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Abstract

In this report the main focuses are geostatistical Gaussian Markov random field
(GMRF) models and parallel exact sampling of GMRFs. There are also brief overviews
of parallel computing and Markov chain Monte Carlo (MCMC) methods, and a lit-

erature review of parallel MCMC. The geostatistical GMRF models are constructed
by discretising the domain region using a lattice. Instead of giving this lattice a
Gaussian random field prior, that corresponds to a Gaussian process, a GMRF that

is an approximation to the GRF is chosen. More computational benefits are achieved
through the nice parallelisation possibilities of GMRF sampling end evaluation. The
computationally expensive part of GMRF sampling is Choleskey decomposition of

the precision matrix. Parallelisation is done with parallel algorithms from linear al-
gebra for sparse symmetric positive definite matrices. The parallel GMRF sampler
is tested for graphs and lattices, and gives both good speed-up and good scalability.

A parallel one-block updating scheme Metropolis-Hastings sampler for latent
GMRF models is constructed using a GMRF approximation to π(x|y, θ) as pro-
posal for the latent field. It is used for a geostatistical GMRF model with binomial
likelihood, and shows good mixing for both the latent field and the hyper-parameters,

as well as good speed-up from the parallelisation.
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1 Introduction

More powerful computers allow us to use larger and -hopefully- more powerful statistical
models. The development of computers over the last couple of decades has given us the
opportunity to fit models that are not analytically tractable. The Bayesian approach to
modelling, especially, has gained from these developments. Through the computational
expensive Markov chain Monte Carlo (MCMC) sampling methods it is possible to make
inferences given ”any” model, see e.g. [35], [19] or [27]. But models and sampling methods
can always benefit from more computational resources. More computational resources can
be achieved by using two or more state-of-the-art processing units. This leads naturally
towards parallel computing. In particular spatial statistics is extremely demanding with
respect to both CPU and memory resources. This report focuses on using parallel com-
puting to geostatistical models. In geostatistics we have observations with known position.
The observations are somehow connected to an underlying (latent) Gaussian surface, and
we want to make inferences about this surface.

This chapter introduces a geostatistical problem, the model-based geostatistics and how
Gaussian Markov random field (GMRFs) can be used in geostatistics. The next chapter
gives a brief introduction to parallel computing, and chapter 3 contains a brief introduction
to MCMC. Chapter 4 reviews some parallel MCMC algorithms known in the literature.
In chapter 5 we introduce and test a parallelisation of exact sampling of Gaussian Markov
random fields. Chapter 6 contains a case study of the problem introduced in chapter 1.1.
Inference is done using a GMRF approach with the parallel sampling method from chapter
5. The report is closed with a discussion in chapter 7.

1.1 A geostatistical problem: Campylobacter infections in north
Lancaster

As a motivation to geostatistical models, we introduce an example of a geostatistical prob-
lem first of all. We have chosen the campylobacter infections in north Lancaster dataset.
This dataset consists of the dates and the unit post-code location of all reported outbreaks
of campylobacter, salmonella and cryptosperidia between April 29th and December 31st
1994 in post-code sectors LA8, LA9, LA10, LA21, LA22 and LA23. The dataset has pre-
viously been analysed in [11]. The locations of the outbreaks are shown in figure 1, and
large areas without any outbreaks can be observed.

Two or more persons can get the disease from the same source infection, and we think
of this as one outbreak. Cases in the same post-code region with dates of onset within
five days of each other are therefore considered one case. The dataset now consists of 399
outbreaks in 236 different locations, and 234 of the cases are campylobacter. We want to
estimate the probability that an enteric outbreak is campylobacter. The data are extra
binomial, and this could come from spatial variations of outbreaks. We assume there is
an underlying latent relative risk surface that an outbreak is campylobacter and it is this
surface we want to estimate.
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Figure 1: The locations of the enteric outbreaks

1.2 Model based geostatistics

Geostatistics is the part of spatial statistics that deals with continuous spatial variation.
The phenomena to be study, s(x), is a surface defined on a region A ⊂ R2. The phe-
nomena is generally not directly observable, and can be modelled as a realisation of a
stochastic process S = {S(x) : x ∈ A}. An example of a geostatistical problem is to
estimate a geological horizon when it is only observed through wells at a few location.
Then s(x) denotes the depth of the horizon at location x. An other example is the case
introduced in section 1.1. Here s(x) is a relative risk surface. The available data are
indirect observations of S(xi), also named measurements Y1, Y2, . . . , Yn taken at locations
x1, x2, . . . , xn, where xi ∈ A, i = 1, 2, . . . , n. The measurements are often noisy versions of
s(x), e.g. Yi ∼ N(s(xi), σ

2
noise), but can also have other connections, e.g. for count data can

Yi ∼ Po(exp(s(xi))), Poisson distributed with mean exp(s(xi)). The locations x1, . . . , xn

are considered either fixed or sampled independent of S(x) throughout this report. The
term model based geostatistics was introduced in [11] to be the branch of geostatistics that
apply explicit parametric stochastic models and formal likelihood-based methods of inference
to geostatistical problems [12]. Modeled-based geostatistics can be used both in a classical
and a Bayesian framework. We will only focus on the Bayesian approach. For a more
detailed introduction to model-based geostatistics see [12].

Our data are of the form (xi, yi) for i = 1, . . . , n, where xi ∈ A are locations and
y1, . . . , yn observations associated with these locations. The observations are from a mea-
surement process Y (x). We assume there exists an unobservable stochastic process S(x),
the signal process, and a relation between S(x) and Y (x), e.g. that Y (xi) is a noisy version
of S(xi). The joint distribution of the signal process and the measurement process, πS,Y

can be specified through the marginal distribution of S and the conditioned distribution
of Y given S;

πS,Y |θ = πY |S,θπS|θπθ

where θ are hyper-parameters that will appear. For notation reasons θ is sometimes sup-
pressed when conditioned on. We have to model πS , the distribution of the signal process,
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Figure 2: Illustration of the geostatistical setting. The surface of interest is s(x) which
exists over a region A. In this illustration there are three observations; y1, y2 and y3, at
locations x1, x2 and x3. The observations come from a measurement process Y which most
often is modelled as a stochastic function of the signal surface at the observation location;
Y (xi) = Y (s(xi)).

and πY |S , the conditional distribution of the observations given the signal process. Two
common assumptions are 1) that S is a Gaussian process and 2) that conditioned on the
underlying process S the observations are independent. For an illustration see figure 2.

1.2.1 Gaussian modelling of the signal process

We model S to be a stationary Gaussian process with expectation E(S(x)) = µ, variance
Var(S(x)) = σ2

S and correlation function Corr(S(x), S(x′)) = ρ(u), where u is the Euclidean
distance between x and x′, ‖x − x′‖.

The correlation function ρ(u) has to be specified next. The smoothness of the signal
process in the Gaussian case is determined by ρ(u)’s properties at u = 0. A process S() is
mean square continuous if E[(S(x)−S(x′))2] → 0 as ‖x−x′‖ → 0 for all x. Further is S()
mean square differentiable if there exists a process S ′() such that for all x

E

[(
S(x) − S(x′)

‖x − x′‖ − S ′(x)

)2]

→ 0

as ‖x − x′‖ → 0. Note that continuously and differentiability in mean square do not
imply continuously and differentiability in the realisations. A popular family to choose a
correlation function from is the Matérn family,

ρ(u) = (
u

φ
)κ 1

2κ−1Γ(κ)
Kκ(u/φ)
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where κ > 0 and φ > 0 are parameters, and Kκ denotes a Bessel function of order κ. A
nice property of the Matérn family is that it makes the process S() dκ − 1 times mean
square differentiable. Here dκ denotes the largest integer less or equal to κ. This makes κ a
smoothness parameter. Two well known members of the family are the exponential corre-
lation function ρ(u) = exp(−u/φ) (set κ = 0.5), and the Gaussian or squared exponential
correlation function ρ(u) = exp(−(u/φ̃)2) (κ → ∞ and φ = φ̃/2

√
u + 1).

Another correlation function family is the powered exponential,

ρ(u) = exp(−(
u

φ
)κ)

where φ > 0 and 0 < κ ≤ 2.
A property for both the Mantérn and the exponential families is that

ρ(u;φ, κ) = ρ(
u

φ
; 1, κ)

Hence φ can be interpreted as a scaling parameter for the dependence. The effective
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Figure 3: The powered exponential correlation function for φ = 0.1 (in gray) with κ = 1
(solid line) and κ = 2 (doted line) and φ = 0.4 (in black) with κ = 1 (solid line) and κ = 2
(dashed line).

range of correlation, or simply the range r, is defined as the distance where the correlation
drops below 0.05. For the exponential correlation function r = φ/3. In both models κ
is a smoothness parameter. Figure 3 shows the exponential and the Gaussian correlation
function with range parameters φ = 0.1 and φ = 0.4. In sparse and noisy cases it is often
not possible to identify κ, and κ has to be fixed. Thus three hyper-parameters have arisen;
µ, φ and, if not fixed, κ. For these a prior π(θ) ( θ = (µ, φ, κ)) most be specified.

1.2.2 Modelling the conditional measure processes given the signal process

We have just established a Gaussian model for the signal process S. In the most popular
form of Gaussian geostatistical models also Y |S is modelled as Gaussian. Let Y conditioned
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on S be mutually independent, and set

Yi|S ∼ N(S(xi), σ
2
Y )

for i = 1, . . . , n. A measurement at location xi, Yi, is Gaussian with expected value the
signal process at the same location and variance σ2

Y . An equivalent formulation is

Yi = S(xi) + Zi

for i = 1, . . . , n, where Z1, . . . , Zn are independent identical Gaussian distributed Zi ∼
N(0, σ2

Y ). The marginal distribution of Y is then multivariate Gaussian;

Y ∼ N(µ1, σ2
SR + σ2

Y I)

where 1 is a row vector of size n consisting of ones and R is a n × n matrix with Rij =
ρ(‖xi−xj‖). We have introduced a new hyper-parameter here, the noise-variance σ2

y , which
needs a prior πσ2

y
.

Often it is unnatural to model the observations as a noisy version of a latent Gaussian
process S. We want to be able to model the expectation of Yi as a function of S(x) and
possible some known covariates. This can be formalised as a generalised linear spatial
model (GLSM), see chapter 2.9 in [12]. We will describe two models, one for count data
and one for binomial data.

Often count data follow a Poisson distribution;

Yi|S ∼ Po(λ(xi)))

where λ(xi) = ci exp(S(xi)) and ci is a known positive location specific constant. If data
are obtained from counting over different time periods ci can be the time spend for Yi. In
a setting where yi is the number of cases of a disease in an area i, ci can be related to the
population of area i.

Spatial binomial data comes in triplets (xi, yi, ni), where xi is the location, yi the
number of successes out of ni Bernoulli trails with probability of success pi = p(xi). We
may use a probit link between p(xi) and S(xi),

log(
p(xi)

1 + p(xi)
) = S(xi)

and
Yi|S ∼ Bin(ni, p(S(xi)))

The case introduced in section 1.1 is an example with spatial binomial data. The obser-
vations consist of a post-code location (xi), the number of enteric infections (ni) and how
many of these that are campylobacter (yi).

The spatial count data model and the spatial binomial data model specified above are
both generalised linear spatial models, and results for GLSM are valid. There are no new
hyper-parameters introduced in these two models. Though from an implementation point
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of view, we can move the expected value from the Gaussian process S to our measurement
model. In the spatial binomial model we assume S(x) is a zero mean Gaussian process and
introduce a location independent level β

log(
p(x)

1 + p(x)
) = S(x) + β

in the measurement model.

