
NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

On directional Metropolis–Hastings algorithms

by

Jo Eidsvik and Håkon Tjelmeland
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Abstract

Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution
equal to a specified target distribution. The current paper studies target densities on Rn. In di-
rectional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line
by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject
according to the Metropolis–Hastings acceptance probability.

We consider two classes of algorithms. The first uses a point in Rn as auxiliary variable, the
second uses an auxiliary direction vector. The directional Metropolis–Hastings algorithms consid-
ered here generalize previously proposed directional algorithms in that we allow the distribution
of the auxiliary variable to depend on properties of the target at the current state. By letting the
proposal distribution along the line depend on the density of the auxiliary variable, we then iden-
tify proposal mechanisms that give unit acceptance rate. Especially when we use direction vector
as auxiliary variable, we get the advantageous effect of large moves in the Markov chain and the
autocorrelation length of the chain is small. We illustrate the algorithms for a Gaussian example
and in a Bayesian spatial model for seismic data.

Keywords: adaptive direction sampling, angular Gaussian distribution, auxilary variables, Markov
chain Monte Carlo, Metropolis–Hastings, reversible jump MCMC, seismic inversion.

1 Introduction

One often comes across analytically intractable probability distributions. Stochastic simulation
algorithms can be used to study such target distributions. A large number of simulation methods
have been presented in the last years. In Metropolis–Hastings (MH) algorithms (Hastings, 1970)
we simulate a Markov chain with limiting distribution equal to the target. At each iteration of the
MH scheme a new state is proposed to replace the current state, and with a certain probability
the proposed state is accepted, otherwise the old one is retained. It is important that convergence
to the target happens in reasonable time. It is equally important to move efficiently within the
target, i.e. produce small autocorrelation in subsequent samples. Although many problems can
be solved satisfactorily with existing MH methods, see e.g. Gilks et al. (1996), there is a need
for new algorithms with improved convergence and mixing properties. MH algorithms are often
case specific and an algorithm that performs well in one case, might not work in another. The
algorithms typically involve one or more tuning parameters. By trial and error a reasonable value
of these parameters can be set. Tuning is sometimes beneficial, but ideally one wants to reduce the
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amount of manual tuning, and hence obtain more generally applicable algorithms.
In this paper we focus on directional MH algorithms. At each iteration, we i) draw a line

going through the current point, ii) propose a new state along this line, and iii) accept or reject
the proposed value. Directional algorithms generate moves along directions different from the
coordinate axes, and this might improve mixing in the Markov chain. Our algorithms define the
line either by an auxiliary direction vector or by a point in the sample space. We sample the
auxiliary variables using properties of the target at the current state of the Markov chain. The
directional MH algorithms can be designed to produce unit acceptance rate, whatever distribution
we choose for the auxiliary variable. However, it is not possible to sample directly from this
proposal distribution. Instead we use a parametric approximation in the proposal step. Some of
the directional MH algorithms discussed in this paper move efficiently within the target. However,
many evaluations of the target are required per iteration. We take this into consideration when we
evaluate the algorithms.

Several directional MH algorithms are presented in the literature: Chen and Schmeiser (1993)
study a scheme moving along a uniform direction at each step; Roberts and Rosenthal (1998)
present an algorithm that moves along a direction centered at the gradient direction evaluated in
the current point; Gilks et al. (1994), Roberts and Gilks (1994) and Liu et al. (2000) use parallel
chains to construct directional jumps. The methods outlined in this paper are different from these
because we propose the auxiliary variables from some distribution that is allowed do depend on
the current state. This choice has influence on the one dimensional proposal density along the line.

Generalized Gibbs formulations presented in Goodman and Sokal (1989) and Liu and Sabatti (2000)
also include proposal distributions along the line that produce unit acceptance rate. However, they
do not discuss the effect of letting the distribution of the auxiliary variable depend on the current
state. This is the focus of this paper.

The paper is organized as follows. Section 2 describes MH for parametric forms on the pro-
posal and defines a framework for directional MH algorithms. Our MH algorithms are formalized
further in Section 3. In Section 4 we present two examples, including a Bayesian spatial model
for a dataset from a North Sea petroleum reservoir. Finally, Section 5 contains discussion and
concluding remarks.

2 Metropolis–Hastings algorithms

MH algorithms simulate a reversible Markov chain with limiting distribution identical to a
specified target. The Markov transition kernel is defined by a proposal and an acceptance step.
In this section we define MH algorithms using a parametric form for the proposal. We next put
directional MH algorithms into this framework. Throughout the paper we restrict attention to
continuous target distributions on Rn, and let π(·) denote its density with respect to the Lebesgue
measure on Rn. We let x ∈ Rn denote the current state of the Markov chain.

