
NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

Gaussian Markov Random Field Models
With Applications in Spatial Statistics

by
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Abstract

Gaussian Markov Random Field (GMRF) models are frequently used in statistics, and in
spatial statistics in particular. The analytical properties of the Gaussian distribution are convenient
and the Markov property invaluable when constructing single site Markov chain Markov Carlo
algorithms. Rue (2001) demonstrates how numerical methods for sparse matrices can be utilised
to construct efficient algorithms for unconditional and various forms for conditional sampling
and for the evaluation of the log normalised density. These algorithms allow for constructing
block-MCMC algorithms, where all parameters involved, including hyper-parameters, can often
be updated jointly in one block. The convergence properties of such algorithms are superior
compared to their single-site versions.

This paper reviews the basic properties of a GMRF and how to take advantage of sparse matrix
algorithms for sampling and evaluation of the log normalised density. We then discuss two topics
mentioned briefly in Rue (2001): How to take advantage of more modern techniques for sparse
matrices compared to more classical band-matrix methods, and how to sample a GMRF under a
soft linear constraint. We apply and illustrate these techniques on two problems in spatial epi-
demiology. The first is a semi-parametric ecological regression problem presented by Natário and
Knorr-Held (2002). The second is concerned with the modelling of a smoothly varying disease
risk surface from area-level aggregated disease counts using an underlying Gaussian field model,
motivated by the work of Kelsall and Wakefield (2002).

[This paper is based on an invited talk by HR at the 19th Nordic Conference on Mathematical
Statistics June 9-13, 2002 Stockholm, Sweden]

Keywords: Gaussian Markov random fields, Markov chain Monte Carlo, block-sampling, conditional
auto-regression, disease mapping, geostatistics, numerical methods for sparse matrices.
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1 Introduction

Gaussian Markov Random Field (GMRF) models, or conditional auto-regressions, are frequently used
as components in statistical models, in particular for spatial models (Besag, 1974; Besag and Kooper-
berg, 1995; Besag and Higdon, 1999; Cressie, 1993). All the analytical results for the Gaussian
distribution, combined with a Markov property, make such models useful not only in its own right but
also as components in a larger model. The Markov property is nearly a requirement for constructing
single-site MCMC algorithms, as the conditional density for one component only depends on a few
other components, denoted the neighbours.

Rue (2001) demonstrates that the Markov property of a GMRF makes it possible to utilise numerical
methods for sparse matrices to construct fast algorithms for computations on a GMRF, when all task
are formulated in terms of operations on the precision matrix. This is due to the direct connection
between the non-zero pattern of the precision matrix and the Markov properties of the GMRF. Fur-
ther, this provides a unified computational framework for GMRFs for which special algorithms for
dynamic models based on the Kalman-filter is a special case, see Knorr-Held and Rue (2002, Ap-
pendix). When applying a GMRF in a statistical model, a non-Gaussian likelihood will often make
the full conditional for the GMRF non-Gaussian, but the Markov properties are in most cases re-
tained. The fast algorithms for GMRFs make it feasible to construct GMRF approximations to the
full conditional, and based on these to construct block-MCMC algorithms for exploring the poste-
rior (Rue, 2001; Knorr-Held and Rue, 2002). Block-sampling algorithms have also been applied for
generalised additive and semi-parametric mixed models with GMRF priors (Fahrmeir and Lang, 2001;
Lang and Bretzger, 2002), and dynamic models (Shephard and Pitt, 1997; Gamerman, 1998; Knorr-
Held, 1999). Although block-updating the GMRF will generally improve the convergence, Knorr-
Held and Rue (2002) found empirically that by constructing joint block-updates of the GMRF and its
hyper-parameters, further improvements in convergence were achieved at virtually no extra cost. The
reason is the strong interaction between the hyper-parameters and the GMRF, which is not resolved
by block-updating the GMRF only. Rue, Steinsland and Erland (2003) discuss how to improve the
GMRF approximation of the full conditional of the GMRF by constructing a class of non-Gaussian
approximations that are adaptive to the non-Gaussian likelihood and have the same computational
complexity as the GMRF.

In this paper, we first give a short introduction to the GMRF, describing its basic properties and how
computations involving a GMRF relates to numerical methods for sparse matrices. Then we discuss
two topics briefly mentioned but not pursued by Rue (2001). First, we point at the benefits by using
more modern and complex techniques for sparse matrices as an alternative to the classical band-
matrix approach, and then we provide the details for efficient sampling under a soft linear constraint
(a linear constraint observed with Gaussian error). We illustrate the methods by two case studies both
concerned with modelling the geographical variation of the risk of a disease. In our first example, we
re-estimate the parameters of the semi-parametric ecological regression model of Natário and Knorr-
Held (2002), who model larynx cancer mortality rates using corresponding lung cancer rates, regarded
as a surrogate for smoking, as a covariate. The effect of the covariate is modelled semi-parametrically
as a smooth function taking one of a set discretised values, and since these values represent a global
parameter vector, the band-matrix approach becomes inefficient compared to modern techniques for
sparse matrices. Using these modern techniques, we show how to construct a block-MCMC algorithm
for all the parameters in the model, leading to superior speed and convergence properties. We also
provide a theoretical justification of this way of constructing block-MCMC algorithms, which was
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missing in the initial work by Knorr-Held and Rue (2002). In our second application, we consider the
problem of estimating a smooth risk surface based on disease counts aggregated in a set of disjoint
areas, motivated by the recently proposed geostatistical approach by Kelsall and Wakefield (2002).
They model the spatial variation of disease risk using an underlying Gaussian field. Conditional on
the disease counts they specify a posterior model for the risk on the level of aggregation of the data,
that requires an approximation to the joint distribution of the area-level risks using the moments of
the Gaussian random field. Based on this model, they construct a single-site MCMC algorithm for
inference. By utilisation of the algorithm for sampling under a soft linear constraint and making use
of a GMRF as a proxy for a Gaussian field (Rue and Tjelmeland, 2002), we will demonstrate how
the approximation can be avoided, and how to construct efficient block-MCMC algorithms from the
initial model.

