we observe that the posterior variance decreases for increasing values
of the precision � , but the posterior means of the elements of � appear to be stable despite
the poor mixing of the individual parameters � and � . Therefore, we proceed by presenting
results for the relative risk surface based on estimated posterior means, but the poor mixing
of the hyper-parameters should be kept in mind.

We discard the first 1000 iterations and use the remaining 100000 iterations to compute es-
timated posterior mean values of the relative risk surface and the relative risks within each
region. The results for data set I are reported in Figure 14. From the top and middle left
panels we observe that the simulation algorithm reproduces the structure of the simulated
risk surface well. The corresponding true and estimated values of the regional level risks are
plotted in the top and middle right panels. Comparing the estimated values to the standard-
ised mortality ratio (SMR) added in the bottom right panel, the algorithm is seen to smooth
the disease map based on the SMR toward the true risk surface. In the bottom left panel we
have plotted the estimated probability that the risk � � exceeds 1.

A selection of trace plots and the estimated posterior mean values for data set II are given in
Figures 15 and 16. The general pattern is similar to the results from data set I. The mixing
is relatively good and the convergence is fast for the log-risk surface for most regions, but
for the hyper-parameters, convergence is not achieved after the 101000 iterations. However,
there are more regions for which the mixing for the corresponding elements of � is relatively
poor. In Figures 15, we have included trace plots for the regional level relative risk and two
corresponding elements of � for a region for which the acceptance rate is extremely low
(0.09%). This region is the same as the one with lowest acceptance rate for data set I. In the
sampling algorithm we have used the same block-size as for data set I, producing the mean
acceptance probabilities illustrated in the middle panels of Figure 12. We observe that the
acceptance rates are in general lower than for data set I, and the lowest for the regions with
the most extreme values of the risk. This overall decrease in acceptance probabilities corre-
sponds to the fact that the Gaussian approximation is a better fit to the posterior distribution
for the data set with the smaller variance. To increase the average acceptance probability,
the block-sizes should be reduced to include single regions only for this simulated data set,
and in the further discussion of the results, the low acceptance rates for some of the regions
should be kept in mind.
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As for data set I the posterior mean level of the elements of � seems to be stable despite
the convergence problems apparent for the hyper-parameters, as illustrated by the scatter
plots in the bottom two rows of Figure 13. For region number 16, there is some indications
of negative association between � and the estimated level of the log-risk, but as we pointed
out above, the acceptance rate is very low, and we know from Figure 15 that the mixing is
poor for the elements of � within this region. Therefore, the results presented below, based
on estimated posterior means, are hoped to be representative despite the poor mixing of the
hyper-parameters.

Comparing the differences between the SMR and the estimated risk surface for the two data
sets, we observe from Figures 14 and 16 that degree of smoothing is less pronounced for
the case � � � than for the data set with � � �� . Thus, increasing the prior variance of
the underlying risk surface seems to reduce the degree of smoothing. This effect is also
illustrated in Figure 17, where we have plotted the differences between the estimated and
true relative risks together with corresponding differences between the estimated risks and
the observed SMR. Some of the larger differences for data set II correspond to regions for
which the acceptance probabilities are small and the mixing relatively poor, but comparing
similar differences discarding risk estimates for which the acceptance probabilities are all
larger than 20%, the tendency is similar.

We end this section by an illustration of how we can assess the validity of the approximation
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 � � � � (60)

which is an analogue to the approximation
� ����� � ��� � � � 
 ����� � ��� � ��� ��� �� � , underlying the

geostatistical approach of Kelsall and Wakefield (2002). Let

�
� � �


��� � 	
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be the approximation to the relative risk � � �
��


� � �
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��� � � � � of region
� � , and let further�

�� � � ��
� �
�

� and
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��� � �

� �
�

� be the corresponding posterior mean estimates based on the up-
dates ��

� ���
� and �

� ���
� � � � 	������� 	���������� from the Metropolis-Hastings algorithm. By Jensens
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��� � � � � � (62)

such that the estimated posterior means of �� � should be smaller than or equal to the corre-

sponding values for ��� . In Figure 18 we have plotted
�
�� � against

�
��� and

�
�� ���

�
��� as a function

of the number of lattice nodes within each region, for data sets I and II as well as for the oral
cavity cancer data analysed in the next section. We observe that (61) is a good approxima-
tion to ��� . As expected, the approximation is better the smaller the number of lattice nodes

within the region, and in accordance with Jensens inequality,
�
�� � � �

������� � . In the bottom
panels of Figure 18, the variability of the updates of the fraction ��

� ���
� ���

� � �
� is illustrated by

plotting histograms of updated values for a region with a relatively large number (53) of
lattice nodes. We observe that the variability is largest for data set II, with a minimum value
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of about 0.92. The mean acceptance probabilities for the risk updates for this region are 0.56,
0.23 and 0.42 for data set I, data set II and the oral cavity cancer data respectively.