2.1 Parametric Metropolis–Hastings updates

In this section we describe MH algorithms generating the proposal by a parametrized deter-
ministic transformation. Such algorithms, see e.g. Green (1995) and Waagepetersen and Sørensen
(2001), are most commonly used for Markov chains with varying dimensions and are referred to
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as reversible jump algorithms. We regard only the fixed dimension case.
In the proposal step we first sample t ∈ Rm from some density q(t|x), and then define the

proposed value y ∈ Rn by a one-to-one transformation,

y = w1(x, t)
s = w2(x, t)

}

⇐⇒

{

x = w1(y, s)
t = w2(y, s),

(1)

where w1 : Rn+m → Rn and w2 : Rn+m → Rm. The acceptance probability for y becomes

α(y|x) = min

(

1,
π(y)q(s|y)

π(x)q(t|x)
· |J |

)

, (2)

where J is the Jacobian determinant of transformation (1), i.e.

J = det

{

∂(y, s)

∂(x, t)

}

=

∣

∣

∣

∣

∣

∂y(x,t)
∂x

∂y(x,t)
∂t

∂s(x,t)
∂x

∂s(x,t)
∂t

∣

∣

∣

∣

∣

. (3)

In some cases it is useful to introduce auxiliary variables in the MH proposal step, and we
discuss this possibility briefly here, returning to special cases below. For some sample space Φ, let
φ ∈ Φ be an auxiliary variable sampled from a density f(φ|x). The density for t may then depend
on φ, and we write q(t|φ, x). The proposal y ∈ Rn is still given by (1), where φ may now appear as
a parameter in the functions w1 and w2. Hence, φ remains the same in the forward and backward
transformations. The acceptance probability for y becomes

α(y|φ, x) = min

(

1,
π(y)f(φ|y)q(s|φ, y)

π(x)f(φ|x)q(t|φ, x)
· |Jφ|

)

, (4)

where Jφ is the determinant of the deterministic transformation with fixed φ.

2.2 Directional Metropolis–Hastings updates

Directional MH algorithms propose new values along a line defined by the current state x and
an auxiliary variable φ. The auxiliary variable is introduced to encourage moves in promising
directions. In our setting the auxiliary variable φ takes the form of either a point z ∈ Rn or a
direction vector u ∈ Sn, where Sn is half the unit sphere

Sn = {u ∈ Rn \ {0} : ||u|| = 1 and uk > 0 for k = min(i; ui 6= 0)}. (5)

The direction vector may be derived from an auxiliary point z by

u =

{

z−x
||z−x||

if z−x
||z−x||

∈ Sn,

− z−x
||z−x||

otherwise.
(6)

However, note that different z’s may produce the same u. We next derive directional MH algo-
rithms using z and u.

Suppose first that we generate a direction vector u ∈ Sn from a density g(u|x) with respect
to the uniform measure on Sn. The auxiliary variable u defines a line together with the current
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Figure 1: Schematic density contours illustrating direction sampling. Left: The current state x and auxiliary vari-
able u. Right: The current state x and auxiliary variable z. The scalar value t parameterizes the line differently
in the two cases.

state x ∈ Rn, see Figure 1. The line can be parametrized by a scalar t, and we generate t ∈ R
from some density q(t|u, x). The proposed value y ∈ Rn is then deterministically defined by the
one-to-one transformation

y = x + tu
s = −t

}

⇐⇒

{

x = y + su
t = −s,

(7)

where u is a parameter in this transformation. The Jacobian determinant becomes

Ju =

∣

∣

∣

∣

∣

∂y(x,t)
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∂y(x,t)
∂t

∂s(x,t)
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∣

∣

∣

∣

∣

=

∣
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∣

∣

∣

I
n

u
0 −1

∣

∣

∣

∣

∣

= −1,

where 0 is a length n vector of zeros. The MH acceptance rate from (4) becomes

α(y|u, x) = min

(

1,
π(y)g(u|y)q(s|u, y)

π(x)g(u|x)q(t|u, x)

)

. (8)

Particular choices of g(u|x) and q(t|u, x) are discussed below.
Suppose alternatively that we generate an auxiliary point z from a density h(z|x). The auxiliary

variable z and the current point define a line, see Figure 1. This line is parameterized by a one
dimensional value t. We next generate t from some density q(t|z, x) and the proposal y ∈ Rn is
deterministically defined by the one-to-one transformation

y = x + t[z − x]
s = − t

1−t

}

⇐⇒

{

x = y + s[z − y]
t = − s

1−s
,

(9)

where z is a parameter in this transformation. The Jacobian determinant becomes

Jz =

∣

∣

∣

∣

∣

∂y(x,t)
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∂y(x,t)
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∣
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∣
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∣
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∣

= −(1 − t)n−2.
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Thus, the MH acceptance rate from (4) becomes

α(y|z, x) = min

(

1,
π(y)h(z|y)q(s|z, y)

π(x)h(z|x)q(t|z, x)
· |1 − t|n−2

)

. (10)

Particular choices of h(z|x) and q(t|z, x) are discussed below.