The paper is organised as follows. In Section 2 we review basic properties and operations on the
GMRF including recent advances in efficient sampling from GMRFs, and we apply these methods to
two applications in Section 3.

2 Basic properties of and operations on GMRFs

In this section we review the basic properties of GMRFs. We first give a definition of a GMRF and next
describe how the conditional independence properties of the GMRF allows for efficient computations
using numerical algorithms for sparse matrices.

2.1 Definition of a GMRF

Let ���������
	����	�������	������� be a Gaussian random field (GRF) with mean � and covariance matrix�
, that is, ������� � 	 � � . The precision matrix of � is denoted by � and � � ��� �

. The GRF �
is said to be a Gaussian Markov random field (GMRF) with respect to the labelled undirected graph �!��"#	�$%� , if the nodes are "&�('*)+	�������	�,.- and the edges

$/�('0'
12	�3�-546"87�":9<;>=@?BA�DC and 1EA�F3�-G�
If '
12	�3�-H4!$ , then 1 and 3 are said to be neighbours, and we write this 1��I3 . The conditional
independence structure of the GMRF is related to the non-zero pattern of the precision matrix by�J=LKM�N?POQ� � =@?SR ;>=@?T�UC , 1/A�V3 . Here, � � =W? denote all elements of � except elements 1 and3 . As a consequence of the correspondence between the non-zero pattern of � and the conditional
independence structure of the GMRF, the GMRF is typically specified in terms of its conditional
moments. These are given by Var ���X=YO+� � =Z�Y��)�[0;>=\= ,

E ���=YO�� � =Z�Y�^]_=X` );a=b=dc ?feg= ;a=W?h���N?i`j]J?��k	 and Corr ���=l	���?mO+�Yn � =@?fo �Y�!` ;>=@?p ;>=\=Z;q?r? �

These expressions provide an interpretation of the elements of � based on conditional moments. This
can be compared to the interpretation of the elements of

�
, which are based on marginal univariate

and bivariate moments.
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2.2 Efficient computations on a GMRF

If the graph
 

on which the GMRF is defined is fully connected, the precision matrix will be a
full matrix. However, we will focus on situations where � is sparse, which are the ones leading to
computational savings. In most cases, only � ��, � terms in � are non-zero while � ��, � � terms are
zero. We will explain why sparse matrices allow for fast computations, and how we in most cases can
improve the computational efficiency by reordering the indices, i.e. by finding a permutation matrix�

, such that ��� � � � � � is faster to factorise than � . The basic operations on � are to compute
the Cholesky factorisation � ����� � , where � is the (lower) Cholesky triangle, and to solve the
linear systems ��� �
	 and � � � ��� , which is also the way to find the solution of � � �
	 .
After discussing some computational aspects of these matrix computations, we describe how un-
conditional and conditional sampling from a GMRF ��� ��� � 	 � � � � , as well as evaluation of the
corresponding log-densities, can be formulated in terms of these basic operations. The algorithms that
are described are all implemented in the open source C-library GMRFLib (Rue and Follestad, 2002).

2.2.1 Some basic results

The algorithm for sampling � � ��� � 	 � � � � consists of three steps. First, compute the Cholesky
factorisation � ���� � , then solve � � �P��� where � ��������	��_� , and finally let �D����� � . We
will return later to the computational costs involved as this depends among other factors on the graph 

, but in the case where � is a full matrix, computing the Cholesky factorisation costs ,��
[�� flops.
Note that computing � � � � ��� for a , 7�� matrix

�
, is done as follows. Solve ��� � � for each

of the � columns of
�

, then solve � � � � � for each of the � columns of � . There is no need to
compute the inverse of � .

2.2.2 Operations on sparse precision matrices

We will now explain why we can construct efficient algorithms for the factorisation of sparse matrices,
and which considerations that lie behind such algorithms (Dongarra and Duff, 1998).

The main idea is to take advantage of the fact that when � is sparse, then its Cholesky triangle �
inherits the non-zero pattern from � , so if ;m=@?6A�(C then ! =@?�A��C , 1#" 3 (shown below). In addition,
some other terms of � can be non-zero, and these are called fillins. The positions of these additional
non-zero terms can be determined from

 
, such that we can compute and store only the non-zero

terms of � . If the number of fillins, , fillin is small, then it is fast to compute � , and if it is large, then
the computation will be slower.