1.2.3 Estimation

We have now build geostatistical models, and want to use these for estimation. Our interest
are one or both of the latent process and some of the hyper-parameters θ describing our
model. We may also have an interest in the signal process S(x) for some specified locations.
But more often the interest is in the process itself. It is not possible to find a closed form
of πS,θ|Y . Instead typically a fine grid over our study region is used as the locations of
interest denoted zj for j = 1, . . . , N , see figure 4. To make inference we sample from πS,θ|Y
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z2 +

* s(x1)

y1

y3

y2

Y(x3)

z7 +

Y(x2)

z3 +

* x1

* x3
z9 +
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z4 +

* x2

*s(x3)
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z8 +
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s(z6) +
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Figure 4: Grid of locations used for estimation. The signal process S is typically estimated
on a grid of locations. Here the locations are z1, z2, . . . , z9, and S(x)|y is estimated for
s(z1), s(z2), . . . , s(z9)

using Markov chain Monte Carlo (MCMC). For an introduction to MCMC see chapter 3.
The simulation process is often computationally very expensive. In the next section we are
going to introduce a small change in the model of πS|θ. Under the new model computations
needed, such as; evaluation of the posterior, to find an approximation to the posterior (for
fixed hyper-parameters) and to sample from this approximation, are cheaper. The change
in model will therefore enable us to do fast simulations with an one-block updating scheme
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Metropolis-Hastings algorithm. For details of the simulation method see chapter 5 and
chapter 6.

1.3 Using Gaussian Markov random fields in geostatistics

The computational demanding simulation methods needed to evaluate the geostatistical
models described above restrict both the dimension of problems we are able to evaluate,
and the quality of the analysis. This section takes a more pragmatic approach when mod-
elling. We have in mind the purpose of our modelling, estimation, and the restrictions of
computationally expensive simulation for inference. We build a model that gives very sim-
ilar estimators to the models described above, but which is orders faster to do simulations
for. What we gain is speed-up and the possibility of evaluating larger models. The focus
of this section is the grid of estimation points. Index the grid points j = 1, . . . , N where N
is the number of grid points. Denote the grid locations (z1, . . . , zN ) and the signal process
at these locations S = (S1, . . . , SN ). If S(x) is a Gaussian process with mean µ, variance
σ2

S and correlation function ρ(u) then S is multivariate Gaussian

S ∼ N(µ1, σ2
SR)

where R is a N × N correlation matrix and Rij = ρ(‖xi − xj‖). Calculations involved
in simulations are expensive because both R and its inverse generally are full matrices.
Multivariate Gaussian distribution is also known as Gaussian random field (GRF). A
special version of Gaussian random fields is Gaussian Markov random fields (GMRFs).
For GMRFs the inverse of R is sparse which makes the necessary computations cheaper.
This would be beneficial for us. For an introduction to GMRFs see chapter 5. On a grid it
is possible to make a GMRF that is a good approximation to a GRF for most commonly
used correlation function, see [38]. We are able to approximate the Gaussian random field
of the estimation grid to a Gaussian Markov random field, but what about the measure
process Y ? The approximation is for a regular grid (lattice) only and the locations of
the observations generally do not fit into a regular grid. The pragmatic solution to this
problem is to use the estimation grid only and “move the location” of each observation to
its nearest grid point. If the grid is fine relative to the distances between locations this
approximation only introduces a minor change.

A formal way of doing the convenient change above is to remodel the underlying process
S. Instead of having a continuous process S(x) we now discretise it by placing a lattice
above the domain A, see figure 5.

The lattice has a grid point in the centre of each element. Each element is viewed as
an unit, and is assumed to have a constant value for the process S. The elements are
indexed j = 1, . . . ,M , their centre locations (the grid points) z1, . . . , zM and the latent
signals S1, . . . SM . The model for S has changed from a process {S(x) : x ∈ A} to a field
S = [S1, S2, . . . , SM ]T . The field S is now modelled as a GMRF that is an approximation
to the GRF with correlation function ρ(‖zi − zj‖). Here zi and zj are the centre locations
of element i and j. The conditional distribution of the measurements given the signal field,
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Figure 5: Illustration of the GMRF model. The area A is divided into blocks, here 9 blocks.
The surface S is modelled as constant on a block, i.e. it only has 9 levels, s1, s2, . . . , s9.

Y |S is modelled as before. A measurement Yi is now connected to the field variable Sj

where element j covers Yi’s location.
We have changed the model for the signal surface S from being a constantly changing

surface to be build up of small square elements of constant values. This seems to be a
conceptual change, but in our setting we are only able to estimate the signal process for
a discrete grid in any case. If we use a GRF model and the observation locations are a
subset of the grid we have the same estimators. For computation reasons we use a GMRF
that is an approximation to the GRF. Further the observation locations are most often not
a subset of the grid, and the discretion of the signal model will influence the estimators
through the observations.
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2 Parallel Computing - A brief introduction

A parallel computer is a set of processors that are able to work cooperatively to
solve a computational problem. [15]

Two familiar problems for almost every computer user are tasks that take computers
ages to finish, and, even worse, can not be solved at all because of insufficient memory.
So our computational problem remains unsolved or at least can not be solved within a
reasonable time. But if a house can not be built quick enough by one builder, maybe two
or more can. One builder may not be capable at building the house alone, there could be
items too heavy for him. But two or more of them can lift the items together. The house
will be more expensive then first thought, but it is now possible to build it. The same
can be done with computers. Most computational problems can be divided up such that
more computers can work on it at the same time. This is known as parallel computing.
The problem of ”slow” computers and computers without the required memory is as old as
computers them-selves. Since the 1960s parallel computing has been a significant branch
of computer science. But it was not until the late 1980s that software and hardware had
improved so much it could be used in large scale outside its own academic branch and in
industry. Much has been written about parallel computing, for an introduction see e.g.
[15] or [10].

Parallel computer architecture can be divided into abstraction levels, see figure 6. At
the bottom we have the hardware, the physical components a computer consist of and
the communication medium. The bridge between hardware and the user is the operation
system, and for parallel computer this must support interaction between computers. Above
the operation system there are libraries and compilers for communication. These again are
used under a certain programming model. At the top is our parallel program. We will
focus on the higher levels, only describing programming models, design and performance
analysis of parallel applications in some detail. But to understand this, we need some basic
knowledge about how a computer works. For a more detailed introduction see e.g. [10].

2.1 Hardware

The main components in a computer are the processing unit, the memory and the connec-
tion between them, the bus. There are different types of memory, generally speaking it is
along the line of quick expensive memory to slow cheap ones. To take advantage of both
the speed that quick memory can give and the quanta the cheap affords us to have, most
computers have a memory hierarchy, see figure 7. The quickest memory is the register. It
is a part of the CPU and stores instructions and data about to be processed. The cache
is a layer between the ordinary local memory with slower access and the register. It has a
much quicker access time than the local memory, and is used for storage of frequently used
data or instructions. The cache is used for storing data close in time and space. Often
addresses just accessed and close addresses are asked for. In modern computers the cache
is often divided in two layers, with a smaller quicker and more expensive closest to the
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Figure 6: Diagram of abstraction levels in parallel computer architecture.
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Figure 7: Diagram of memory hierarchy.

register. Data will only be sent to the processor from the register, and memory is passed to
and from the register via the cache as needed. Most operation systems will not allow us to
control the memory hierarchy, but optimise it itself. Sometimes we can help the compiler,
i.e. by accessing data that are close at the same time. We can get speed-up (or slow-down)
by changing the order of a nested loop. If we gain speed-up, the new loop is accessing
memory in the same order as it is stored. The lowest level of the memory hierarchy is the
extended memory, this could be a floppy disk, a tape, a CD or some other cheap “add-on”
memory. For parallel computers we have in addition some kind of connection between the
processors, so they can pass information to each other. From each processors’ point of view
communication with other processors can be thought of as accessing extended memory. A
simple model for the time (Tc) it takes to pass a message is

Tc = TIC +
nData

B
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Figure 8: Diagram of the von Neumann computer model.

Here TIC is the initialisation time for the communication, i.e. a constant part, nData the
number of data (e.g. in bytes) and B the bandwidth (e.g. bytes per second) for the
connection. The important properties of this model is that communication has a constant,
here TIC , and a cost that depends on the amount of data, here nData

B
. Access time to

memory can be modelled the same way. The initialisation time TIC will decrease, and the
bandwidth B will increase going upwards in the memory hierarchy. Modern processors
uses pipelining and overlapping (see [13]) as an internal parallelisation. This implies it
does not take n times as long time to do n (e.g.) float point operation as one. The second
operation is started before the first one has finished, and so forth.

2.2 Parallel Computer Models

When we develop a sequential algorithm we do not think about which computer we are
going to implement it on. In most cases we can even port one implementation from one
computer to an other without any conceptual problems. This is because both the computers
and their software are designed under the same model, the von Neumann model. Von
Neumann modelled a single computer as a central processing unit (CPU) and a storage
unit (memory). The CPU executes a predefined sequence of write and read operations
to the memory (figure 8). This model has been so successful that we do not even think
about it as a model when we develop algorithms. The von Neumann model works so well
because it is simple and close enough to the true architecture. We do not gain much by
designing machine specific algorithms. For parallel computers there has not been such a
de facto model. There are many parallel computer models, and often a new computer
architecture does not fit into old classification categories. This is about to change, models
have started converging. The classification scheme suggested by Flynn in 1972 [14] has
traditionally been widely used. It divides computers into four categories, two program
instruction categories times two data access categories. The first class of computers is
SISD -Single Instruction Single Data. This is not a parallel computer, but the traditional
von Neumann model for sequential computers. A SIMD- or Single Instruction Multiple
Data computer is a computer that applies the same instructions to different data. This
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Figure 9: Diagram of a MIMD-SM (Multiple Instruction Multiple Data - Shared Memory)
machine.
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Figure 10: Diagram of a MIMD-DM (Multiple Instruction Multiple Data - Distributed
Memory) machine.

kind of architecture was popular when programming had to be done closer to machine level
and there was much human time saved when writing only one program. The third class,
MISD -Multiple Instruction Single Data has, as far as we know, never been constructed.
While the fourth class, MIMD or Multiple Instruction Multiple Data is the most common
one. In these machines different processors can run different programs, execute instruction
on their own data, and communicate with each other. There are two subclasses of MIMD,
MIMD-SM (Shared Memory) and MIMD-DM (Distributed Memory).

The shared memory architecture involves multiple processors with a common memory
pool, while in distributed memory architecture each processor has its own memory. See
figure 9 and 10 for the principal differences. MIMD-DM machines are also sometimes called
MPP -Massively Parallel Processing. SMP -Symmetric Multiprocessor is an other name
(or subclass) of MIMD-SM, and refers to the equal (or symmetric) access to the shared
memory. Modern high performance computers are often a combination of architectures.
The nowadays popular clusters are often clusters of SMP-machines, connected using very
high-speed interconnects, see figure 11.

The two dominating models today are MIMD-SM and MIMD-DM. The differences be-
tween them can be view as how the processors communicates. In the shared memory model
processors communicate through a shared address space, while those in the distributed
memory model communicate through message passing.