6 Oral cavity cancer data

We apply our estimation approach to a set of data on mortality from oral cavity cancer for
males in Germany, over the period 1986-1990. We do not intend to do a thorough analysis
of these data, but include the analysis to illustrate the method as applied to a set of real
data. The data are given as counts for each of the 544 districts of Germany. The counts range
from 1 to 501, with a median count of 19, and the empirical 2.5% and 97.5% quantiles of the
observed counts are 3 and 124. The standardised mortality ratios (SMR) for the data were
shown in the right panel of Figure 1. The data were analysed by Knorr-Held and Raßer
(2000) who identified clusters of elevated or lowered risk using a Bayesian approach based
on reversible jump MCMC.

From the bottom panels of Figure 19, we observe that as for the simulated data, the mixing
of the hyper-parameters is relatively poor. There is some evidence that the algorithm has
converged after about 40000 iterations, but more effort is needed to get reliable estimates of
the hyper-parameters using a reasonable amount of computational effort. From trace plots of
a selected number of elements of � , some of which are plotted in Figure 19, we observe that
the mixing is good despite the poor mixing of the hyper-parameters, and the convergence
is fast. The acceptance rates are reasonably high for all but a few regions, as illustrated in
the bottom panels of Figure 12. The data for the regions for which the mean acceptance
probabilities of the log-risk updates are less than 10% are listed in Table 4, and we observe
that they all have a relatively large or small SMR or a high observed count, one of which is
the maximum observed count (501).

Region no. ( � ) � � � � SMR
197 111 73.0 1.52
322 117 72.9 1.60
324 53 30.8 1.72
328 501 393.1 1.27
414 52 98.5 0.53
443 15 28.1 0.53

Table 4: The expected ( ��� ) and observed
� � ��� aggregated counts SMR for the regions for

which the acceptance rates of the log-risk updates for the oral cavity cancer data are less
than 10%.

The results from applying our GMRF approach to the data, using blocks made up from re-
gions and their 1. order neighbours, are summarised in Figure 20. The estimated log-risk
surface and the corresponding estimated posterior means of the regional relative risks are
shown in the upper two panels. The results can be compared to the standardised mortality
ratios (SMR) shown in the bottom right panel. We observe that the overall spatial pattern of
the estimated relative risk and the SMR are similar, with elevated risk in the north-eastern
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and south-western parts, but that the estimated spatial risk surface is smoother. The esti-
mated posterior mean relative risks at the regional level vary between 0.57 and 1.54. The
results are similar to the ones obtained by Knorr-Held and Raßer (2000). They reported esti-
mated posterior median relative risks in the range 0.65 and 1.42 using their Bayesian cluster
detection approach, and between 0.56 and 1.56 using the method of Besag et al. (1991). The
estimated spatial pattern is similar to theirs, but their Bayesian clustering approach leads to
a somewhat smoother map. However, the smoothness of the map using our approach will
depend on the range parameter � , and since the convergence can be questioned, the result
should be interpreted with care.

7 Discussion

We have presented an approach to estimation of a spatially varying risk surface based on
aggregated count data, using a Gaussian Markov random field prior defined on a lattice.
The method is exact in the sense that the posterior mean estimates are generated on the basis
of samples from a Markov chain that converges to the correct posterior distribution. This
represents an improvement over the geostatistical approach of Kelsall and Wakefield (2002)
using a log-Normal approximation to the regional relative risk, in particular in applications
for which the regions representing the level of aggregation of the data vary substantially in
size and shape. As illustrated in Section 5, for the regions of our study the approximation
gives very similar results, but in general the approximation should be justified for the actual
set of regions at hand.

We are still left with the problem of convergence of the MCMC sampling algorithm. For the
simulated examples and the data set analysed in Sections 5 and 6 the convergence is fast
for the elements of the log-relative risk surface � , and the mixing is good except for ele-
ments of � corresponding to extremes within the range of the relative risks. The acceptance
rates for the Metropolis-Hastings sampler are increased by reducing the size of the blocks in
the block-MCMC algorithm, at the expense of increased computational cost. For the hyper-
parameters, the mixing turned out to be relatively poor, but the estimated posterior means
of the elements of the log-risk surface seemed to be stable despite the poor mixing of the
individual hyper-parameters. Using a single site Metropolis-Hastings sampling approach,
convergence and mixing is often improved by re-parameterisation, but this will have less
effect in our case, since we already accept or reject the proposed values of the range parame-
ter � and the precision � jointly. We chose to block the hyper-parameters with the boundary
nodes, an approach that was shown to be equivalent to sampling � and � from the marginal
posterior distribution of

� � ��� � , integrating over the boundary nodes. To study the effect of
blocking on the mixing of the hyper-parameters, other blocking strategies, like including the
nodes corresponding to a random sample of inner regions in the block, could be explored.
We ran the sampling algorithm including a randomly chosen inner region and it’s 1. order
neighbourhood in the block, but no improvement in mixing of � or � was gained.