3 Building blocks

In Section 2.2 we derived two MH algorithms generating directional moves, one with an auxil-
iary direction u, another with an auxiliary point z. We next discuss i) distributions for the auxiliary
variables, i.e. g(u|x) and h(z|x), and ii) proposal densities for the scalar t along the line, i.e.
q(t|u, x) and q(t|z, x).

3.1 Choices for h(z|x) and g(u|x)

A key part of directional MH algorithms is to draw auxiliary variables corresponding to ad-
vantageous directions, and hence induce good mixing properties of the Markov chain. We aim
to construct moves towards the central parts of the target density. In terms of the auxiliary point
z ∈ Rn it seems natural to draw z from a density h(z|x) that resembles the target density π(·).
This entails that moves towards the central region of the density are likely when the current state
x is in the tail, whereas if x is in the central parts of the distribution, z is likely to end up on either
side of x. Similar ideas apply to densities for direction vector u. We use only Gaussian densities
h in the following. For the u variable we consider g(u|x)’s originating from (6). This is linked to
h(z|x) by

g(u|x) =
∫ ∞

−∞
|r|n−1h(x + ru|x)dr. (11)

The integral in (11) is analytically available when h is Gaussian. The resulting g(u|x) is referred
to as the Angular Gaussian Distribution, see e.g. Watson (1983) and Pukkila and Rao (1988).

The simplest way to draw the auxiliary variable is to use a fixed density for z, independent of
x. We denote this choice by a fixed strategy, i.e.

Fixed, h(z) = N(z; µf , Σf ). (12)

where N(z; µ, Σ) denotes the Gaussian density with mean µ and covariance matrix Σ evaluated
in z. For a fixed density, both the mean and variance are assessed beforehand, i.e. µf and Σf are
fixed. This choice might work well if a Gaussian approximation to the target density is available.

We also discuss three options for h(z|x) using local properties of the target to different degrees.
Suppose first that we sample z from a density with mean value in the current state x, and identity
covariance matrix, i.e.:

Order 0, h(z|x) = N(z; x, I). (13)

In this density we use no information about the target density, and we refer to this as the zero order
approximation.
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Suppose next that we use local properties of the target density in terms of first derivatives at the
current state, and let V (x) = −ln[π(x)] denote the potential function for x. We set

Order 1, h(z|x) = N(z; µ̂(x,∇V (x)), I), (14)

where we typically use µ̂(x, b) = x− b, i.e. matching first derivatives of h and the target density at
x. We refer to this method as a first order approximation since it benefits from first order derivatives
of the target density at the current state x.

Suppose next that we use both first and second order derivatives at the current state x. Thus,
we set

Order 2, h(z|x) = N(z; µ̂(x,∇V (x),∇2V (x)), Σ̂(x,∇V (x),∇2V (x))), (15)

where it is natural to choose

µ̂(x, b, A) = x − bA−1 and Σ̂(x, b, A) = A−1, (16)

matching first and second order derivatives of h and π. However, if the matrix of second derivatives
is non-positive definite, one has to alter (16). For example, one could add positive elements on the
diagonal of the fitted covariance matrix.

Recall that we obtain a corresponding density g(u|x) for each density h(z|x) using (11). This
gives eight possibilities: (z, f), (u, f), (z, 0), (u, 0), (z, 1), (u, 1), (z, 2), (u, 2), where the first
index refers to auxiliary variable u or z, and the second index to the order of approximation. Note
that in the (u, f) case the density g still depends on x from (6).

In the literature various approaches for drawing an auxiliary variable have been presented.
The simplest is the hit-and-run algorithm, see e.g. Chen and Schmeiser (1993) and Kaufman and
Smith (1998), that generates a uniform direction, independently of x, i.e. g(u|x) ∝ 1. This is our
(u, 0) case. In Adaptive Direction Sampling (ADS) they get the auxiliary variable z from another
Markov chain running in parallel, see Gilks and Roberts (1994) and Roberts and Gilks (1994).
This corresponds to our (z, f) with h = π. In Liu et al. (2000), z is sampled from a proposal
density that is more concentrated than the target π since they combine ADS with an optimization
step. This is also a variant of (z, f).

3.2 A proposal q with unit acceptance rate

In this section we show how to obtain a density for the one dimensional value t that gives
acceptance rate one. This is accomplished both for conditioning on u and for conditioning on z.
Consider first the case with auxiliary variable u, and recall the acceptance probability in (8). One
way to achieve unit acceptance rate is by choosing

q(t|u, x) =
g(u|x + tu)π(x + tu)

∫∞
−∞ g(u|x + ru)π(x + ru)dr

, (17)

since then everything cancels in (8), including the normalizing constants. We note that q(t|u, x) is
a function of the density for u. Moreover, acceptance rate one is achieved regardless of our choice
for g.
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Figure 2: Gaussian example, auxiliary variables z (top) and u (bottom), Order 0, 1 and 2. Left: Functional depen-
dencies on the densities for the auxiliary variable, as it enters in the proposal along the line. Right: Proposal
densities along the line (solid) and corresponding approximations (dashed).