We now describe how to identify which elements of � that are non-zero, using a statistical approach.
Let ��� ��� � 	 � � � � . Then we know that if � � �!�$� , where �^� ������	��_� , then �%� � has the
correct distribution. Writing this out, we obtain (for 1Q�^,Q	������
	
) )

E ��� = O��'& =)( �+*�, � � �^] = ` )
! =\=

�
c?.-g=/( � ! ? = ��� ? `j] ? � and Var ��� = O��'& =/( �+*0, � �Q��)�[ ! �=\= � (1)

This provides an interpretation of the elements of � from the conditional expectation and variance of�J= , conditioned on the subsequent components � =/( �21434343 1 � . Define the set 5 ��12	�3h�5�M'
16��)+	������ 	�3B`
4



)+	�3 �D)+	�������	�,.- , then it follows from the global Markov property and (1) that

5 ��12	�3h� separates 1 and 3�R � = K^� ? O�� � & = 1 ?.* R ! ?2= �DC�� (2)

A consequence of this result is that if 1#�!3 and 3��!1 , then ! ? =mA� C . Using (2) we can determine
from

 
which elements of � that are zero, and these need not to be computed.

A simple example is provided in Figure 1, for the graph of ���_� ��]Q	�� � � � (top) and ��� �_� �	� � 	�] � �
(bottom), where � �M����]�
J	��X� and ] � ��� C�	
)�� . Node 1 corresponds to ] , and the remaining
nodes to � ��	�������	 � � , with ,j�� , in increasing order. Each row shows the graph, the precision matrix
and the Cholesky triangle. We see that � � makes � a full matrix (maximal number of fillins), as all
elements of � depend on ] and thus none of the statements in (2) is true. The bottom row displays
the case ��� � , which don’t produce any fillins. This example demonstrates that the ordering of the
vertices is important for the degree of fillin. Therefore, it is common to permute � before computing
the Cholesky factorisation by choosing a permutation matrix

�
producing few fillins, and factorise� � � � � � � instead. All equations are then solved in this permuted indices world, and then

mapped back to the original indices when done. There are ,�� possible permutations, so computing the
best is not possible in general. Therefore, heuristic algorithms are used to produce, hopefully, good
permutations with little fillin.

The example in Figure 1 is a special case of the nested dissection approach for reordering. Such
schemes give quite generally few fillins, and the approach goes as follows. First, select a set of
nodes dividing the graph into two disconnected subgraphs of almost equal size, next order the subsets
such that the separating set has the highest indices, and then recursively repeat this division for each
subgraph. More classical reordering schemes make � � have all the elements along the diagonal (Rue,
2001). This makes band-matrix algorithms useful. These are easy to code and runs very efficiently
for long and thin graphs.

1

2 3

45

� �
�����
�
7 7 7 7 77 77 77 77 7

������
� �8�

�����
�
77 77 7 77 7 7 77 7 7 7 7

������
�

2 3

41

5 � �
�����
�
7 77 77 77 77 7 7 7 7

������
� �8�

�����
�
7 7 7 77 7 7 7 7

������
�

Figure 1: Effect of reordering the nodes of the graph on the fillin of the Cholesky factor � of � .
The precision matrix and Cholesky factor are shown for the original graph (top) and the graph after
swapping nodes 1 and 5 (bottom).

In the applications of Section 3 we use data from the � � districts of Germany. Both the band reorder-
ing and the nested dissection reordering are illustrated in Figure 2, where the nodes of the graph are
the � � districts, defining two districts as neighbours if they share a common boundary. The left pan-
els display the ordering of the nodes after applying the reordering schemes, and the middle and right
panels give illustrations of the non-zero pattern of the precision matrix and the Cholesky triangle after
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the reordering. The band-reordering scheme (Lewis, 1982) orders the districts row-wise, such that
one row will make the south and north conditional independent. Hence, we obtain a band-matrix with
the “row-width” as the bandwidth. The nested dissection reordering (Karypis and Kumar, 1998) splits
the region into four sub-regions, but these sub-regions are so small that there is no gain in continuing
the process.

Figure 2: Illustration of the band-matrix reordering and the nested dissection reordering for the graph
of Germany used in the applications of Section 3. The graph has � � nodes each representing a
disctrict, and two districts are neighbours if they share a common boundary. The left panels display
the ordering of the nodes after applying the reordering schemes, and the middle and right panels give
illustrations of the non-zero pattern of the precision matrix and the Cholesky triangle after reordering.
The top row displays the band-matrix reordering, and the bottom row the nested dissection reordering.
The ratio of non-zero terms in � and in the lower triangular part of � , is � � � for the nested dissection
reordering and � � � for the band-reordering.

The nested dissection reordering is a useful tool for GMRFs where a relatively small number of
nodes depends on (near) all other nodes. To exemplify this, consider a GMRF � with zero mean
and a polynomial mean surface ] ��1r� ��� ��� ��1r� which is linear in some basis functions depending on
location 1 , with Gaussian priors on the coefficients � . Then � ����� � is a GMRF with this property.
Using band-reordering will make the bandwidth large, hence the factorisation will be slow. Using
nested dissection reordering will give the global nodes a high index, as can be seen by comparing with
Figure 1, such that the extra cost for including the global nodes is negligible. We will use this property
in Section 3.1, where we estimate the parameters of a semi-parametric ecological regression model.
In that application, the global parameter vector represents the effect of a the area-level covariate on
the disease risk.