Which model you choose to program under depends on the computer you are using,
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Figure 11: Diagram of a cluster. A cluster consists of off-the shelve well performing per-
sonal computers connected with high-speed interconnects.
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but more importantly which compilers and libraries are available and also under which
model it is easiest to program. Today there are compilers for both shared address and
message passing models for most machines. We have chosen to use a message passing
model because we are used to programming under this model. Also this makes it clear
when communication is done, a benefit because communication is expensive and should
only be done when necessary.

2.3 Designing parallel algorithms

”Parallel algorithm design (...) it requires the sort of integrative thought that
is commonly referred as ”creativity”.” [15]

When we start designing a parallel algorithm we often have a sequential version of it. In
the easiest cases this algorithm suggests a good parallel version, but more often we have
to change our approach to the problem.

Our main goal is, of course, one or both of speed-up and being able to handle larger
problems. But there are also other properties we would like our parallel algorithm to have:

• Scalability: Even if we have a fixed sized problem and a maximum of processors
available, our algorithm should be able to take advantage of more processors either
for speeding up or for solving larger problems.

• Unique solution: There should exist a sequential algorithm that always gives the
same result.

There are two main ways of parallelisation; functional decomposition and domain de-
composition. With functional decomposition the processors are given different tasks to
solve, but the input to their functions would be the same as in the sequential case. When
the domain is decomposed each processor solves the same tasks, but on different parts of
the problem, or domain. In a cooking analogy with two chefs (processors), seven courses
(functions) and 50 guests (domain) the functional decomposition would be that one chef
made three of the course for all the guests, the other four. While a domain decomposi-
tion approach would be that they both made all the courses for 25 guests. Most practical
parallel solutions are a mixture of both, and it is often not even clear what is domain and
what is function.

Newman and Barkema [34] give a third parallelisation class; trivial parallelisation. They
define trivial parallelisation to be problems that can be splited up into tasks that are
completely unrelated. No communication is needed, and what we do is essentially to run
the same sequential program on different computers with different input parameters.

2.4 Performance analysis

The only reason we do parallel computing is to improve performance, either to get faster
programs, or to be able to handle bigger problems. The most used performance measure
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is speed-up:

Speed-up(p) =
time1

timep

Where time1 is the run-time for one processor, preferable using the best sequential algo-
rithm and timep is the run-time for p processors. The ideal, or rather optimal, speed-up is
p, i.e. linear with the number of processors. In cases where the goal of the parallelisation
is to solve larger problems, scaled speed-up can be a good measure.

Scaled-speed-up(p) =
p × time1(A)

timep(p × A)

where time1(A) is the run-time on one processor for a problem of size A, and timep(p×A)
is the run-time for p processors for a problem of size p × A.

The speed-up is a measure of the actual implementation. For the possible degree of
parallelisation for an algorithm we have Amdahl’s law:

Speed-up =
1

(1 − f ) + f
p

where f is the fraction of the algorithm that is parallelisable. When the number of pro-
cessors p approaches infinity, the speed-up approaches 1

1−f
. So the possible speed-up of an

algorithm is limited by its sequential fraction 1 − f . If 20% of an algorithm is sequential,
then the maximum speed-up will be five. We can sometimes observe speed-up that is bet-
ter, and even much better, then theoretical achievable. This kind of speed-up is known as
super linear speed-up. If there is not enough room for the data which need to be stored
during calculations in the cache a significant part of the computation time is spent shuffling
data between the cache and the local memory. Using more processors can decrease the
size of the computational problem enough so only the cache is used. In addition to the
speed-up we theoretical get from the parallelisation, we will be given the time used for
sending data between memory levels, thus observing a super linear speed-up.

Two important issues for performance is load balance and communication overhead. The
load balance is good if processors have about the same amount of work to do and it is done
concurrently. If processors are often idle this wastes CPU-time, and limits the performance
of the parallelisation. Except in trivial case, parallelisation always involves some kind of
communication between processors. Communication is expensive (time consuming), and
in most cases is the major part of the extra cost that comes with parallelisation.

Often the sequential part of parallel algorithms requires some calculations that are
based on input from all the processors, and all processors need the result in their further
calculations. An obvious way of doing this is to let a master processor do these calculations,
and communicate them to the other processors afterwards. But because of load balance
and communication overhead it is often more beneficial to let all processors do these cal-
culations. The other processors are idle when the master processor does the calculation,
and there are communication to be done afterwards.
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2.5 Some available software

There are two main branches of parallel application, those which involves parallelisation of
linear algebra, and those which involves parallelisation of numerical solvers of differential
equations.

Linear algebra is most relevant for the work we presented in this report. Much research
has been done on parallel numerical linear algebra, for an introduction see [13].

Many numerical parallel linear algebra functions are collected in ScaLAPACK (Scalable
Linear Algebra PACKage). This library is for distribute memory computers, and versions
for most systems can be down loaded from http://www.netlib.org/scalapack. Most
parallel computer vendors will have their own linear algebra library optimised for their
architecture. IBM has their Parallel ESSL (engineering and scientific subroutine library),
which contains a subset of ScaLAPACK. MPI (Message Passing Interface, [40]) has become
the standard library for communication, and is available for both parallel computers and
clusters of work stations.
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3 Markov Chain Monte Carlo - A brief introduction

Analysing complex systems will in most cases result in complex models. For a stochastic
model integration is almost always involved when making inference about its parameters.
Only in a few special situations we are able to do this integration analytically. If we do
not want to restrict our models to those few we can handle analytically we have to solve
these integrals numerically.

For one dimensional reasonably well behaving functions there are well behaving and
computational cheap numerical integration methods with known accuracy. There are two
main groups of methods. The most popular way is by calculating f (x) for some values of x,
(x1, x2, ..., xn), and to use an integrable function g(x) to interpolate between neighbouring
points. The estimate is then

∫ b

a

f (x)dx ≈
n−1∑

i=1

∫ xi+1

xi

gi(x)dx

The evaluation points are here fixed. An other option is to choose the evaluation points
at random from a distribution proportional to f (x) on the interval we want to integrate,
and to use

∫

f (x) ≈ 1

n

n∑

i=1

f (xi)

as our estimate. Where xi ∼ cf (x), c is the normalisation constant and n is the number
of samples. These methods are known as Monte Carlo integration. If we want to calculate
∫

f (x)π(x)dx this can also be done by Monte Carlo integration:

∫

f (x)π(x)dx ≈ 1

n

n∑

i=1

f (xi)

where xi’s are independent samples from π(x). The law of large number ensures conver-
gence for the Monte Carlo integration.

In statistical analysis we often have high dimensional spaces (> 1000 occurs) we want
to integrate over. For a fixed evaluation point method applied to a p dimensional integral
O(np) evaluation points are needed, where n is the number of points needed to get the
same accuracy in one dimension. This approach is computational impossible for high
dimensional integrals.

The error for the Monte Carlo method for a p dimensional problem with n sample is
Op(n), and hence independent of the dimension. But are we able to sample from f (x)?

The term Monte Carlo sampling was first introduced by Nicholas Metropolis in 1949.
He and some fellow researchers working on the Manhattan project were the first to use
computers for making random samples, and to make statistical inference from these. But
statistical sampling, which was the old term, had been known for a century as a way to do
numerical integration over poorly behaved one dimensional functions. For an interesting
historical review of Monte Carlo methods, see Chapter 1 in [34].
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3.1 Exact simulation methods

If we assume we can sample independent samples from an uniform distribution between
0 and 1, u ∼ U(0, 1), then there are two principal ways of doing exact simulation, by
transformation and by accept/reject.

3.1.1 Transformation

If the distribution function F (x) for x ∼ f (x) is invertible it is possible to transform a
sample u from U(0, 1) to a sample from f (x) by

xi = F−1(u)

where F−1 is the inverse of F , i.e. F (F−1(u)) = u. See [35] for a detailed introduction
and examples. Commonly used distributions it is possible to sample from through trans-
formations are exponential, Poisson and of course uniform distributions, both continuous
and discrete and with other ranges then (0, 1). Combinations of exact sampled variables
can in addition give us Gaussian and Chi-square distributed samples.

3.1.2 Accept / Reject

If F (x) is not invertible it could be possible to use the accept/ reject algorithm to get exact
samples. We have to find a density function g(x) that we can sample from and a constant
K such that

f (x) ≤ Kg(x) ∀x

Then we can sample exact from f (x) by algorithm 1.

Algorithm 1 Accept / reject sampler

• Given x0

• While(accept==0)

– Sample y ∼ g(y)

– Set x = y with probability f(x)
Kg(x)

– If accepted accept=1;

• Return x

A nice property of accept/reject sampling is that it is possible to sample from a dis-
tribution even if the density only is known up to a normalisation constant. The expected
number of samples needed for each acceptance is K. In practice it is often hard to find a
g(x) with a small enough K to give a reasonable expected time to acceptance. For a more
detailed introduction, extension and examples we again refer the reader to [35].
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3.2 Markov Chain Monte Carlo

In most cases when we want to use of Monte Carlo integration we are not able to sam-
ple exact from our distribution π(x). A solution is then to use Markov Chain Monte
Carlo(MCMC ) simulation instead. The idea is to construct a Markov Chain (X i) we are
able to simulate from and that has π(x) as its stationary distribution. Samples from this
Markov chain xi i = 1 . . . n, will, after a burn-in period b, be dependent samples from π(x).
We can use these samples in our Monte Carlo integration, and

∫

f (x)π(x)dx ≈ 1

n − b

n∑

i=b+1

f (xi)

as our estimate.

3.2.1 Markov Chains

We will now give a brief overview of Markov chain theory relevant for Markov chain Monte
Carlo simulations. For more details, see chapter 3 and 4 in [19], chapter 4 in [35] and
references therein.

A Markov chain is a discrete stochastic time process {X0,X1, . . . } for which Xi ∈ χ
conditioned on all Xt = xt, t < i, only depends on Xi−1. I.e.

πx(Xt|Xt−1 = xt−1,Xt−2 = xt−2, . . . ,X0 = x0) = πx(Xt|Xt−1 = xt−1)

For a general state space Markov chain on χ, the chain is driven by a transition kernel
K(x, y) defined on χ × B(χ) where B(χ) is a Borel set on χ. As a function of any x ∈ χ
K(x, ·) is a probability measure (in the continuous case a density function). For all A ∈
B(χ) K(·, A) is measurable. And we get

P (X t+1 ∈ A|X t = xt) =

∫

A

K(xt, dy)

for any A ∈ B(χ). We define the n-step transition kernel Kn(x, y) by recursion;

Kn(x,A) =

∫

A

Kn−1(y,A)K(x, dy)

where K1(x, y) = K(x, y). A Markov chain is reversible if π(X t|X t−1 = x) = π(X t|X t+1 =
x). I.e. it can not be seen in which direction the chain runs. It will also be useful to define
stopping-time at A, τA. We consider A ∈ B(χ), and define

τA = inf{n ≥ 1;Xn ∈ A}

i.e. the first n for which the chain visits A. The number of visits to A is

ηA =

∞∑

n=1

IA(Xn)
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In MCMC a Markov chain that converges to a specified stationary distribution is con-
structed. This chain has to fulfil to irreducibility and recurrence. But first we will define
stationary distribution. A distribution π is stationary for a Markov chain with kernel
K(x, y), if

π(A) =

∫

χ

K(y,A)π(dy)

for any A ∈ B(χ).
Let ρ be a measure. A Markov chain (X i) with transition kernel K(x, y) is ρ-irreducible

if for every A ∈ B(χ) with ρ(A) > 0 there exists an n such that Kn(x,A) > 0 ∀x ∈ χ. The
chain is strongly irreducible if n = 1 for all measurable A. Irreducibility ensures that the
chain can reach any interesting part of χ within a finite number of steps. I.e. which parts
of χ the chain can reach does not depend on the starting value, and does not change for
different states x of the chain. An irreducible chain with a stationary distribution is said
to be positive.