Consider next the case with conditioning on z. A density for the one dimensional value t that
gives unit acceptance rate is

q(t|z, x) =
|1 − t|n−1h(z|x + t[z − x])π(x + t[z − x])

∫∞
−∞ |1 − r|n−1h(z|x + r[z − x])π(x + r[z − x])dr

. (18)

Again everything in the acceptance rate in (10) cancels, including normalizing constants and the
Jacobian term. The density along the line is again a function of the density we choose for z, and
for all densities h(z|x) we get acceptance rate one.

We illustrate the possibilities with a Gaussian example,

π(x) = N(x; 0, Σ), Σij = γI(i6=j), i, j = 1, . . . , n. (19)

We set n = 50 and γ = 0.25 in the illustration and consider (z, 0), (u, 0), (z, 1), (u, 1), (z, 2), and
(u, 2). In this Gaussian case we have (z, f) = (z, 2) and (u, f) = (u, 2) if we choose h = π for
the fixed density. In our illustration both x and z are drawn from the target and are kept fixed. In
Figure 2(left) we plot densities for the auxiliary variables as they take part in q(t|z, x) and q(t|u, x),
i.e. h(z|x + t(z − x)) and g(u|x + tu) as functions of t. We also plot the corresponding q(t|z, x)
and q(t|u, x) in Figure 2(right). It is interesting to compare the densities we get using u and z.
Since both u and z define the same line, the difference in mixing properties is indicated by the step
length along the line. For easier comparison we scaled the graphs in Figure 2 so that x refers to
t = 0, and z to t = 1. The h function is centered at t = 1 for the zero order approximation, for
the first order approximation it is largest between 0 and 1, and for the second order approximation

7



it is constant in this Gaussian case. The g function changes from being constant in the zero order
approximation, to a bathtub shaped curve for first and second order approximations. The shape
for g occurs because the u direction tends to get more likely as we go towards the tails of the
distribution.

The resulting proposal densities are very different as can be seen in Figure 2. The form of the
graphs can be tied to the densities defined in equations (17) and (18). For q(t|z, x) the |1 − t|n−1

factor is involved when conditioning on z. The proposal q(t|z, x) hence goes to zero at t = 1. The
density has at least one mode on each side of t = 1. The |1 − t|n−1 term increases rapidly away
from z, especially in high dimensions, and this results in a sharp shape on q(t|z, x). Further, in
high dimension x and z commonly lie in the tail with a high density region between the two points.
Because of the |1 − t|n−1 shape, the q density typically has most of its mass in the mode near x,
and negligible mass in the mode for t > 1. The proposal density conditional on u is unimodal for
small dimensions (n < 5) and for the (u, 0) case (see Figure 2), but as the dimension increases
the bathtub shaped g density for the first and second order cases results in a bimodal shape for
q(t|u, x). For high dimensions, the probability mass is almost always near 1

2
in each mode, caused

by the symmetry of the Gaussian distribution and the fact that samples typically are in the tail of
the distribution in high dimensions. The second mode is usually far from x, and this should induce
good mixing properties of the resulting Markov chain.

For the (u, f) case one can evaluate properties of the g(u|x + tu) function that takes part in
(17) using recursive formulas, see e.g. Pukkila and Rao (1988). The g(u|x + tu) can be shown
to be an even function around a symmetry point given by tmin = (µf − x)′Σ−1

f u/u′Σ−1
f u. Hence,

with the g(u|x+ tu) as part of the proposal we always try to throw mass away from this symmetry
point.

3.3 Numeric approximation of q

The methods from Section 3.2 require draws from a one dimensional density q(t|φ, x), where
φ is either an auxiliary point z or an auxiliary direction vector u. It is not possible to sample from
these densities by fast methods such as inversion (Ripley, 1987) or adaptive rejection sampling
(Gilks and Wild, 1992). We suggest numeric methods as part of this sampling step, fitting a density
q̂(t|φ, x) that resembles q(t|φ, x). Our approximation to the density is obtained by a numeric search
for the modes of the distribution. We then fit a t-distribution in each mode.

Consider first the case with z as auxiliary variable. We know that q has one mode on each side
of t = 1. The first mode is obtained starting at the current point (t = 0), while the other mode is
located for t > 1. When we condition on u we locate the first mode starting at t = 0. From plots
of densities (Figure 2) and the discussion above we recognize a bimodal shape for q(t|u, x). In
the numeric algorithm we step to both sides away from the first mode in order to locate a second
mode. We typically find a significant mode on one side and no mode on the other.

Our numeric searches are based on stepping out to bracket a mode, and using a midpoint
rule within the brackets. It seems robust, but faster searches are available, see e.g. Press et al.
(1996). We fit the scale parameter of the t-distribution from the curvature (second derivatives) in
the modes. The fitted densities that we obtain in this way are plotted in Figure 2 (right, dashed).
One can hardly see the difference between q and q̂ in this example.