The computational complexity of factorising a precision matrix depends on the graph
 

. Roughly, the
GMRFs we consider are defined either in time or on a regular or irregular lattice in space, which may
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be extended to include time as well. In time, the factorisation is � ��, � , it is � ��, ��� � � in space, and
� ��, � � for space-time. This should be compared to � ��,6�
� for a full matrix. The band reordering is to
be preferred for problems with long and thin graphs, otherwise we prefer to use the nested dissection
reordering. For a spatial problem band reordering requires � ��, � � flops, compared to � ��, ��� � � for
the nested dissection. The difference is minor for GMRFs of medium size, but is significant for huge
GMRF, from �+CQC0C0C nodes and upward.

It is worth mentioning that libraries for factorising sparse matrices are extremely complex and com-
plicated software, at least compared to statistical standards. They easily require )�C5`8)�C0CQC0C0C lines
of code, and specialist knowledge is needed to prevent loss of performance due to indirect addressing
and so on. The band matrix approach is however quite simple and needs a small piece of code in
comparison, and is already a part of standard libraries for numerical linear algebra. Gupta (2002)
concludes in his recent comparison of such software, that

In this paper, we show that recent sparse solvers have significantly improved the state of
the art of the direct solution of general sparse systems. ... Therefore, it would be fair to
conclude that recent years have seen some remarkable advances in the general sparse
direct solver algorithms and software.

This is good news for statisticians, meaning that we can take advantage of this technology by using
their software libraries for sparse matrices. However, we need to express our problems in that frame-
work and to extend our horizon of what is possible and feasible to do, and these observations reflect
the main message in our paper.

2.2.3 Unconditional and conditional sampling from a GMRF

We have previously shown that a sample � �P��� � 	 � � � � can be generated by factorising � � ��� � ,
sampling � � ������	��_� , solving � ��� �
� for � by back-substitution and then adding the mean, such
that �D� � � � . We will now review how to produce conditional samples efficiently. Conditioning
on a soft constraint, to be defined below, was only mentioned briefly as a comment in Rue (2001), but
is here described in detail since it will be applied in Section 3.2.

Let � denote a subset of the nodes of the graph
 

and let � �M` � be the remaining nodes. Then
� � ����Oh��	X� �&���l` � � ��
� � �
	 ��	�	 � � ��
� � . This is a convenient result, as the precision matrix equals� �
� , which is a sparse sub-matrix of � , and � �
	 is non-zero only for those elements ��12	�3N� , with1 4 � and 3S4 � , for which 3 ��1 . Further, the conditional mean is found by solving a linear system
involving these sparse matrices. As a consequence, � � O�� 	 is a GMRF as well, defined on the graph 

restricted to � .

We now consider the problem of sampling from a GMRF � under the linear constraint � � ��� ,
where � is a � 7j, matrix and � is a vector of length � . This conditional distribution is Gaussian
as well, but does not have full rank and does not have any Markov properties in general. There
is an alternative to sampling directly from this distribution, and this method is often referred to as
conditional simulation using kriging (Cressie, 1993, Section 3.6.2). We first generate an unconstrained
sample ��m�P��� � 	 � � � � , and then add a correction term to produce the constrained sample ��� by

� � �D�  ` � � � � � � ��� � � � � � � � � � �  `�� �k� (3)
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All computations required to evaluate (3) can take advantage of the Cholesky factorisation of � . To
compute � � � � � � � , we first solve ��� � � � by forward-substitution and then � � � ��� by
back-substitution. We also note that since ��� � � � � is a � 7 � matrix, the cost of its factorisation is
� � � �
� , which is negligible for ��� , .

The linear constraint � ��� � will be denoted a hard constraint. A generalisation of this situation
is the case when we instead of observing � � have observed a value ��� of the Gaussian variable��� ��� � � 	 �	� � . We can extend (3) to cover the case of sampling from � � � O���� ���
� . The
conditional log-density is


��� � � �&O � � ���
�Y��` )
�
� �j` � � � � � �j` � �Q` )

�
� ��� ` � �Y� � � � �� � ��� ` � � � � const. (4)

We write the stochastic variable � as �B� � � � � � with
� � �P�����d	 � � � , and observe that conditioning

on �B� ��� in (4) is equivalent to conditioning on � � � � , where
� � ���N` � � and thus

� �P��� ���+	 �	� � .
Consequently, we can reformulate the problem of sampling from � � � O �J� given by (4) to the problem
of sampling from � � ��O � �&� � � , where

�
a realisation from

� �^��� ��� 	 ��� � . This is similar to the
problem of sampling under a hard linear constraint described above, but replacing the fixed vector �
by the stochastic variable

�
. We denote the constraint � � � � a soft linear constraint. The expression

(3) can now be modified to� � �8�  ` � � � � � � ��� � � � � � �	� � � � � � �  ` � �k� (5)

Generating a sample under a soft constraint can be done by first generating an unconstrained sample�� and a sample
� ���P� ����	 �	� � , and then computing the softly constrained sample � � from (5).

As for the hard constraint, the cost of factorising the � 7�� matrix ��� � � � � � ��� is � � � � � . All
remaining operations needed in (5) is performed by making use of the sparse matrix � . We will make
use of (5) when we construct block-MCMC algorithms in Section 3.2.