Recurrence ensures that the stationary distribution does not depend on the initial
value x0 of the Markov chain, and that the chain visits every set B(χ) often enough. A
ρ-irreducible Markov chain (X i) is recurrent if, for every A ∈ B(χ) with ρ(A) > 0, it has
Ex(ηA) = ∞ for all x ∈ A (i.e. for ρ almost all x).

Theorem 4.1 in [19] states that if a Markov chain (X i) is irreducible and has π as a
stationary distribution it is π-irreducible, π is the unique stationary distribution and (X i)
is recurrent.

This theorem ensures us an unique stationary distribution for π-almost all chains. But
the Markov chain is stared from an initial value, i.e. from a null set. Harris recurrence
eliminates this problem.

An ρ-irreducible Markov chain (X i) is Harris-recurrent if for every A ∈ B(χ) with
ρ(A) > 0 we have

P (ηA = ∞) = 1

for all x ∈ χ.
The difference between recurrence and Harris-recurrence is the difference between π-

almost all x and all x.
A positive Harris-recurrent Markov chain is also known as an ergodic Markov chain.

For an ergodic Markov chain there are some convergence results. We use the total variation
norm;

‖ µ1 − µ2 ‖TV = sup
A

|µ1(A) − µ2(A)|

where µ1 and µ2 are distribution functions. For an ergodic Markov chain with transition
kernel K and stationary distribution π then

lim
n→∞

‖ Kn(x, ·) − π ‖TV = 0

More importantly for our purposes any ergodic Markov chain (X i) with initial distribution
µ the following holds,

lim
n→∞

|Eµ[h(Xn)] − Eπ[h(X)]| = 0
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for every bounded h.

3.2.2 Metropolis-Hastings

A method suggested by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller in 1953 [30]
and extended by Hasting in 1970 [23] gives a way of constructing a Markov chain that has
π(x) as its stationary distribution. A Markov chain (Xn) with transition kernel K(x, y) is
detail balanced if there exists a π such that

K(y, x)π(y) = K(x, y)π(x)

for ∀x, y. If π(x) satisfies the detailed balance condition, then π(x) is (Xn)s stationary
distribution, and the chain is reversible. Detail balance is a sufficient but not necessary
condition for π(x) to be the stationary distribution. The Metropolis-Hasting algorithm,
algorithm 2, makes such a Markov chain. q is called the proposal (or instrumental) dis-

Algorithm 2 Metropolis-Hastings Algorithm

• Given x0

• for i = 0 : (n − 1)

– Sample y ∼ q(y|xi)

– α(x, y) = min( π(y)q(xi|y)
π(xi)q(y|xi)

, 1)

– xi+1 =

{

y, with probability α

xi, with probability 1 − α

• Return x

tribution. We will prove that the Metropolis-Hasting algorithm for every q who’s support
includes χ, produces a Markov chain with stationary distribution π. The transition kernel
is

K(x, y) = α(x, y)q(y|x) + (1 − r(x))δx(y)

where r(x) =
∫

α(x, y)q(y|x)dy is the probability of rejecting y. δx is the Dirac mass in x.
We can now establish detailed balance by verifying that

α(x, y)q(y|x)π(x) = α(y, x)q(x|y)π(y)

and
(1 − r(x))δx(y)π(x) = (1 − r(y))δy(x)π(y)

which implies that π(x) is the stationary distribution of the Markov chain (Xn) generated
by the Metropolis-Hasting algorithm.
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A convergence property associated with Metropolis-Hasting chains is that if π is bounded
and positive on every compact set of its support χ, and there exists positive numbers ε and
δ such that q(y|x) > ε if |x − y| < δ then the Metropolis-Hasting chain is π-irreducible,
aperiodic and Harris recurrent. Then:

1. If h ∈ L1(π),

lim
N→∞

1

N

N∑

n=1

h(Xn) =

∫

h(x)π(x)dx

2. If in addition (Xn) is aperiodic, then

lim
N→∞

‖
∫

Kn(x, ·)µ(dx)‖TV = 0

for every initial distribution µ.

This result enable us to use samples from the Metropolis-Hasting algorithm to estimate
expectations under π. We are going to describe two subclasses of Metropolis-Hasting,
random walk and independence sampler.

For the independence sampler, see algorithm 3, the proposal q(y|x) does not depend
on the current value of the chain x; q(y|x) = q(y). The proposal is the same distribution
every iteration.

Algorithm 3 Independent Metropolis-Hasting

• Given x0

• for i = 0 : (n − 1)

– Sample y ∼ q(y)

– α(x, y) = min(π(y)q(xi)
π(xi)q(y)

, 1)

– xi+1 =

{

y, with probability α

xi, with probability 1 − α

• Return x

Note that even if the proposed y is independent of the xi, the resulting sample xi+1

is not independent of xi. The probability of accepting y as xi+1 depends on xi. Another
natural way of constructing a proposal y, is to let y be a perturbation of x

y = xi + ε

where ε ∼ g(), and g() does not depend on xi. This makes the proposal distribution
depend only on the change; q(y|x) = q(x − y). Metropolis-Hastings algorithms with this
kind of proposal are known as random walk Metropolis-Hastings. The algorithm proposed
by Metropolis et. al. in [30], see algorithm 4, is the special case of random walk Metropolis-
Hastings, where g() is symmetric. This gives q(y|x) = q(x|y).
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Algorithm 4 Metropolis Algorithm

• Given x0

• for i = 0 : (n − 1)

– Sample y ∼ q(x − y)

– α(x, y) = min(π(y)
π(x)

, 1)

– xi+1 =

{

y, with probability α

xi, with probability 1 − α

• Return x

3.2.3 Gibbs sampler

Under the positivity condition (defined below) the joint distribution π satisfies

π(x1, . . . , xp) ∝
p

∏

j=1

π(lj)(xj |x1, . . . , xj−1, x
′

j+1, . . . , x
′

p)

π(lj)(x
′

j |x
′

1, . . . , x
′

j−1, xj+1, . . . , xp)

for every permutation l on {1, 2, . . . , p} and every x ∈ χ.
Let π(i) denote the marginal distribution of xi. π satisfies the positivity condition if

π(i)(xi) > 0 for every i = 1, . . . , p implies that π(x1, . . . , xp) > 0. The result implies that
a multi-dimensional distribution π(x) = π(x1, x2, . . . , xp) is uniquely specified from all its
full conditional distributions π(xi|x−i), i = 1, 2, . . . , p and x−i = (xi, . . . , xi−1, xi+1, . . . , xp).
The Gibbs sampler, see algorithm 5, is a Markov Chain Monte Carlo sampler that only
uses the conditional distributions. The method came from statistical physics, and was
introduced to the statistical society (and given the name ’Gibbs sampler’) by Geman and
Geman in 1984 [18].

Algorithm 5 Gibbs sampler (fixed scan)

• Given x0

• for i = 0 : (n − 1)

– for j = 1 : p

∗ Sample yj ∼ π(xj |y0, . . . , yj−1, x
i
j+1, . . . , x

i
p)

– xi+1
j = y

• Return x
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Each xi here can be either one or multi-dimensional. If some of the xi’s are multi-
dimensional we have a block Gibbs sampler. The Gibbs sampler can be seen as a combina-
tion of p Metropolis-Hasting steps, each with acceptance probability α = 1. But it most
be stressed that the Gibbs sampler above is not a reversible Metropolis-Hasting algorithm:
The proposal distribution q changes for each dimension, and the resulting chain is not
reversible.

If the full dimensional transition kernel is absolutely continuous with respect to π, and
its Markov chain (Xn) is aperiodic, then

lim
n→∞

‖ Kn(x, ·)µ(dx) − π ‖TV = 0

for every initial distribution µ.
The Gibbs sampler given above is a fixed scan Gibbs sampler, because the elements of

Y is updated in the same order in every iteration. For proofs and a presentation of random
scan Gibbs samplers see chapter 7 in [35]

If it is not possible to sample from the full conditional distribution, there is an option to
Metropolise the Gibbs sampler, see algorithm 6. In each step yi is sampled from a proposal
distribution qi(yj |y1, . . . , yj−1, x

i
j+1, . . . , x

i
p), and is accepted or rejected. This algorithm is

also known as single site Metropolis-Hastings.

Algorithm 6 Metropolised Gibbs sampler (fixed scan)

• Given x0

• for i = 0 : (n − 1)

– for j = 1 : p

∗ Sample yj ∼ qj(xj |y0, . . . , yj−1, x
i
j+1, . . . , x

i
p)

∗ α(x, y) = min(
πj (yj |y0,...,yj−1 ,xi

j+1
,...,xi

p)qj(xj |y0,...,yj−1,xi
j+1

,...,xi
p)

π(xi
j |y0,...,yj−1 ,xi

j+1
,...,xi

p)qj(yj |y0,...,yj−1,xi
j+1

,...,xi
p)

, 1)

∗ xi+1
j =

{

yj, with probability α

xi
j, with probability 1 − α

• Return x

3.2.4 Convergence Diagnostics

If we have an ergodic Markov chain with π as an invariate measure we are assured con-
vergence, but do not know how fast. The questions we have to ask is 1) has the chain
converged, and 2) how long chain do we need, i.e. how good is it mixing. To determine the
burn-in period, and the necessary length of the Markov chain for our estimate to converge
is a major and difficult task in MCMC. There are theoretical measures for how fast the
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chain converges (for example for discrete and finite chains, how close the second largest
eigenvalue of the transition matrix is to 1). But in most cases it is not possible to find
these kind of qualitative parameters easily, and for all practical proposes we have to base
our diagnostics on the samples the chain gives us.

For a start, trace plots for some of the variables are made and visually inspected. The
goal of almost all MCMC simulations is to find the expected value for some function f .
To plot the average f̄j = 1

j

∑j
i=1 f (xi) for j = 1, 2, . . . , n, and see if it has stabilised is

an obvious next step. Simulations can only tell us about areas they have visited (and
for Metropolis-Hastings the areas the chain tried to visit). Especially this is a problem
when the target distribution is multi-modal. We can start in a local mode and ’never’ (in
our simulation time) get to the main mode. That move is very unlikely to be suggested.
Something that may help us discover both multi- modality and slow mixing is running
several chains with different initial values. If the chains give different estimates and/or
do not visit the same areas they have not converged or not mixed enough. Estimating
the auto-correlation function for succeeding samples for some of the variables and relevant
functions can help us quantify the mixing. If the auto-correlation is large (e.g. for lag one)
the chain is moving slowly and we have slow mixing.

Metropolis-Hastings algorithms often have some parameters in the proposal distribution
that the user has to set. The tuning of these parameters is often a trade-off between good
mixing (suggesting large steps) and high acceptance probability (small steps gives higher
probability of acceptance). Gelman, Roberts and Gilks [17] suggest an acceptance rate of
50% for dimension 1 - 2, and 25% for high-dimensional models.

There are several review articles written about MCMC diagnostics, e.g. [29], [8] and
[3].