The acceptance probability for proposed value y ∈ Rn using this numeric approximation be-
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comes

α(y|φ, x) = min

(

1,
π(y)f(φ|y)q̂(s|φ, y)

π(x)f(φ|x)q̂(t|φ, x)
· |Jφ|

)

, (20)

where f is either g or h, and φ is either u or z. In our experiments below the acceptance rate is close
to one with this numeric approximimation. However, fitting a numeric approximation requires
many evaluations of the target density, and each proposal takes much CPU time. Alternatively, we
could use a simple, fixed proposal density with heavy tails, which is commonly done. This requires
more tuning than in our numeric approach.

4 Examples

We first apply the directional MH algorithms to a Gaussian example. This provides a com-
parative study of the different directional algorithms outlined above. Random walk and Langevin
algorithms are also implemented for this example. We next apply the (u, f) algorithm to a Bayesian
spatial model for a seismic dataset from a North Sea petroleum reservoir. In this model we compare
the algorithm with an independent proposal MH algorithm.

Integrated autocorrelation (IAC) is commonly used as an indicator of the performance of
MCMC algorithms. The IAC for x can be estimated using a method from Geyer (1992), truncating
the sum of sample autocorrelations at the point where noise dominates the estimated autocorrela-
tion,

IAC = 1 + 2
2T+1
∑

t=1

ρt, ρt = Corr(xs, xs+t), T = max(τ ; ρ2t + ρ2t+1 > 0 for all t ≤ τ). (21)

We use IAC as one attribute to compare our algorithms. The IAC makes it possible to calculate the
number of iterations per independent sample. We also account for the number of evaluations (M)
of the target density per iteration. A natural measure of algorithm cpu time is then the number of
evaluations per independent sample. This becomes M × IAC.

4.1 Gaussian density

Consider the Gaussian target density (19). We first fix the parameters at γ = 0.25, and n = 50.
We run the order 0, 1 and 2 approximations for both z and u. In addition, random walk and
Langevin algorithms are used. We carefully tuned the parameters of random walk and Langevin to
get close to the ’optimal’ acceptance rates of 0.23 and 0.57, respectively, calculated in Roberts et
al. (1997) and Roberts and Rosenthal (1998).

Figure 3 (top) shows autocorrelations for all algorithms plotted as a function of iteration num-
ber. Note that conditioning on u is always better than conditioning on z. We also note that the
(u, 2) algorithm has very short correlation length. The autocorrelation for the (u, 1) algorithm also
comes down quickly, but then levels out. We recognize this tendency for Langevin as well. This
happens because the gradient does not point towards the center of the distribution when γ 6= 0.
Figure 3 (top) is not entirely fair as a comparative plot, since the cpu time for one iteration differs
dramatically for the various algorithms. The random walk algorithm requires only one evaluation
of the target density per iteration, Langevin requires two evaluations, while the (u, 2) algorithm,
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Figure 3: Gaussian example (n = 50, γ = 0.25): Top: Autocorrelation as a function of iterations for different
algorithms. Bottom: Autocorrelation as a function of the number of evaluations.

with calculation of second order derivatives and a numeric search, uses approximately 300 evalua-
tions per iteration. In Figure 3 (bottom) we correct for the mean number of evaluations required per
iteration. The autocorrelation is then plotted as a function of the number of evaluations. Random
walk and Langevin perform better than the directional algorithms in this case. The (u, 2) algorithm
is comparable to random walk and Langvin, while conditioning on z is not effective.

We now study the various algorithms for both n = 50 and n = 100, keeping γ = 0.25. Table
1 displays several aspects of the MH algorithms. The mean number of evaluations per iteration
is presented for all cases. This is largest for the second order approximations because we require
evaluations of both first and second derivatives of π at each step in the numerical approximation.
It is slightly larger for u than for z, because of the design of our numeric approximation q̂. Also
shown in Table 1 are the acceptance rates for all algorithms. The acceptance rates for the directional
MH algorithms are all close to one, showing that the fitted densities are good approximations of
the intractable densities in (17) and (18). Some variability exists because the q density is more
skewed for some of the algorithms, and q̂ does not match q that well in these cases. Number of
evaluations and acceptance rates do not seem to be affected by dimension. The mean step length
between successive samples is larger for (u, 2) than in the other directional algorithms. The step
lengths for (u, 1) and Langevin are also large, but the moves are along ’bad’ directions. Langevin
and random walk obtain smaller moves in larger dimensions (n = 100). Note also that the step
length does not increase much with the approximation order for z. In Table 1 we also present
estimated IAC from (21). IAC is smallest for the (u, 2) algorithm, and much larger using z than
u. It increases as dimension increases. From the estimated number of evaluations per independent
sample displayed in Table 1 we note that this is relatively small for Langevin, random walk and
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Table 1: Gaussian example: Attributes for the directional MH algorithms (z, 0),. . .,(u, 2), Langevin (L) and ran-
dom walk (RW). Parameter is γ = 0.25.