2.2.4 Evaluation of the log-density

We now describe how the log-densities of the unconditional and conditional distributions described
above can be evaluated at negligible cost when the factorisation � � ��� � is available. To evaluate
the log-density of an unconditional sample � �P��� � 	 � � � � , we need the terms � �!� �6` � � � � � ��`� � and


��� O � O , which are evaluated by computing ��� � � �F` � � and then � � � �F` � ��� � and
by

��� O � O� 
��� �2O �5O O � � OW�#� ��� �=)- � 
��� ! =\= , respectively. The log-density of a conditional sample� � OQ� 	 is found similarly. The log-density of a sample generated under a hard linear constraint

� � � � can be evaluated using the identity

� � � O � � �Y� � � � � � � � �&O�� �
� � � � � � (6)

Note that all quantities on the right hand side can be computed efficiently, see Rue (2001) for details.
When we condition on a soft linear constraint, we make use of the same identity replacing � � by the
stochastic variable

� �P��� ���+	 �	� � .
2.3 Using GMRFs as proxies for GRFs

Gaussian random fields (GRFs) are frequently used models in spatial statistics. The spatial structure
of a GRF is most often specified in terms of a correlation function, where the exponential, Gaussian,
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Matérn and spherical functions are among the most commonly used (Cressie, 1993). To do compu-
tations, the Gaussian field is typically discretised on a regular lattice, but there is no direct link to
GMRFs in this case, as the corresponding precision matrix is full. Rue and Tjelmeland (2002) inves-
tigate the possibilities for using GMRFs as proxies for Gaussian fields, by fitting the elements of the
precision matrix of a GMRF with a small neighbourhood to the corresponding elements of the preci-
sion matrix computed from the correlation functions mentioned above. Strikingly, their results show
that all these correlation functions can be well approximated by a GMRF. The maximum difference
in the correlation functions of the two models is less than about C��@C � when a GMRF with neighbours
in a � 7 � neighbourhood around each node is used.

The result of Rue and Tjelmeland (2002) can be used to specify a model by the intuitively easier GRF
formulation, and at the same time utilise the computational advantages of the GMRF. This approach
is taken in our second application in Section 3.2, where we specify a lattice based GRF model for a
smoothly varying risk surface based on aggregated count data.

2.4 A result for block-sampling in hidden Markov random field models

In many applications involving GMRFs, the distribution of the GMRF � is controlled by a few hyper-
parameters � , and a subset ��� of elements of � are observed by noisy observations � � , assumed to be
conditionally independent. This is the structure for the examples considered in Section 3. The joint
posterior distribution of � and � is

� � � 	2� O �%��� � � � � � � � O � ���=��	� � � � =YO �J=��k� (7)

A traditional MCMC algorithm for inference in this case is a single-site scheme, updating each 
 ?
and each �g= one at the time. This is feasible as the distribution of ��=TO � � = only depends on its
neighbours. Using the fast algorithms for GMRFs, we can construct improved algorithms using a
GMRF approximation to � � �^O � 	��Q� , computed as follows. Locate the mode ��� (which is a function
of � ), expand the likelihood around � � to second order and use this Gaussian approximation � � � ��O
� 	��%� as a proposal distribution for � . Note that this approximation is a GMRF on the original graph 

, as the introduction of the likelihood only changes the diagonal terms in � and the mean. Knorr-
Held and Rue (2002) found empirically that such algorithms were feasible but seemed not to improve
the convergence of � . The problem is related to the strong interaction between � and the sufficient
statistics for � based on � � � O � 	��%� . Knorr-Held and Rue (2002) propose to update � � 	2� � jointly,
using the following general scheme: Sample � � � � � � � O � � and � � � � � � � O � � 	��Q� , and then
accept/reject � � � 	2� � � jointly. The proposal for � is kept simple, for example a (log-)random walk.
This scheme gave superior performance and the convergence is similar to what would be expected if
we were able to sample from � � � O �%� directly.

The following result represents a theoretical justification for their findings, which explain why block-
ing � and � separately makes the convergence arbitrary slow for increasing , .

Theorem 1 Let � ��]Q	2� �Y� � ��] � � � �^O�] � , where ] �P��� C�	� �� � and �&O�] �P����]�
	 � � and where �
is of dimension ,��FC . Let ] & �+* 	�] & � * 	�] & � * 	������ be the marginal chain from the two step Gibbs sampler
started in equilibrium, sampling successively ] � � ��] O � � and � � � � �(O�] � . The marginal chain
of ] is then a Gaussian ��� �l)�� -process, ] &�� * ���J] &�� � �+* ��� � 	 (8)
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where
�6����)�� Var � � O ] �

Var ��] ��� �
� �!�l) � ), 7

�� 
0� � 

 �� � � � ��)q` � �l)�[ , � (9)

and � � �P��� C�	� �� �l)q` � � ��� .
The proof is simple (and therefore omitted) after noting that � is sufficient for ] , such that we can
consider the chain ] & �+*�� � & �+*�� ] & � *����	�	� .
Theorem 1 implies that the correlation length, defined as the minimum distance between two samples
with correlation less than C��@C � , of the marginal chain for ] is � ��, � . The marginal chain for ] will
converge arbitrarily slow, for increasing , , even when a block sampling algorithm is used. The reason
is the obvious one, block updating leads to improvements within the block and not that much between
the blocks, and consequently we need to update ��]Q	2� � jointly to break the strong interaction between] and � . Rue et al. (2003) discuss this topic further, as well as how to construct independence samplers
and approximations going beyond the Gaussian.