3.2.5 Proposals and updating schemes

Even though it has been known for some years that updating variables in blocks can improve
the mixing ([4] [28]) single site updating schemes have been the most used ones. Results
in [26] suggest that all variables should be updated in one block for latent variable models,
due to the fact that the hyper-parameters and latent variables are strongly correlated.

Construction of useful high dimensional proposal distributions, and sampling from these
has been a problem. The fast sampling algorithm [36] by Rue and the method of construc-
tion proposals in [37] are recent contributions that makes it more feasible to use one-block
updating scheme Metropolis-Hastings samplers.
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4 Parallel MCMC -A literature review

4.1 Introduction

Markov chain Monte Carlo methods are powerful in their generality, but computationally
very expensive. Using more than one processor is therefore a tempting and obvious solution
to be able to get faster programs and make inference in larger and more complex models.
Geman and Geman mentioned parallel processing as an opportunity in [18] and a few
different possible parallelisations in statistical inference are described by Schervish in [39].

MCMC is an iterative method, and hence in nature sequential. Parallelisation most
therefor be done on domain level, within each iteration. An exception is multiple chains,
with or without interactions. The most used parallelisation is probably to let independent
chains run on different processors, without any interaction. For the pragmatic user this is
the most powerful way of parallelisation -the best you can get when the number of chains
equals the number of processors.

Parallelisation is often mentioned in MCMC literature, but very seldom done. We will
give an overview of the few implemented parallel MCMC methods we have found, and their
results. A detailed description and new parallel implementations of both parallel chains
and parallelisations of single chains for models with Markov properties are done in [44].

4.2 From Statistical Physics

MCMC was first developed by statistical physicists and many of the more specialised
methods were also first suggested by them. Chapter 14 in [34] and [1] present the same
methods for parallel simulation of the Ising model. The Ising model is a Markov random
field with neighbourhood of order one.

Their first parallelisation method is a single site random scan Gibbs sampler. The
domain is divided into p blocks (p is the number of processors), and each processor updates
its own block. The challenge here is the borders between the blocks. They have three
different solutions. The first one is to communicate with the corresponding neighbour
each time a board element is updated. This causes a lot of communication overheads
and slows down the algorithm. This is not only due to the communication, but also due
to the synchronisation that is needed. A way to avoid a lot of this communication is to
let each processor have an extra buffer with its neighbours borders. This combined with
using the same random scan for all processors decreases the need of communication. Only
when a border element has been updated it is necessary to send it from one processor to
its neighbour. Their third method is to make a buffer between the blocks, that are not
updated and to change the borders/blocks to achieve ergodicity. For the simple method
they report a maximum speed-up of 27 for 40 processors. This is for a 200 × 200 lattice.
The method with buffer borders and the same scan for all processors outperforms the first
method by a factor of 1.6.

Single site updating converges very slow for the Ising model near the critical temper-
ature, which are the interesting cases for the statistical physicist. The Swendsen-Wang

27



algorithm [41] deals with this by updating clusters of elements at the same time. Barkema
and MacFarland [1] have made a parallel version of Swendsen-Wang. They again divide
the domain, one part to each processor. Each processor makes clusters on its own, but all
the clusters that contains a border element is assigned to a master processor. The method
gains its highest speed-up of 3.2 for 9 processors.

4.3 Spatial Gaussian Models

Whiley and Wilson [43] have developed parallel simulation methods for latent spatial Gaus-
sian models (as introduced in chapter 1). They have three approaches, two exact and one
approximation. Their first method is to parallelise the matrix calculations only. A Gaus-
sian process model gives a full covariance matrix Σ that depends on hyper-parameters
θ, Σ(θ). Sampling from the latent field x and evaluating the distribution involves calcu-
lating the inverse, Σ(θ)−1, the determinant, |Σ(θ)| and yT Σ(θ)−1y. For large fields these
calculations are the most time consuming part of the algorithm. Whiley and Wilson’s
first method is to parallelise only these parts of the algorithm. In practice calculating the
Choleskey factor L, Σ(θ) = LLT is the computational most expensive part. They have
used well-known methods and software from numerical linear algebra. Their results give
some speed-up, about 2 for 4 processors, and 3.5 for 16 processors.

Their second method is a domain decomposition way of parallelisation. The field is
divided into M · K blocks, see figure 12. The idea is that blocks that are far away from
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Figure 12: Illustration of the geostatistical setting.

each other are approximately independent and can be updated concurrently. The blocks
are allocated to M groups in such a way that blocks in the same groups are not neighbours.
Further are blocks in the same group approximately independent given the elements in the
other groups. Blocks in the same group are updated in parallel without any interaction
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within an iteration. This method makes a very scalable parallel algorithm. Also the speed-
up for a fixed size problem is very good (10 for 16 processors). But the algorithm is not
exact and the samples are treated as if they were.

The third method is an exact version of the second. The full conditional distribution
is now used for each block. This means that blocks can not be updated simultaneous.
But the evaluation of the conditional distribution of a block can be done simultaneously
as sampling from an other block. This kind of “sequential” parallelisation gives poor
theoretical scalability and speed-up properties. Though for a realistic number of processors
and problem size it can work well, and their results confirm that.

4.4 Parallel Simulated Annealing for Markov Fields

In [5] Jeng, Woods and Rastogi have presented a method for parallel simulation on Markov
Fields in a simulated annealing setting. The algorithm was suggested by Murray, Kashko
and Buxton in [32]. They have written it in a SIMD machine setting, but it can easily
be used under other parallel programming models. The parallelisation is done within each
temperature iteration, so from a parallelisation point of view they are parallelising single
site updating of a Markov random field. They do this by domain decomposition, and along
the same lines as method two of Whiley and Wilson. They divide the Markov field into
disjunct subsets, and are updating conditional independent blocks at the same time. Since
Jeng, Woods and Rastogi, unlike Whiley and Wilson, work with a Markov field they have
conditional independent blocks, and the method is exact.
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5 Parallel Exact Sampling of Gaussian Markov Ran-

dom Fields

Multivariate Gaussian distribution is the multidimensional version of Gaussian distribu-
tion. In recent years the importance of block-update in MCMC has been discovered, see
e.g. [26]. The challenge is often to find a multi-dimensional proposal distribution that gives
”any” accept rate, and that is reasonable cheap to sample from. Multivariate Gaussian
would be an obvious choice, but to sample from it costs O(n3), where n is the dimension
of the variable to be sampled from. This section describes a way of fast parallel exact
simulation from a special version of multivariate Gaussian distribution, Gaussian Markov
Random Fields (GMRFs). The cost of exact sampling from a spatial GMRF is O(n3/2).

5.1 Gaussian Markov Random Field

A multivariate Gaussian distribution is also referred to as a Gaussian random field (GRF),
and x = (x1, x2, . . . , xn)T is a GRF if

x ∼ Nn(µ,Σ)

where µ is the expected value and Σ is the covariance matrix. Spatial data have positions
attach to them, and the elements sij of Σ are often a function of the positions of the
variables xi and xj. These kind of functions are known as correlation functions. For an
introduction to spatial models and GRFs see e.g. [9]. As mentioned in section 1.3 the
distribution of fixed locations of a Gaussian process forms a GRF.

Gaussian Markov random fields are Gaussian random fields with a Markov property.
The Markov property for multi-dimensional variables is defined through conditional de-
pendence and a neighbourhood structure, see [6] for a detailed introduction to Markov
fields. Assume our variable x = (x1, x2, . . . xn) has a neighbourhood structure, denote
i ∼ j if xi and xj are neighbours, and let Ni denote the neighbourhood of element i, i.e.
Ni = {∀j : i ∼ j}. A GRF is a GMRF if

π(xi|xNi
, xj) = π(xi|xNi

) ∀j 6∈ Ni

If xi and xj are conditional dependent given all the other variables in a GMRF they are
neighbours. Image restoration and disease mapping are examples of where GMRF have
been extensively used, see e.g. [2], [20], [31] and [45] .

The choice of modelling with GRF or GMRF is a choice of working with dependence
or conditional dependence. For a GRF we are modelling the covariance matrix Σ. For a
GMRF we model the inverse covariance matrix, known as the precision matrix. If x is a
GMRF, we often write

x ∼ Nn(µ,Q−1)

where Q is the precision matrix.
A characteristic feature of the precision matrix is that element (i, j) in Q, qij is non-zero

if and only if xi and xj are neighbours or i = j. Therefore the neighbourhood structure
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Figure 13: Graph of a GMRF.
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Figure 14: Non-zero elements in the precision matrix corresponding to the graph in figure
13

is reflected in Q, and with relatively small neighbourhoods Q is sparse, a matrix mainly
containing zeros. Further the precision matrix is, as the covariance matrix, symmetric
and positive definite (for improper distributions semi-definite). Remark that a sparse
precision matrix generally gives a full covariance matrix. The sparse structure makes the
computations cheaper, so there are pragmatic reasons for choosing GMRFs. Interpretation
of the non-zero elements in a precision matrix is non-intuitive, and correlation functions are
often preferred. In [38] Rue and Tjelmeland describe how GRFs can be approximated with
GMRFs. It is possible to get good approximations using surprisingly small neighbourhoods.

GMRFs can easily be visualised with graphs. Each element of the variable is a node, and
there are edges between neighbours. See figure 13 and 14 for a graph and its corresponding
precision matrix.

5.2 Sampling from GMRFs

An n-dimensional GRF x ∼ Nn(0, Q−1) can be sampled from n independent identical
distributed standard Gaussian variables z ∼ Nn(0, I). We know that

π(x) ∝ exp(−1

2
xTQx)

And that the precision matrix Q has a Choleskey decomposition;

Q = LLT
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Figure 15: A reordering of the graph in figure 13 used for faster sequential sampling.

where the Choleskey factor L is a lower triangular matrix. Hence

π(x) ∝ exp(−1

2
xT LLTx) = exp(−1

2
(LT x)T I(LT x))

where I is the identity matrix. The standard multivariate Gaussian variable’s density
function is proportional to

π(z) ∝ exp(−1

2
zT Iz)

hence LTx is standard Gaussian, and we can get a sample from x, by solving

LTx = z

for x.
For a full Q matrix the cost of both the Choleskey decomposition and of solving the

triangular system is O(n3).

5.2.1 Faster sequential sampling of GMRFs

Rue [36] suggests a potentially computational cheaper method for exact sampling of GM-
RFs. We know the Markov property gives us a sparse precision matrix Q. A sparse Q
can give us a sparse Choleskey factor L, but this depends on the bandwidth b of Q. The
bandwidth is the maximum of the distances between the diagonal elements and their rows’
furthest out non-zero element. The bandwidth of the matrix in figure 14 is b = 5. The
computational complexity of the Choleskey decomposition is O(nb2). The basic idea of
Rue’s algorithm for sampling GMRF is that the ordering (or indexing) is dummy, and a
reordering can give us a smaller bandwidth. Figure 15 and 16 show a reordering of the
graph in figure 13 and its precision matrix. We observe that the bandwidth is now only
b = 2, and the computational costs has decreased with a factor 2.5. It is never guaranteed
that the reordering will give a speed-up, but the bandwidth is O(

√
n). Hence is the cost

of the sampling now O(n2).
An other measure of the cost is fill-in. Fill-in is the number of non-zero elements in L

that are zero in Q. Figure 17 and 18 show the fill-ins of the Choleskey factors of the original
and reordered graph. The reordering has reduces the fill-in from 16 to four. A method
that is based on this measure is the multi-frontal algorithm for sparse matrix factorisation
(described in [22]). The cost is O(n3/2) for a 2D-graph and O(n2) for a 3D-graph, and is
hence cheaper then the bandwidth method.