n=50 n=100

Mean number of target evaluations per iteration
0 1 2

z 70 130 230
u 80 200 300
L 2
RW 1

0 1 2
z 70 170 240
u 80 220 310
L 2
RW 1

Mean acceptance rates:
0 1 2

z 0.96 0.96 0.96
u 0.95 0.96 0.95
L 0.59
RW 0.26

0 1 2
z 0.97 0.95 0.96
u 0.95 0.98 0.97
L 0.62
RW 0.28

Mean jump length:
0 1 2

z 0.6 0.8 0.9
u 1.0 4.7 5.2
L 3.3
RW 0.4

0 1 2
z 0.6 0.7 0.9
u 0.9 6.8 7.7
L 2.6
RW 0.4

Estimated Integrated Autocorrelation:
0 1 2

z 170 190 105
u 100 60 5
L 625
RW 1210

0 1 2
z 495 300 190
u 295 140 6
L 680
RW 4500

Evaluations per independent sample (×1000):
0 1 2

z 12 25 24
u 8 12 1.5
L 1.3
RW 1.2

0 1 2
z 34 50 45
u 24 30 1.8
L 1.4
RW 4.5

11



Table 2: Gaussian example: Estimated number of evaluations per independent sample (M × IAC), presented in
thousands, for directional MH algorithms (z, 2) and (u, 2), Langevin (L) and random walk (RW) algorithms
for dimension n and correlation γ. The * means that we could not estimate this value in reasonable time.

n 50 50 100 100
γ 0.25 0.75 0.25 0.75

(z,2) 24 59 45 *
(u,2) 1.5 2.4 1.8 2.0
L 1.3 2.9 1.4 4.3
RW 1.2 15 4.5 32

(u, 2). The numbers are smaller for auxiliary variable u than for z. For all algorithms the number
of evalutions required per independent sample is larger for n = 100 than for n = 50.

We also simulate from the Gaussian example with parameter γ = 0.75 to study correlation
effects. In Table 2 we summarize the estimated number of evaluations per independent sample for
γ = 0.25, 0.75 and n = 50, 100. We present only the second order directional MH algorithms
(z, 2) and (u, 2). From Table 2 the directional MH algorithm (u, 2) is comparable to Langevin
and random walk. Hence the cpu time needed for statistical inference should be about the same.
Algorithm (u, 2) appears to carry less dimension and correlation effects than the other algorithms.
From Table 2 it is clear that conditioning on u gives a significant improvement compared to con-
ditioning on z. Both Langevin and random walk require careful tuning to perform well. There is
no tuning requirements for the directional algorithms, and this automatic nature of the directional
MH algorithms is attractive.

4.2 Seismic inversion

Seismic data analysis enables petroleum companies to characterize the subsurface since seismic
measurements are linked to rock and fluid properties. See e.g. Sheriff and Geldart (1995) for
a general overview on the interpretation of seismic data. We analyze seismic data from a two
dimensional domain in the Gullfaks petroleum reservoir in the North Sea. We use a Bayesian
model and study the posterior of elastic reservoir parameters conditioned on seismic data.

Stochastic model

The seismic data are represented on a 128 × 8 grid and for three different angles. Figure 4
shows the data for each angle. This dataset is studied from a geophysical viewpoint in Landrø
and Strønen (2003). Each gridnode covers 4ms in the vertical direction and 25m in the lateral
direction. The grid hence covers approximately 500ms (≈ 400m) in depth and 200m laterally.

We represent the elastic reservoir parameters on the same 128 × 8 seismic grid. Let x =
{xij; i = 1, . . . , 128; j = 1, . . . , 8} denote the elastic parameters. Each xij consists of three vari-
ables and we set xij=(αij , βij, ρij) for the variable at grid node (i, j), where αij and βij refers to
logarithms of primary and secondary velocities, while ρij is logarithm of mass density.

The seismic data d = {dij; i = 1, . . . , 128; j = 1, . . . , 8}, where dij = (d1
ij, d

2
ij, d

3
ij) is the
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Figure 4: Seismic data from the Gullfaks reservoir. Data are collected for three angles.

collection of measurements for the three angles at node (i, j), is modeled by

d = WA(x) + ε. (22)

where ε = {εij; i = 1, . . . , 128; j = 1, . . . , 8} is a Gaussian error term. The matrix W represents a
convolution model, while A(x) is a non-linear link between x and the seismic reflections, see e.g.
Sheriff and Geldart (1995) and Buland and Omre (2003).