3 Applications

We illustrate the algorithms described in Section 2 by two applications from spatial epidemiology.
Disease maps, displaying the geographical variation of disease incidence or mortality rates across a
region of interest can give useful input to the formulation of etiological hypotheses on a disease. Such
maps are most often generated on the basis of count data aggregated in a set of 
 disjoint areas. For
rare and non-infectious diseases, the incidence or mortality counts � = 	a1E�M)+	�������	 
 are commonly
assumed to be conditionally independent and to follow Poisson distributions with mean given by� = � = . The value

� = represents the expected number of cases in area 1 , adjusted for population size
and factors like age and gender, and � = is the area-specific relative risk, to be estimated from the data.
The maximum likelihood estimate of � = is the standardised mortality ratio SMR � � = [ � = . For areas
with low populations the sampling variance of SMR is high, and in addition, any evidence of extra-
Poisson variation or spatial structure in the data is not taken into account. A commonly used Bayesian
approach for improving on these raw estimates, first proposed by Besag, York and Mollié (1991), is to
specify a log-linear model for the relative risks including spatially structured as well as unstructured
Gaussian random effects, where the spatially structured effect is assigned a GMRF (intrinsic) prior.
Reviews of recent work adopting this approach are given by Wakefield, Best and Waller (2000) and
Mollié (1996). The model can be extended to include area-level covariates. Natário and Knorr-Held
(2002) propose a semi-parametric model for the covariate effect, an approach that leads to a model
formulation that is more flexible than the commonly used parametric models, that assume a log-linear
relationship between the risk and the covariates. In Section 3.1 we re-estimate the parameters of the
model using a full MCMC block-sampler.

In general, spatial heterogeneity of the disease risk remaining after adjusting for observed covariates
will be a confounder for unmeasured spatially structured risk factors. In most cases, the risk factors
are not expected to be constant within areas and disjoint across area boundaries, which is implicitly
assumed by the random effects models described above. On the contrary, it seems reasonable to
believe that the underlying risk surface is varying continuously over the region of study. In our second
application we describe an aggregation consistent approach for estimating a smooth risk surface based
on aggregated data. The approach is based on the geostatistical model of Kelsall and Wakefield (2002),
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but we show that by defining their GRF model on a lattice and using a GMRF as a proxy for the GRF,
we can develop an efficient sampling based approach to inference avoiding the approximation of the
prior distribution of the area-level risks, required by their approach.

3.1 Semi-parametric ecological regression

Our first application illustrate how to apply the block-sampling scheme suggested by Knorr-Held
and Rue (2002) to avoid the potential problem with a correlation length of order � ��, � discussed
in Section 2.4. We reconsider the model specified by Natário and Knorr-Held (2002), which is an
extension of the model of Besag et al. (1991) to allow for a semi-parametric function of covariates
believed to influence the risk. They use data on mortality from larynx cancer among males in the � �
districts of Germany over the period )������ ` )����+C , with estimates for lung cancer mortality as a proxy
for smoking consumption as a covariate. We refer to Natário and Knorr-Held (2002) for further details
and background for this application.

The model is specified as follows. The larynx cancer mortality counts � =r	j1 � )+	�������	 
 in the
 � � � districts are assumed to be conditionally independent and Poisson distributed with mean� = � = , where

��� � = ��� = 	 15� )+	�������	 
 are the log-relative risks of the disease, and the

� = s are
known constants. The prior model for the log relative risk, � , is

�0= Oh����� � ���	�
= ��
Q��f=Z�k	�� � � �k	 (10)
� ����O��g� � � & � � �+* � ������� �l` �

� c = e ? �	��=g`��f? �
� �k	

� � '�
�?+- O��d� � � &�� � � * � ������� �l` �
� c ? �	
�?q` � 
�? � � � 
�? � �
�

� �k�

The precision parameters � , � and � are assigned vague Gamma-priors. For each area 1 , � = is the
sum of a spatially structured component �+= , with an intrinsic autoregressive prior defining 1m� 3 if
areas 1 and 3 share a common border, and the effect of the covariate ��= which is 
Q�� =Z� . In addition,
a spatially unstructured random effect with precision � is included. The covariate function 
Q� � � is a
random smooth function with small squared second order differences. The function 
Q� � � is defined
to be piecewise linear between the function values '�
 ? - at )�C0C equally distant values of � = , chosen to
reflect the range of the covariate. We further impose the constraint � ��=_�DC to separate out the effect
of the covariate.

The posterior is of the form (7) with ��� � '��h=r-G	 '��
=l-G	 '�
�?0-�� , � � ���	!�_	"�d� and # being the indices
of the elements in � corresponding to '��h=r- , and with � � � =5O �= � as the Poisson density with mean� = ����� �$�0=�� evaluated in � = . The graph and precision matrix of � are easily found from the posterior.