32



0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 36

Figure 16: Non-zero elements of the precision matrix corresponding to the graph in figure
15.
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Figure 17: Non-zero elements of the Choleskey factor LT corresponding to the graph in
figure 13. The non-zero elements of Q are marked with triangulars.

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

nz = 23

Figure 18: Non-zero elements of the Choleskey factor LT corresponding to the graph in
figure 15. The non-zero elements of Q are marked with triangulars.
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Figure 19: The graph in figure 13, with a segmentation set.

The non-zero structure of the Choleskey factor LT can be given an interpretation in
probability terms. An element qij of the precision matrix is zero if xi and xj are independent
given all the other elements of x. An element lji (j > i) of the corresponding Choleskey
factor L is zero if xi and xj are independent given all xk where k > i and k 6= j, i.e. all xk

with a higher index then i.
The optimal ordering problem is well known in the computer science community, and

is known to be a NP-complete. Heuristic algorithms are used for the reordering.

5.2.2 Parallel exact sampling of Gaussian Markov Random Fields

The main ingredients in the exact sampling method described above are also the main
ingredients in solving sparse systems of linear equations with symmetric coefficient matrix.
These equation systems occur in many engineering and scientific computing application,
and have been researched for years. When solving a system Ax = b for a symmetric positive
definite A, the Choleskey factorisation is first found, A = LLT , followed by solving two
triangular systems, first Ly = b for y, then LTx = y for x. The first and last step are the
two main step in our sampling method. The numerical methods used in the exact sampling
method described below are from numerical analysis, and is described in Gupta et. al. [22]
and references therein.

The basic idea of the parallel exact GMRF sampler is to find segmentation set(s). If a
segmentation set xC that makes a buffer between xA and xB, then xA|xC is independent
of xB|xC . See figure 19. Hence if we have a sample xC from πxC

, we can simulate xA from
πxA|xC

and xB from πxB |xC
simultaneously. The sample x = (xA, xB, xC) is then a sample

from the target distribution πx.
We start with parallelisation of the last part of the sampling algorithm, solving the

triangular system. See figure 20 for a visualisation. This system is solved calculating from
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Figure 20: A visualisation of the triangular system.

1 2 3
 4 5

6 7 8
 9 10

A
 B
C
1 3 9 5 7

2 4 10 6 8

Figure 21: Reordering of the graph in figure 13 for the parallel case.

the bottom upwards:

lnnxn = zn ⇒ xn =
zn

lnn

...
n∑

j=i

lijxj = zi ⇒ xi =
zi −

∑n
j=i+1 lijxj

lii

...
n∑

j=1

l1jxj = z1 ⇒ x1 =
z1 −

∑n
j=2 l1jxj

l11

where xn is a sample from πxn
, xi is a sample from πxi|x{k>i}

and x1 is a sample from
πx1|x{k>1}

.
That means sampling from xC first, is equivalent to placing the elements of xC at the

end of x. From the stochastical interpretation of LT we see that lij = 0 for i ∈ A and
j ∈ B if x = (xA, xB, xC), and xC is a segmentation set. See figure 21 for the reordered
graph, and figure 22 for its Choleskey factor. After the system LTx = z is solved for
xC the zero-block structure of LT allows us to solve it for xA and xB independently, and
therefore in parallel.

The first step of the algorithm, the Choleskey decomposition, is often by far the com-
putationally most expensive. It is therefore important to have a good parallelisation of it.
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Figure 22: The Choleskey factor corresponding to the graph in figure 21. The gray area
indicates the zero-block important to parallelisation




0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11


0


1


2


3


4


5


6


7


8


9


10


11


nz = 36


A


B


C


A
 B
 C


Figure 23: The precision matrix corresponding to the graph in figure 21. The gray areas
indicate the zero-block important to parallelisation
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The precision matrix of the reordered graph (as in figure 21) is in figure 23. We get the
same kind of zero-block structure between xA and xB in Q as in LT . Choleskey decompo-
sition is done by column wise right looking elimination. Elimination can be done for the
columns in A and B independently / in parallel. For the elimination of the C columns we
need columns from both A and B, so this has to be done sequentially and as the last step.

We observe that the fill-in in the Choleskey factor for the parallel reordering is eight.
This is four more then in the sequential optimal reordering. We have to pay for the
parallelisation with more fill-ins.

For extension to more than two processors and technical details, see [22] and references
therein. We only mention that the communication overhead is O(n

√
p) and the scalability

is O(p1.5) for a problem with n nodes and O(
√

n)-node separators, p is the number of
processors.

Gupta et al.[22] divide the algorithm into four main steps:

1. Reorder - find segmentation set(s).

2. Symbolic factorisation - find the non-zero structure of L.

3. Numerical factorisation - calculate the values of the non-zero elements

4. Solve triangular system(s)

The two first steps, reordering and symbolic factorisation, are unique for each graph. In
MCMC application we often have one graph, and want samples from different precision
matrices Q(θ) for different values θ. Then only the numerical factorisation and solving the
triangular system need to be done in each iteration.

5.3 Implementation and performance

The implementation of the parallel exact GMRF sampler has been done using WSMP -
Watson Sparse Matrix Package [21]. This package uses a modified version of the multi-
frontal algorithm. The program has been run on Queens University Belfast’s SP/2 system.
A 48 node system with 160MHz Power2CS processors, each with between 256Mb and 1Gb
main memory. We did not require any special memory for the node due to very long
waiting time else. This can cause inconsistent results.

5.3.1 Speed-up and scaled speed-up for a fixed size lattice

The first performance test is for a 400×400 lattice (160000 nodes), where each non-border
element has four neighbours (see figure 26). Table 1 and figure 24 gives the test results.
The speed-up is calculated using time spend on Choleskey decomposition and solving the

triangular system only. This is presented because these are the only steps done for each
iteration in MCMC. WSMP is made such that the parallelisation is best for 2k processors
(where k is a natural number). This can been seen in figure 24. Two processors give
a speed-up of 2.3, four of 4.1, eight of 6.4 and 32 of 12.9. For two and four processors
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# proc. order sym.fac. num.fac. tri.sys.
1 16.7 0.94 5.92 0.28
2 9.67 1.20 2.58 0.16
3 9.71 1.39 2.57 0.16
4 7.12 1.14 1.42 0.09
6 7.06 1.30 1.14 0.42
8 5.96 1.11 0.92 0.05
12 6.02 1.21 0.94 0.05
16 5.66 1.21 0.64 0.04
32 5.79 1.21 0.45 0.03

Table 1: Performance results for one GMRF sample of a 400 × 400 lattice.
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Figure 24: Speed-up (*-) and optimal speed-up (–) for the time used for Choleskey decom-
position and solving the triangular system in table 1

this is “better than perfect”, and should not be possible under idealised circumstances.
We assume we get this result either because of different memory resources on different
nodes, or it is a normal super linear speed-up case. We get very good speed-up until eight
processors. Also a speed-up of 12.9 for 32 processors is quite good.

Further a scalable speed-up test is done. Four-neighbour GMRFs was sampled for
approximately 400

√
p× 400

√
p lattices using p processors. The results are given in table 2

and figure 25.
The cost of the Choleskey decomposition is O(n3/2) where n is the number of elements

in the lattice. From this point view the scaled speed-up is good, 1.7 for two processors,
and 2.1 for four. For eight processors (and eight times as big lattice) the problem not is
solved due to lack of memory. An interesting feature with this test is that the 565 × 565
case (two processors) is too big to be solved on one processor.
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# proc. size order sym.fac. num.fac. tri.sys.
1 400 × 400 16.7 0.94 5.92 0.28
2 565 × 565 19.6 2.36 6.80 0.33
3 693 × 693 31.2 4.04 11.7 0.44
4 800 × 800 31.8 4.41 11.0 0.35
6 980 × 980 49.8 7.54 65.73 12.0

Table 2: Performance results for one GMRF sample of a 400
√

p × 400
√

p lattice.
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Figure 25: Scaled speed-up (*-) and optimal scaled speed-up (–) for the time used for
Choleskey decomposition and solving the triangular system in table 2

5.3.2 Neighbourhoods

So far we have only used a neighbourhood where each element has at most four neighbours.
We often want to use bigger neighbourhoods, and we want to investigate how that influences
the sampling. Tests are done for three different neighbourhoods, with four, nine and 24
neighbours, see figure 26, on a 400 × 400 lattice. A bigger neighbourhood gives a less

Figure 26: The three neighbourhoods used in the tests.

sparse system and more fill-in. Therefore the trend of bigger neighbourhoods implies more
expensive simulations which can be observe in figure 27. Especially, the 24 neighbours
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Figure 27: Time used for Choleskey decomposition and solving the triangular system for
different neighbourhoods: 4 neighbours (-o), eight neighbours (–*) and 24 neighbours (..x).
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Figure 28: Speed-up for Choleskey decomposition and solving the triangular system for
different neighbourhoods: 4 neighbours (-o), eight neighbours (–*) and 24 neighbours (..x)

system is too big to be solved on one processor. In figure 28 we can see that the speed-up
is about the same for all the different neighbourhood. The bigger neighbourhood, the more
work each processor does without communication. But it also gives thicker segmentation
sets, and hence more sequential work. In our tests these effects are of the same order.
Since the 24 neighbourhood case was too big to be solved on one processor, twice the time
used on two processors has been used in the speed-up calculations.

5.3.3 Shape

The shape of the lattice may influences the speed-up. A long and narrow lattice has smaller
segmentation sets, and is also sparser (because it has more border elements). Tests are
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done for four-neighbourhood GMRFs on lattices of size 400×400, 200×800 and 100×1600.
note all the lattices have 160000 nodes. Figure 29 shows that the square case is the most
expensive one, getting cheaper the longer and narrower the lattice is. From figure 30 we
can see that the speed-up is best for the 100×1600 case. The other two have approximately
equal speed-up.
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Figure 29: Time used for Choleskey decomposition and solving the triangular system for
different shapes: 400 × 400 neighbours (-o), 200 × 800 (–*) and 100 × 1600 (..x).
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Figure 30: Speed-up for Choleskey decomposition and solving the triangular system for
different shapes: 400 × 400 (-o), 200 × 800 (–*) and 100 × 1600 (..x).

5.3.4 Graphs

In some cases we have a GMRF on a non-regular graph. Such graphs can be made from
political maps; each region is a node and regions are neighbours if they share a border. See
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figure 31 for an illustration of how to make this kind of graph for a toy-example. We have
used one example of such a graph, germany.graph. It consist of 544 administration units
in Germany, see figure 32. Each of the 544 administration units is a node, having only the
nodes of the regions it shares a border with as its neighbours.
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Figure 31: Example of a mapping from regions to a graph. Each region is a node. Regions
are consider neighbours if they share a border, indicated by an edge in the graph.
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Figure 32: Administrative map of Germany.

The regions have between 1 and 11 neighbours. This graph is used in [26] for disease
mapping, and each variable is then a log relative risk.

Our second example graph is based on 558 regions in Brazil, see figure 33. This graph
is used in [16] estimating a space-varying regression model. A space-varying regression
model is a standard linear model where the regression parameters are allowed to change
in space. In their model there are five regression parameters that are allowed to take
different values for each of the 558 regions. This gives each region five nodes, one for each
regression parameter. The prior of the regression parameters is such that each node has
both the other nodes in its region and all the nodes of their neighbouring regions as its
neighbours. We name the graph brazil5.graph. It has 2790 nodes, each with between 9
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Figure 33: Administrative map of Brazil.

and 74 neighbours. Hence it is both larger (more nodes) and denser (more neighbours per
node) than germany.graph.