Following Buland and Omre (2003), we model a Bayesian solution to the seismic inversion
problem using a Gaussian prior for the elastic parameters,

π0(x) = N(x; µ0, Σ0), (23)

where µ0 and Σ0 are prior mean and covariance matrix. We assign a multiplicative structure for Σ0

Σ0 = S ⊗ V0, (24)

where S is a 3 × 3 covariance matrix for xij , V0 is a spatial correlation matrix for each of α =
{αij; i = 1, . . . , 128; j = 1, . . . , 8} , β = {βij; i = 1, . . . , 128; j = 1, . . . , 8} and ρ = {ρij; i =
1, . . . , 128; j = 1, . . . , 8}, and ⊗ denotes the Kronecker product. The likelihood is defined from
(22) as

l(d|x) = N(d; WA(x), Σl), (25)

where Σl is the covariance matrix for the observation error term. Also for this covariance matrix
we assign a multiplicate covariance structure

Σl = T ⊗ Vl, (26)
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where T is a 3 × 3 covariance matrix for εij , and Vl contains the autocorrelations for d1 =
{d1

ij; i = 1, . . . , 128; j = 1, . . . , 8}, d2 = {d2
ij; i = 1, . . . , 128; j = 1, . . . , 8}, and d3 = {d3

ij; i =
1, . . . , 128; j = 1, . . . , 8}. The posterior of interest is then

π(x|d) ∝ l(d|x)π0(x). (27)

Because of the non-linear A(x), this posterior is not analytically available.
Parameter values in prior and likelihood are copied from Buland et al. (2003). Briefly, this

indicates that µx is a constant trivariate vector as a function of depth, set to (8.0, 7.3, 7.7) for
logarithms of primary and secondary velocities and mass density. The convolution window in the
W matrix has length equal to 11 gridnodes.

Linearized model

Buland and Omre (2003) obtained an analytical Bayesian solution to the inversion problem. In
short, they linearize the likelihood, getting

llin(d|x) = N(d; WAx, Σl), (28)

where the A matrix is a linearized version of the A(·) function in (22). The matrix W remains the
same. The posterior is then Gaussian with

πlin(x|d) ∝ llin(d|x)π0(x) ∝ N(x; µx|d, Σx|d), (29)

where µx|d and Σx|d are available from standard Gaussian theory.
For our approach, the linearized posterior provides a fixed density for the auxiliary variable de-

fined in (12). Moreover, the approximate posterior provides a proposal density for an independent
proposal MH algorithm. The fixed density is a good approximation to the target if the linearization
gives a good approximation to the non-linear model.

Fast Fourier transform

On the grid of size 128 × 8 it is very time consuming to draw a Gaussian variable x from the
Gaussian model in (29) and also to evaluate the model in (27). Chan and Wood (1997) present
an algorithm using the FFT (Fast Fourier Transform) to simulate Gaussian models. Buland et
al. (2003) discuss the approach for their linearized model. If we let x̃ = Fx denote the two
dimensional FFT of x and d̃ = Fd the two dimensional FFT of d, they show that πlin(x̃|d̃) is
Gaussian with a block diagonal covariance matrix. Computations can hence be done efficiently.
Evaluation of the non-linear π(x̃|d̃) requires somewhat more computations.

The FFT calculations require that we wrap the two dimensional grid into a torus. In this way
we also model circulant, positive definite correlation matrices for V0 and Vl. When we wrap the
grid into a torus we get the wrong correlation values at the boundaries of the grid. This entails bias
and underestimation of the variance at the edges. Alternatively, we could simulate a larger domain,
and wrap this onto a torus, but then we have no seismic data available on the additional part of the
torus. To obtain a correct model we must then simulate the missing data as part of the Bayesian
model. We do not consider this approach here.
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Figure 5: Left: Trace plot for primary velocity (α67,5) using independent proposal MH (top) and directional (u, f)
MH (bottom). Right: Autocorrelation plots for primary velocities (α67,5) using independent proposal MH (top)
and directional (u, f) MH (bottom).

Algorithms

We implement the directional (u, f) MH algorithm and an independent proposal MH algorithm
for this application. We use the˜notation for x̃, ũ and d̃ since the simulations and evaluations are
done in the Fourier domain. The (u, f) updating scheme uses πlin(z̃|d̃) as the fixed density h.
From z̃ and x̃ we find the auxiliary variable ũ by (6). This value of ũ has density g as in (11).
The q(t|ũ, x̃) density along the line is available in (17) with π(x̃|d̃) as the target density. The
independent proposal MH algorithm uses the linearized density πlin(ỹ|d̃) as a proposal density for
new state y. The acceptance rate is then

α(ỹ|x̃) = min

(

1,
π(ỹ|d̃)πlin(x̃|d̃)

π(x̃|d̃)πlin(ỹ|d̃)

)

. (30)

Results

In Figure 5 (left) we show trace plots of α67,5 for both independent proposal and directional
(u, f) MH samplers. These trace plots show 15 000 iterations and illustrate the appearance of each
sampler. The independence sampler (Figure 5, top left) either performs large moves or remains
in the same state (no accept). The trace plot for (u, f) very rarely remain at the same state, see
Figure 5, bottom left. It either moves long distances or only small distances. This apperance occurs
because of the bimodal proposal distribution q(t|ũ, x̃). At some iterations this proposal density has
two modes with significant mass (large moves), while at other times it has almost all mass in the
mode closer to 0 (small moves). The mean acceptance rate for the (u, f) algorithm is 0.94, while
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Figure 6: Estimated mean of logarithms of primary velocity α.

the mean acceptance rate for independent proposal is 0.02.
Figure 5, right, displays the estimated autocorrelation for both algorithms. The autocorrelations

are presented as a function of iteration number. For the independent sampler this was estimated
from 2 00000 iterations, for the (u, f) algorithm 25 000 iterations were used. The (u, f) algorithm
has smaller correlation length than independent proposal. Estimated IAC from (21) is 550 for
(u, f), compared to 3510 for independent proposal. The number of evaluations per iteration (M)
is 70 for (u, f) compared to 1 for independent proposal. This means that the estimated number of
evaluations per independent sample (M× IAC) is 38500 for (u, f), while it is 3510 for independent
proposal MH.