Our block MCMC algorithm goes as follows. First, for each component 
 = we propose independently
a new value 
 �= �%
 
 = , where � �	
d� � )'�H)�[&
 , in the range ' )�[ 5 	 5)( where 5 ��) . Then we sample� � from the GMRF approximation � � � �DO � � 	��%� using (3) to correct for the constraint � ��=��HC , and
then accept/reject jointly. The scaling proposal for 
 = is motivated from a log-random walk, but make
the proposal-terms cancel in the acceptance-ratio. The choice 5 � � gave an acceptance-rate of about)�[�� .
The trace-plots of � and the estimated posterior means of the values of the semi-parametric function
Q� � � are illustrated in Figure 3. Note the fast convergence of � , obtained despite the fact that the
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dimension of the problem is about ) � C0C with three hyper-parameters. Our implementation made
about �N� � iterations in one second on a ) � C0C MHz laptop, using the Multifrontal Supernodal Cholesky
factorisation routine in the TAUCS-library (Toledo, Chen and Rotkin, 2002).

0 100 200 300 400 500 600 700

10
20

50
10

0
20

0
50

0
10

00
20

00

Iteration

lo
g 

pr
ec

is
io

n

−0.4 −0.2 0.0 0.2 0.4

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Covariate c
f(

c)

Figure 3: The trace-plots (left) of ���	!�_	"�d� , where � is the lower curve, � the middle curve and �
the upper curve. The estimated posterior means (full line) and empirical pointwise 2.5% and 97.5%
quantiles (dotted lines) for the semi-parametric function 
Q� � � (right).

3.2 Modelling spatial variation in the risk of a disease using GMRFs as proxies for
GRFs

Our second example is the geostatistical model of Kelsall and Wakefield (2002). Instead of consider-
ing the risk to be constant within each area as in (10), they model the relative risk � = in area 1 , denoted
� = , as the integral of a continuous latent risk surface � ���N� ,

� = ��� ��� � ���N� �%������� �J	 (11)

Here, � denotes spatial location and �%����� the relative population density, which is assumed to be
constant within each area. The motivation behind the model is that the relative risk is more likely
to vary smoothly with respect to � than being constant within each region, and that such a model
will be aggregation consistent. The log-risk


��� � � � � is assumed to be a GRF with a non-zero mean
and an exponential correlation function with unknown range � and precision � . Since our data are
standardised such that the overall risk for the region of study is 1, we assume the mean of the GRF
to be zero. The likelihood model is as in Section 3.1, such that � =r	 1 � )+	������ 	 � � are mutually
independent Poisson variables with mean

� = � = , for known constants ' � = - .
The approach taken by Kelsall and Wakefield is to approximate the joint distribution of ' 
��� � = 	�1 �

12



)+	�������	 � ��- by a Gaussian distribution with second order moments

E � 
��� � = 
��� � ? � � E � 
��� � ��� � ���N����� 7 
��� � ��� � ���
�������� �
	 � �
	 � E � 
��� � ����� 
��� � ��� ��� ��� ����	 (12)

which are computed numerically, and based on this approximated model, they construct single-site
MCMC schemes for inference. The purpose of this example is to demonstrate that using a GMRF as
a proxy for a GRF as discussed in Section 2.3, we can avoid approximation (12) and the Gaussian
approximation to the joint density of ' 
��� � = - . Furthermore, we obtain an efficient block MCMC
algorithm, making use of (5) to construct proposal distributions. We refer to the technical report
Follestad and Rue (2003) for details and an extended discussion.

3.2.1 The model

We discretise the support of � ����� and define the GRF model on a fine lattice covering the region
of interest, consisting of the � � districts of Germany plus a boundary region. The lattice contains,T� ��)_C ��� pixels, and is shown in the left panel of Figure 4. We then apply the method for generating
GMRF proxies for GRFs (Rue and Tjelmeland, 2002) using a � 7 � neighbourhood, and using discrete
values for the range, defined in steps of size C��@C � in lattice coordinates. Let the fitted GMRF be
denoted � . For the exponential correlation function used by Kelsall and Wakefield, the maximum
difference between the true and fitted correlation functions is about C��@C ) . Note that our methods is
exact for the model defined using the GMRF proxy. The relative risk for region 1 is then

� =�� ),_= c? , ? � ��� ��� � ����? �k	 (13)

summing over the ,�= pixels 3 in region � = . We place vague priors on the discretised range and the
precision of � .

3.2.2 Constructing block MCMC algorithms using soft constraints

The posterior distribution of the log-risk surface � and the hyper-parameters � � ���	 � � is of the form
(7), but where � = depends on � ��� through (13). This implies that the full conditional for �? , 3S4 � = ,
depends on � ��� as well as the elements � ?0	�3/[4 � = for which 3 has a neighbouring node in � = . This is
illustrated in Figure 4, illustrating the precision matrix for the GMRF � and a Gaussian approximation
to the posterior � for a small set of regions, after using band reordering. This makes even single-site
algorithms for � quite computationally expensive, as the neighbourhood in the posterior is large.

Due to Theorem 1 and the large number, ,�� ��)_C ��� , of nodes, the construction of block MCMC
algorithms is still desirable. We have not succeeded in constructing approximations that are accurate
enough to allow for updating � and � jointly without near-zero acceptance-rates. We therefore take an
intermediate approach. Let � be the interior region. We will update the block � � of interior elements
keeping � fixed, and then � � 	2� � � � in one block using the scheme of Knorr-Held and Rue (2002). As� � � O � 	2� � is a GMRF, generating this joint update is straightforward. Note that this step nearly
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(a) (b) (c)

Figure 4: The map of Germany with its 544 districts, overlaid by a lattice including a set of boundary
nodes (a). The two right panels illustrate the conditional independence structure (after reordering) of
the prior model (c) and when conditioning on the data (d), for a subset of the lattice nodes.