Often data are collected on a regional level and collected regularly, e.g. annually. The
temporal variation is interesting as well as the spatial, and the space model is extended to
a space-time model. For examples of time-space models and applications see e.g. [24], [25]
and [42]. We have extended both graphs to become time-space graphs, assuming a Markov
property also in the time direction. These graphs consist of T of the original graphs. In
addition to the neighbours in space, each element xi,t has the corresponding elements for
the time step immediately before xi,t−1 and after xi,t+1 as its neighbours, see figure 34. A
space-time graph is three dimensional and causes a denser neighbourhood structure. The
computational complexity of exact sampling is O(n2) and the segmentation sets are of
size O(n2/3) (n is the total number of nodes). Hence is both the computation cost and
the parallelisation more expensive then in the 2D case. To demonstrate how the size of
the neighbourhood influence the computation time we have plotted the time spend on one
processor for different length time-space graphs against the number of nodes, see figure 35.
We observe that larger neighbourhoods gives, as expected, more expensive calculations.
For a 100 time step long brazil5.graph the problem can not be solved on less than four
processor. From the graph in figure 36 we first of observe that there is no speed-up for
the five time steps of germany.graph or the one time step brazil.graph. Both these graphs
have about 2700 nodes, and are too small to get any speed-up. For the other graphs tested
here there are good speed-up. germany.graph with 100 time steps is slightly better than
brazil5.graph with 10 time steps. They have a speed-up respectively of 1.75 and 1.4 for
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Figure 34: Illustration of a time extension of a spatial graph model. An area is divided into
five regions. Each region can be represented by a node, and regions are neighbours if they
share a border. The time extension is done by “copying” the graph for each time-step and
connecting them into a chain at region level.
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Figure 35: Time spend on Choleskey factorisation and for solving the triangular system as
function of the number of nodes for time-space graphs of germany.graph and brazil5.graph.

two processors, and 8.9 and 7.8 for 32 processors. The curve for brazil5.graph with 20 time
steps is placed with perfect speed-up for four processors (the lowest number of processors
the problem is solvable). This makes it look much better than the others, but the speed-up
from four to 32 processors is about the same for the three tests that give speed-up.

5.4 Discussion and conclusion

We have in this chapter described and tested a method for exact parallel sampling of
Gaussian Markov random fields. The computationally demanding part of this is Choleskey
decomposition of the precision matrix Q. The method takes advantage of the sparse struc-
ture through reordering of the indexes. From a probabilistic point of view the parallelisation
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Figure 36: Speed-up for Choleskey factorisation and for solving the triangular for different
number of time steps of the time-space graphs of germany.graph and brazil5.graph.

is done by finding segmentation sets that give us conditional independence between blocks
of variables. For the independent blocks all calculation can be done in parallel. Only the
calculations for the segmentation sets have to be done sequentially.

We have tested the parallel exact sampler for both lattices and graphs with different
sizes, shapes and densenesses. Many of the tests are done for problems with approximately
150000 nodes, and all these show good speed-up. Sampling becomes more expensive as
problems get larger and denser. How this effects the speed-up of the parallelisation depends
on the ration of extra computational cost and possible larger segmentation sets. The
sampling algorithm also has good scalability; more processors enable us to sample many
times larger GMRFs.

Though, we have also seen that problems can be too small to get any speed-up from
more processors. For the library we have used the graph should have at least 5000 nodes.
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6 Campylobacter infections in north Lancaster - a

GMRF approach

In this chapter the declustered campylobacter dataset introduced in section 1.1 and pre-
viously studied in [11] is reanalysed. It is based on all record cases of campylobacter,
salmonella and cryptosopridia in north Lancaster. The declustered dataset consists of all
outbreaks of enteric infections and how many of these that are campylobacter. Each out-
break has attached a location found from the post-code. There are 399 outbreaks of enteric
infection in 248 different locations, and 234 of the outbreaks are cases of campylobacter,
see figure 37.
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Figure 37: The locations of the enteric outbreaks

6.1 Traditional model and results

Diggle et al. [11] modelled the declustered dataset using a binomial trail approach for
the “success” (that the outbreak is campylobacter), where the probability of success is
independent for each location, given a latent zero-mean stationary Gaussian process S(x).
They then set the log relative success probability for location i to

log(
pi

1 − pi

) = β + s(xi)

where β is a location independent constant and s(xi) is from the Gaussian process S(x).
The Gaussian process has variation σ2, and a powered exponential correlation function

ρ(u) = exp(−(αu)δ)

where u is the distance, α > 0 and 0 < δ < 2.
They set δ = 0 due to identification problems otherwise. This gives hyper-parameters

θ = (β, σ2, α), and they use independent uniform priors [−1.5, 3.5]× [0, 7]× [0, 50] for these.
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A MCMC algorithm (single site) was used to estimate the parameters. The Gaussian
process was estimated for each of the 509 locations in the area. They report that their
simulations gave posterior marginal mode estimates θ = (0.62, 1.0, 6.5) and posterior mean
estimates θ = (0.68, 1.2, 12.6). The estimated spatial variation in the log-odds are given in
figure 38.

Figure 38: The estimated log-odds from Diggel et al [11].

6.2 Geostatistical GMRF model, simulations and results

We will here use the geostatistical GMRF model suggested in chapter 1.3 for the declustered
campylobacter dataset. Instead of a latent Gaussian process, we are using a Gaussian
Markov Random Field. This is a small change of model that will enable us to use more
powerful simulation methods.

The probability for success in the Bernoulli trail is still

log(
pi

1 − pi

) = β + xi

where β is a location independent constant. Note the change in notation; xi is here the
value of the latent field for lattice element i, and x = (x1, x2, . . . , xn) is a GMRF. The
area is discretised using a 150× 210 lattice. This includes a buffer of 25 elements between
the outer most observations and the boundary of the lattice for avoiding boundary effects.
Some of the out-break locations are in the same element in the lattice. These are then
added and treated as one. This reduces the number of outbreak locations to 156. We
use an extended second order neighbourhood (each element has 24 neighbours) and the
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GMRF-approximation to a GRF suggested in [38]. Coefficients for the elements of Q in
the Markov model are fitted to the exponential correlation function

ρ(u) = exp(
−3u

r
)

where r is the range, which is calculated for 0.2 ≤ r ≤ 100.4 in steps of 0.2, and u is the
distance when each lattice element has size 1 × 1. The GMRF precision is set to τ . This
gives us three hyper-parameters; φ = (β, r, τ ). See the sections below for our choices of
priors for φ. The parameters and the latent field are estimated using an one-block update
scheme Metropolis-Hastings algorithm, see algorithm 7

Algorithm 7 One-block update scheme Metropolise-Hastings algorithm

• Given φ0

• for i = 0 : (n − 1)

– Sample φnew ∼ q(φnew|φi)

– Find mode xmode of π(x|φnew, y)

– Find a GMRF approximation, πapprox(x|φnew, y), to π(x|φnew, y) in xmode.

– Sample xnew ∼ πapprox(x|φnew, y)

– accept/reject

– if (accept)

∗ φi+1 = φnew and xi+1 = xnew

– else

∗ φi+1 = φi and xi+1 = xi

• Return (φ0, φ1, . . . , φn) and (x0, x1, . . . xn)

First the hyper-parameters are proposed. They are proposed independently, β from a
Gaussian distribution with expected value βold, τ uniformly [ 1

f
τ, fτ ], and r from a discrete

uniform distribution mod [0.2,100.4][r − ∆r, r + ∆r]. The proposal for r is modulised such
that 0.2 ≤ rnew ≤ 100.4. Next the mode in π(x|r, τ, β, y) is found using Newton’s method,
and a multivariate Gaussian distribution approximated to π(x|r, τ, β, y) at the mode. Using
a GMRF as prior for x|φ also this approximation is a GMRF, see appendix A.1. Our
proposal for the latent field is this GMRF. All the parameters are accepted / rejected and
updated in one block. A key feature of how good this algorithm is is how close π(x|φ, y)
is its Gaussian approximation. Several tests are done for fixed hyper-parameters, see
table 3. Given the hyper-parameters this is a Metropolis-Hastings independent sampler,
and the acceptance rate is a measure of how close the proposal distribution is the target
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τ = 0.1 τ = 1 τ = 10 τ = 100
r = 0.2 0.016 0.653 0.983 1.000
r = 10 0.070 0.726 0.976 1.000
r = 100 0.400 0.900 0.984 0.999

Table 3: Acceptance rates for fixed hyper-parameters (β = 0.35), all based on 1000 itera-
tions.

Parameter mean median mode
β 0.40 0.37 0.32
τ 10.43 6.13 2.61
r 47.1 45.4 11.7

Table 4: Posterior marginal mean, median and mode estimates based on the Markov chain
with the first 10 000 iterations omitted.

distribution. Our results suggest that the target distribution is close to Gaussian, except
for small values of τ .

Two different sets of priors, prior 1 and prior 2, have been used. Prior 1 is a proper
prior. Prior 2 is an improper prior that gives an improper posterior distribution. Trying
to sample from a improper distribution is a test of the mixing: If the sampler mixes well,
normal convergence diagnostic should indicate lack of convergence. For reference purposes
a synthetic dataset with the same data locations and total number of cases ni as in the
Lancaster campylobacter dataset is made. The GMRF model has also been used to analyse
the Lancaster campylobacter data in [37], but then with β fixed.

6.2.1 The Lancaster campylobacter data and prior 1 (proper prior)

The result we have in mind when modelling is a smooth underlying field, i.e. a relative
large r, with some variance, 1

τ
. We believe more in a smooth field with low precision than

a field with little dependence and high precision. To map this belief into the priors a flat
prior for r over its discretation, and a gamma distribution for τ with mean 5 and variance
100 are chosen. A flat truncated prior is used for β (hence we also truncate the proposal).
We have chosen to truncate it for [−4.60, 4.60] which corresponds to 0.01 < p < 0.99.
The sampling algorithm described above was used, and the Markov chain ran for 100000
iterations. See figure 39 for trace-plots, histograms and scatter-plot of the simulated values
of the hyper-parameters. The cumulative mean for the hyper-parameters are plotted in
figure 40. For marginal estimates of the mean, median and mode see table 4. The plots
are based on all the samples while the results in table 4 omit a burn-in of a 10000 samples.
In the posteriori histograms in figure 39 the prior is included (for β drawn as if it was only
defined on [−1, 3]).