Figure 6 shows marginal posterior mean of logarithms of primary velocity, α, estimated from
25 000 subsequent samples from (27) obtained by the (u, f) algorithm. Primary velocity is the best
determined variable for this dataset. The vertical fluctuations in primary velocity captures some of
the changes in reservoir properties. Since the prior density models no trend in velocity, the vertical
trends that can be seen in Figure 6 are caused by the seismic data. Primary velocity is small around
vertical depth 70 − 75. This zone has been interpreted as the top of the reservoir (Landrø and
Strønen, 2003). Another low velocity zone is recognized at vertical depth 85 − 90, while primary
velocity increases at 90 − 95. The change at 90 was interpreted as a change in fluid saturation
(Landrø and Strønen, 2003), a shift from oil to water saturated rocks. Primary velocity is larger in
water-filled sand than in oil-filled sand, and we recognize this in the estimate.

The example shows that the directional algorithm performs adequately on a non-linear high
dimensional example. However, since the independent proposal also performs quite well, we con-
clude that the linearized model from Buland et al. (2003) is a good approximation to the model
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in this application. In this example we used the simplest form of approximation for the auxiliary
variable from section 3, namely the (u, f) algorithm. A more sophisticated proposal for the aux-
iliary variable might have worked better. However, since we apply FFT we require stationarity of
the Gaussian model. Moreover, the computation time increases if we use for example the current
value of α, β, ρ in the linearization rather than the prior values.

We also tried to reduce the variance in the measurement noise ε. As this variance term de-
creases, the posterior distribution gets more non-linear, and both directional (u, f) and indepen-
dent proposal MH algorithms run into problems. For the independent proposal we get acceptance
rates very close to zero, whereas the (u, f) algorithm mix slowly because the q(t|u, x) density has
almost all mass in the mode near the current state and only small moves are established.

5 Closing remarks

This paper presents a framework for directional MH algorithms. We use an auxiliary variable
to define the line, and next sample along this line. We apply our directional MH algorithms for a
Gaussian density and in a non-linear Bayesian model. From our experiments it appears as if using
an auxiliary direction vector is preferable to an auxiliary point. By using direction vector as an
auxiliary variable, we are able to construct directional MH algorithms that mix well in high di-
mensions. Good mixing properties are achieved primarily because the proposal mechanism throws
mass away from the current point. In our algorithms we obtain a bimodal proposal density with
one mode far away from the current point, and hence large moves are encouraged.

The algorithms derived in this paper differ from other approaches since we draw the auxiliary
variables conditional on properties of the target at the current state. We look for algorithms with
unit acceptance rate and the proposal density along the line then depends on the density for auxil-
iary variable in a particular way. In our approach we recognize this proposal from the acceptance
rate. Erland (2003) presents another directional MH algorithm with unit acceptance rate. His al-
gorithm is constructed differently and does not belong to the class of algorithms that we present.
This shows that there are more directional MH algorihtms with unit acceptance rate, but it is not
clear to us how these are connected.

In the paper outline several algorithms using properties of the target densities to various de-
grees. The Order 2 approximation defined in Section 3.1 works better than the Order 1 ap-
proximation. However, our Order 2 approximation is not directly applicable when the matrix
of second derivatives is non-positive definite. More sophisticated methods could be of interest in
this step, such as using ideas from generalized Langevin diffusions MH studied by Stramer and
Tweedie (1999).

In the MH setup we can use other proposal mechanisms than the particular ones above. For
example we could choose q?(t|u, x) = |t|q(t|u, x). Such proposals no longer give unit acceptance
rate, but when the proposed value is accepted, it is far from x. This is related to antithetic ideas.

Directional MH algorithms transform the problem of a tricky target density to a tricky proposal
density in one dimension. Our directional MH algorithms require few iterations to mix well, but
use many evaluations per iteration. Random walk algorithms, on the other hand, require many
iterations to mix well, but use only one evaluation per iteration. It is situation dependent which
algorithm is better. In our examples the directional MH algorithms perform better than the ones we
compare them with if we measure efficiency per iteration. Further research is required to derive fast
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proposal mechanisms for the one dimensional proposal density q. This would reduce the number
of evaluations per iteration. However, one advantage with the directional MH algorithms is that no
tuning is required. A fast proposal mechanism should remain robust in this respect.
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