“integrate out” � � � , such that the effective “ , ” in Theorem 1 is reduced to the number of pixels in
the interior � .

We update � � in sub-blocks conditioning on the remaining elements, and describe the algorithm for
blocks of single regions, � ��� . The extensions to sub-blocks of � � made up from several regions is
similar. In practise, we update as many regions in one block as possible at the same time as obtaining
reasonable acceptance-rates. We will make use of the soft constraint (4) to construct computational
efficient approximations.

The full conditional distribution of � ��� , corresponding to the , = nodes within area � = , is given by

� � � ��� O�� � ��� 	 � 	��Q� � � � � � � O�� � ��� 	 � � � � � =YO+� ��� 	 � �k� (14)

As � � � ��� Oh� � ��� 	 � � is a GMRF with precision matrix � ��� , given by the ,d=Y7S,_= diagonal block of� corresponding to area � = , then (14) can be written as


 �� � � � � ��� O0� � ��� 	 � 	��%���:� ` )
�
� � ��� � ��� � � � ��� � = � ��� ��� =�� � � � const 	 (15)

where ��� � = � is the log-likelihood of the observed count for area � = . The vector � = and the matrix� ��� both depend on � , but we suppress this explicit reference for notational convenience. Due to the
Poisson likelihood, the posterior distribution is non-standard. We specify a Metropolis-Hastings step,
constructing a Gaussian approximation to (15) as a proposal for � ��� . This is found by replacing the
term � =2� � � by a quadratic approximation around the (conditional) mode, �_=2� � � � ` �� �%� ��� � = � ��� �
	 � = � � � , where

� = and 	*= depend on � = and � . Substituting this approximation for �g=2� � � in (15), we
obtain the Gaussian approximation ��� � � � � O+� � ��� 	��.� to (15) as


��� � � � � ����� O+� � ����	 � 	��%���:� ` )
�
� � ��� � � � � � � = �r����� ��� � = ����� � const � (16)

Here, the precision matrix � � � � � = is a full matrix, such that the sparse structure is lost. However,
if we use that

� =Q��� = � � � = � = where � = is a ,_=Y7S,_= diagonal matrix and � = is a )L7T,_= matrix,
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we obtain


��� � � � � � ��� O�� � � � 	 � 	��.���Y�!` )
�
� � ��� � � ��� � � =Z�r� ��� ��� � = � ��� ` )

�
� � ��� � � = � =�� ��� � const � (17)

Comparing (17) to (4) in Section 2.2.3, we observe that by letting � � � ��� � � = , � � � = ,�	� � � and ���q� � in (4), we have re-formulated the problem of sampling from (16) to a constrained
sampling problem, sampling from a Gaussian distribution � � � ��� � � ���� �0�= 	 � � ���� � under the soft linear
constraint � � � � � � � �&�����_	��_� . Consequently, the efficient algorithms described in Section 2.2.3
can be applied to generate a sample from (17), where the computations make use of the non-zero
pattern of the prior (and not the posterior), and this sample is used as a proposed value that is accepted
or rejected in a Metropolis-Hastings step. This soft constraint approach represents large computational
savings.

3.2.3 Results

We apply the method of Section 3.2.2 to a set of data on mortality from oral cavity cancer for males
in Germany, observed over the period 1986-1990. The counts range from 1 to 501, with a median
count of 19, and the expected number of cases ' � = - range from 3.0 to 393.1, with a median of 19.5.
The standardised mortality ratios (SMR) for the data are shown in Figure 5. Estimating the subset��� of � using blocks consisting of the nodes within one area and its neighbouring areas sharing a
common boundary, leads to reasonable acceptance rates. To avoid boundary effects between blocks,
the partition into blocks were updated randomly at every )�C th step of the sampler. Studying trace plots
for the MCMC updates (not shown) after running ��� CQC0C0C iterations, we find that the convergence is
fast for the elements of the log-risk surface, but that the mixing is still relatively poor for the hyper-
parameters. This result is in accordance with Theorem 1. Despite the poor mixing of the individual
parameters � and � , the posterior means of the elements of � appear to be stable, and these estimates
are summarised in Figure 5. We observe that the estimated spatial pattern of the risk is similar to the
SMR, but the estimated risk surface is smoother. The estimated posterior means of the relative risks at
the area level vary between C�� ��� and )+� �  . The results are similar to the ones obtained by Knorr-Held
and Raßer (2000), who reported estimated posterior median relative risks in the range C�� � � and )+�  �
using a Bayesian clustering approach, and between C�� � � and )+� � � using the model of Besag et al.
(1991). More details on the results and the convergence properties of the block MCMC sampler are
available in our technical report (Follestad and Rue, 2003).

4 Concluding remarks

Gaussian Markov Random Fields (GMRF) represent a very flexible class of models. The graph formu-
lation allows for a unified formulation, representation and understanding of the models, and GMRFs
have proved to be useful as a building block in many types of models, including temporal, spatial and
geostatistical and spatio-temporal models. Computations on GMRFs have shown to be impressively
fast using modern numerical methods for sparse matrices, and the same library of algorithms can be
used for all GMRFs. The fast computations also make it possible to construct efficient block-MCMC
algorithms for fast and more reliable inference.
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Figure 5: Results for the German oral cavity cancer data.
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