We have illustrated our approach using the exponential correlation function to specify the
spatial correlation structure. This could be replaced by alternative, more flexible classes of
models, like the Matérn class, based on Bessel functions. In Hrafnkelsson and Cressie (2003)
a simpler alternative approach to that of Rue and Tjelmeland (2002) is proposed to fit a
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GMRF to a geostatistical GRF model using the Matérn class of correlation functions.

The commonly used log-Gaussian random effects model for the regional level relative risk,
as given by (1), includes a spatially unstructured as well as spatially structured effect, such
that the degree of spatial dependency can be assessed by studying the relative values of
the estimated precisions of the two effects. A spatially un-structured effect can also be in-
troduced our model, and the proposed sampling based approach to parameter estimation
can be applied to the resulting model after a re-parameterisation adding another level to the
hierarchical model (see Knorr-Held and Rue, 2002).

As the methods of Best et al. (2000), using a Poisson-Gamma model with identity link, and
Kelsall and Wakefield (2002) using similar distributional assumptions as in our model, our
method is aggregation consistent, such that the estimated spatial structure is independent of
the level of aggregation of the data. Also, the method can be extended to include covariates
observed at different non-nested levels of aggregation, using all covariates at their original
level of aggregation. This is an appealing feature, since ethological studies often involves
data observed at the individual level, as point observations and as aggregated data.

The results from applying our approach to the German oral cavity cancer data turned out
to be very similar to those reported by Knorr-Held and Raßer (2000). A closer look at the
resulting risk surface displayed in the top left panel of Figure 20, reveals an apparent differ-
ence between the general level of the risk in the former German Democratic Republic (GDR),
including Eastern Berlin, and Western Germany (BRD). This could be due to different rou-
tines for reporting cases, and the effect could be taken into account by including an indicator
variable representing former country (GDR or BRD) as a covariate of the model.

We conclude that using GMRFs as proxies for GRFs on a lattice allows for the development
of an aggregation consistent approach to estimating a smoothly varying risk surface based
on aggregated count data. Applying the approach to simulated data as well as a set of real
data using computationally efficient block-MCMC algorithms for parameter estimation, we
have shown that the method reproduces the risk surface well. Despite blocking the hyper-
parameters with the boundary nodes, further work seems to be needed to improve mixing
and convergence of the hyper-parameters.
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Figure 11: Selected trace plots for the simulated data set I, with � � �� . The five top rows
show trace plots of the regional risk � � for five regions (left) and of two elements of � falling
within each region (middle and right). Every 20th iteration is shown.
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Figure 12: The acceptance rates for the block-MCMC algorithm for (from the top downward)
data set I, data set II and the oral cavity cancer data. The left panels show histograms of the
acceptance rates of the log-risk � within each region, and in the right panels the acceptance
rates are plotted against the estimated risk.
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Figure 14: Results for the simulated data set I, with � � �� and � � � � . The true values of
the risk surface and regional risks, also shown in Figure 8, are added for reference.
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Figure 15: Selected trace plots for the simulated data set II, with � � � . The five top rows
show trace plots of the regional risk � � for five regions (left) and of two elements of � falling
within each region (middle and right). Every 20th iteration is shown.
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Figure 16: Results for the simulated data set II, with � � � and � � � � . The true values of the
risk surface and regional risks, also shown in Figure 8, are added for reference.
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Figure 17: Differences between the estimated and true relative risk (left) and between esti-
mated risk and SMR (right) for the simulated data sets I (top) and II (middle), and differences
between estimated risk and SMR for the oral cavity cancer data (bottom).
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Figure 18: Plots of the posterior mean estimates
�
���� against

�
��� (top panels) and

�
�� � �

�
��� as a

function of the number of lattice nodes within the region for the two simulated data sets and
for the oral cavity cancer data. The bottom panels show histograms of the fractions ��

� ����
� ���

� ����
�for region 10, which has 53 lattice nodes.
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Figure 19: Selected trace plots for the oral cavity cancer data. The five top rows show trace
plots of the regional risk ��� for five regions (left) and of two elements of � falling within each
region (middle and right). Every 40th iteration is shown.
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Figure 20: Results for the German oral cavity cancer data.
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A Computational details

A.1 The gradient and the Hessian of the Poisson log-likelihood

Define

� � � �
��

� � � 
��� � � � � � �� � ��
 (63)

� � � � ��
 � �
�
� �
��
 
��� � � � � �

�



�� ��� � � � (64)

where � � denotes element � of the log-risk surface � . We compute the gradient vector
� � � � � and the Hessian matrix

� � � � � of the Poisson log-likelihood function given by
� � � � � �

� � ������� � ���� � �
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��� � � , which define the second order Taylor approxima-
tion (33) of the conditional posterior distribution � � �

��

� ���

� 

��� � � � . The elements of � � � � �

and
� � � � � are given by� � � � ���� � � � � � �� � � � ��
 � � � �� ����� � � ��
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Consequently, the vector � � � � �
��

� and the matrix
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� , evaluated in the mode � �

� 

of the

posterior distribution of �
��


, can be expressed by
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 � (67)
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� � (68)

establishing the expressions (37) and (38) of Section 4.1.

A.2 A Gaussian approximation to the posterior of � � for general sets of regions�
Here, we establish the Gaussian approximation to the conditional posterior distribution
� � � � � � ��� ��� � � � of the log-risk � � for blocks of lattice nodes corresponding to a set � of sev-
eral regions, given by equation (26) in Section 3.2. In analogy to expression (33) for the single
region block case, a Taylor expansion based quadratic approximation to the log-likelihood
part � � � � � � � of (26) is given by

�
�
� � � � � �

� 	
 � � �
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� � � � �� � � � � �� ��� � � � �� � � � � � (69)

discarding terms not depending on � � . The vector �
� � �� � and the matrix

� � � �� � are the
gradient and the Hessian of � � � � � � � evaluated in the mode � �� of the posterior distribution
of � � .
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We derive the Gaussian approximation using the Poisson likelihood (15). As for the single
region case in Appendix A.1, define

� � � � � � � � 
��� � � � ��� � � �
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 � � � � � � and (70)
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���
�� ��� � � �  (71)

Because of the conditional independence structure of the likelihood, the gradient and the
Hessian defining the Taylor expansion of � � � � � � � are given from (67) and (68) by the sums

�
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�
�
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such that the precision matrix
� � � � �� � of the quadratic approximation to � � � � � � � is block

diagonal with blocks
� � � � � �� � corresponding to (68) for each block � . Define the � � � � �

matrix
� � by

� � � � � � �� � � � �� � � � � � � �� � � � � � 
 � � � (74)

where � � and � � are the number of regions and number of lattice nodes within the block � ,
respectively. In correspondence with the quadratic approximation for the single region case,
the matrix

� � ���� � is of the form
� � � �� � � � � � � � � � � (75)

for a diagonal matrix
� � and rank one matrix

� � given by

� � � � �
�
� � �� � � � �� � � � �� � diag
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�� � � � � �� � � � � � � �  (77)

Substituting (69) for � � � � � � � in the posterior distribution (26), using the expressions for
�
� � �� � and

� � � �� � derived above and collecting terms that are linear and quadratic in ��� , we
arrive at the Gaussian approximation given by (27).

A.3 Conditioning on a soft linear constraint

Here, we use Normal distribution theory to check the validity of equation (54) as a sample
from the GMRF � conditionally on a soft linear constraint. Let

� ��� � 
��	� � (78)

and consider the general problem of sampling from the conditional distribution

� � � � � � ����� (79)

47



where � ��� ��
 � � � . This is equivalent to sampling from the distribution

� � �� � � (80)

where  � � � � � . The sampling problem of Section 4 is a special case of (79) for which

 � 
 � and � �� � as defined by (46) and (47), and where � � � and � � 
 .

Let �� be an unconditional sample for � from (78), and let

� � � �  � � �
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� � � � � � �
� �  � � � � (81)

where  � � �� � � . We will show that � � has the same distribution as a sample from� � �� � , and thus from (79) by comparing the mean and variance of � � computed by (81) to
the moments of (80).

Using multivariate Normal distribution theory, the mean vector and covariance matrix of
the distribution � � �� � can be shown to be
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The mean vector and covariance matrix of  � � � � � is

E
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such that
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Consequently, ��� computed by (81) has the same first and second order moments as a sample
from (79), and since the corresponding distributions are both Gaussian, the validity of (54)
as an update of (45) follows.
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