From the trace-plots in figure 39 there seems to be good mixing. These plots together
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Figure 39: Trace plots and histograms for the hyper-parameters θ = (β, τ, r) for the Lan-
caster dataset with informative priors .
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Figure 40: Cumulated mean for the hyper-parameters θ = (β, τ, r) for the Lancaster dataset
with informative priors .

with the cumulated means in figure 40 convince us that the Markov chain and the mean es-
timates for the hyper-parameters have converged after a burn-in of 10000-20000 iterations.
The histograms in row two of figure 39 reflects our marginal posteriori distribution for the
hyper-parameters. The level parameter β has a mean a bit above what the ratio estimate
for p would give (pratio = 235/399 = 0.59 and βratio = log(pratio/(1− pratio)) = 0.35). From
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the histogram the posterior for β seems to have quite light tails, the mode is well defined
and the distribution quite symmetric (the right tail is a bit heavier than the left). The
posterior for the precession is heavy tailed with a defined mode relatively close to zero.
The range parameter r has a posterior very close to its flat prior, though, it has undoubtly
a mode between 5 and 25. From the scatter plots on the bottom line in figure 39 we first
observe that there are only high precession values (τ ) for β values close to βratio. Extreme
βs have to be explained with small precession. The scatter plot of β and r has a fan-shape.
Small values of r, i.e. low spatial dependence, only comes with β close to βratio. With
stronger dependence the level of a sampled field x dependents less on β. The last scatter
plot does not show much dependency between τ and r. But there are no extreme values
of τ for small r. This can be explained from the relationships between β and τ , and β
and r mentioned above. Figure 41 contains the estimated mean of the latent field. This
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Figure 41: Estimated mean for the latent field for the Lancaster dataset with informative
prior. The locations of the observations are indicated with circles, and x40,40 and x80,80

with triangles. .

estimate is made out of 10 000 iterations. For two lattice elements (40, 40) and (80, 80) the
trace-plots and cumulated trace-plots are found in figure 42. The mixing is much faster
for the field variable then for the hyper-parameters, a result reported by others, e.g. [12]
(note we have only 10 000 iterations for the field variables).

Comparing our results with those in [11] can not be done directly because we have
used a different parametrisation. Though the β parameter should be the same, and we are
surprised by this difference. We suspect 5000 iterations was not enough for convergence
with their sampling method (single site). Also others have reported problems reproducing
their results, see [7]. For the latent field (our in figure 41 and their in figure 38) the same
trends can be observed. Note that the colour scales are opposite.
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Figure 42: Trace plots and cumulated mean for the latent field variables x40,40 and x80,80

for the Lancaster dataset with informative priors.

Parameter mean median mode
β 0.64 0.64 0.65
τ 9.19 6.11 2.20
r 53.8 56.2 85.6

Table 5: Posterior marginal mean, median and mode estimates based on the Markov chain
with the 10 000 first iterations omitted.

6.2.2 Synthetic dataset with prior 1

To test the simulation method we have also performed the same analysis using a simulated
dataset with r = 20, τ = 1 and β = 0.35. The locations and number of enteric infections
are the same as the Lancaster campylobacter dataset. The simulated dataset gave 268
outbreaks of campylobacter out of the 399 enteric infections. This gives a ration value of
pratio = 268/399 = 0.67 and the corresponding βratio = 0.72. The model and simulation
algorithm were identical to those used for the real dataset. See figure 43 for trace-plots,
histograms and scatter-plots for the hyper-parameters. The cumulative mean for the hyper-
parameters are plotted in figure 44. For marginal estimates for mean, median and mode
see table 5. The plots and estimates are presented similarly to those of the real dataset.

Comparing the results for the hyper-parameters for the synthetic data with the real
example, the similarities are obvious. The mixing is good (trace-plots in figure 43), mean
estimates have converged (figure 44), for β the mean is close to the ratio estimate, and
the marginal posterior distributions and the scatter-plots have the same shape in figure 43
and figure 39. Focusing on the differences, poorer mixing of r is observed from the trace-
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Figure 43: Trace plots and histograms for the hyper-parameters θ = (β, τ, r) for the syn-
thetic dataset.
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Figure 44: Cumulated mean for the hyper-parameters θ = (β, τ, r) for the synthetic dataset
with informative priors .

plot, and slower convergence for τ from the cumulated mean plot. From the cumulated
mean plot in figure 44 one can doubt convergence. But omitting the first 10 000 iterations
changes this impression. The histogram for r in figure 43 we find an apparently uniform
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posterior. For the synthetic dataset the posterior of β is almost perfectly symmetric. This
causes a more symmetric fan shape in the scatter plot for β and r.
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Figure 45: The simulated latent field (left) and the estimated mean (right). The locations
of the observations are indicated with circles, and x40,40 and x80,80 with triangles.
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Figure 46: Trace plots and cumulated mean for the latent field variables x40,40 and x80,80

for the synthetic dataset.

The synthetic latent field is given in figure 45 together with the estimate. The mean
value of the simulated field is 0.37, its minimum value −0.13 and its maximum value 0.78.
From these values and figure 45 it is seen that it has a non-zero level. In the posterior
estimates most of this level is moved to β, and the posterior mean estimate of x has of
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course level zero. It is also much smoother than the true field, as we would expect for a
mean estimate with few data locations. Trace-plots and cumulated mean plots for element
(40, 40) and (80, 80) are found in figure 46. As for the real data the latent field variables
have a short burn-in and mix well.

Results in [37] suggest that the data do not contain much information about r and τ .
Our simulations for both the real and the synthetic dataset agree with this, the posteriors
for these parameters are close to their priors.

6.2.3 The Lancaster campylobacter data with prior 2 (improper prior)

We want to test the sampling method on a case where the posterior distribution is improper.
If a realistic number of simulations indicates an improper distribution it is a sign of good
mixing and fast “convergence” for the sampler. The priors of the hyper-parameters are
independent. We use a flat prior for β, for r π(r) ∝ 1

r
and π(τ ) ∝ 1

τ
. This gives an

improper posterior distribution, see appendix A.2. Note this model should then be very
similar to the model proposed by Diggel et al. and would be an obvious choice for the not
careful enough analyst.
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Figure 47: Trace plots and histograms for the hyper-parameters θ = (β, τ, r) for the Lan-
caster campylobacter dataset with prior 2.

Running the one block update Metropolis-Hasting sampler described above 20000 times
gave trace plots and histograms for φ as shown in figure 47. The trace-plot and histogram
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Figure 48: Cumulated mean for the hyper-parameter τ for the Lancaster campylobacter
dataset with prior 2. Note the change in scaling as the number of iterations increase.
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Figure 49: Trace plots and histograms for the hyper-parameters θ = (β, τ, r) with for the
Lancaster campylobacter dataset with prior 2 .

for τ indicate that π(τ |y) is not a proper distribution. From the histogram it seems to have
too heavy tails, and the estimated mean of τ is not converging. In figure 49 the cumulated
mean is plotted for different numbers of iterations. Already after 5000 iterations divergence
is indicated. We further observe that the mean parameter β mixes well and has stabilised.
The sample mean is β̄ = 0.35, which equals the β we would get using the ratio as our
estimate of p.

We have run several Markov chains with different initial values. After a burn-in period,
which can last for some thousand iterations with initial value for r ≈ 200, they all indicate
the same result; a very low r and an unbounded τ .

Up-dating all variables in one block has enabled us to see the lack of convergence in
the hyper-parameters, and to suspect an improper posterior distribution.

6.3 Parallelisation and performance

The parallelisation is done on domain level. Each processor is dedicated to a part of the
lattice and the data located in this part of the region, see figure 50 for an illustration.

The processors have to communicate when the mode is found, during sampling and
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Figure 50: How the latent field (x1, x2, . . . , xM ), and the data, (y1, y2, . . . , yn) can be split
between processors.

evaluation of the sample. Each processor evaluates the likelihood for its own data. Infor-
mation from all processors has to be gathered before the acceptance probability is found.
Accepting/ rejecting a sample, and proposing new hyper-parameters is done by a master
processor. This could have been done by each processor if they had a common random
number stream (in addition to an unique one). For speed-up for the Choleskey decompo-
sition and solving the triangular system see figure 51.
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Figure 51: Speed-up for Choleskey decomposition and solving the triangular system for the
lattice used in the Campylobacter infections example.

The simulations have been run on four processors, and 10 000 iterations take about 15
hours, or 11 iterations per minute. The speed-up is then close to perfect, and the gained
speed makes a difference for the user. To wait a week for the simulation results is much
better then waiting for four weeks.
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7 Discussion and Conclusion

The purpose of this report was twofolded:

1 To introduce the geostatistical GMRF models.

2 To introduce a parallelisation of a robust one-block Metropolis-Hastings sampler for
the geostatistical GMRF model.

The MCMC simulation is often the critical stage when making inference from geostatistical
models. Slow converges is hard to detect, and the Markov chains are often not run long
enough due to restricted access of computer resources. The geostatistical GMRF models
are a class of geostatistical models that are close to the traditional models, but are cheaper
to simulate from. Instead of assuming a latent Gaussian process we discretise using a
lattice and make a latent Gaussian Markov random field (GMRF). This GMRF is given a
prior such that it imitates a Gaussian process.

Mixing is a frequent problem for MCMC users. Empirical results show that one-block
updates of all the parameters can improve the mixing. The geostatistical GMRF model
enable us to do one-block updates. The simulations are still computational expensive, and
a way of dealing with this is to use more then one processor. An extra advantage for
the geostatistical GMRF models is its nice parallelisation properties. By fare the most
expensive parts of the GMRF sampling is doing Choleskey decomposition of the sparse
precession matrices whose structure is given by the neighbourhood of the latent field. This
is a well known problem in numerical linear algebra. Libraries for efficient exact solutions
are available, also for parallel computers. We have shown through experiments that a
parallel implementation can give us both good speed-up and enable us to sample and
evaluate larger GMRFs then one processor could.

WSMP for parallel solving of sparse linear systems for linux clusters has recently been
released. This will make the GMRF simulation more available. Few have access to a
super-computer, but a cluster can be made up of colleges computers, and else unused
computational resources are available for our demanding simulations.

We believe the more robust simulations the geostatistical GMRF models enable us to
do improves the reliability of our analysis. We further see parallelisation as the future way
of getting more computational resources.
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A Appendix

A.1 Gaussian approximation to π(x|y, φ) in xmode
φ

We will in this appendix show that the Gaussian approximation to π(x|y, φ) when π(x|φ)
is a GMRF is a GMRF with the same non-zero structure of the precision matrix as for the
prior. In our example data are assumed mutually independent given the latent field x, and
can be written as;

π(y|x) ∝
N∏

i=1

exp(g(xi))

Hence we can write

π(x|y, φ) ∝ π(x|φ)π(y|x)

∝ exp(−1

2
τxTQx +

N∑

i=1

g(xi))

≈ exp(−1

2
τxTQx +

N∑

i=1

(ai + bixi + cix
2
i )

= exp(−1

2
xT (τQ + diag(c))x +

N∑

i=1

(ai + bixi)

where ai + bixi + cix
2
i is the 2nd order Taylor approximation of g(xi) in xmode

φ and diag(c)
is a diagonal matrix containing (c1, c2, . . . , cn). We see that the precision matrix of the
approximation is (τQ + diag(c)), and hence the approximation is a GMRF with the same
conditional dependence structure as the prior π(x|φ).

A.2 Proof that π(τ ) ∝ 1
τ

and β ∝ 1 causes improper posterior

distribution

This proof is done along the same lines as the proof of theorem 1 in [33]. We assume the
same model as in section 6.2, but move the level β from the likelihood to the latent field:

log(
pi

1 − pi
) = xi

and
x ∼ N(β̃, (τQ(r))−1

where β̃ is a vector of length n and all elements have value β. The posterior distribution
of τ and β is proper iff the marginal distribution of the data

π(y) ∝
∫

π(y|x)π(x|r, τ, β)π(r)π(β)π(τ )dβdτdrdx
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is integrable. We set π(x|r, τ, β) ∼ Nx(β1, (τQ(r))−1) where 1 is a of size n consisting
of ones. We will focus on β and τ , and therefore suppress φ in Q(φ). First we rewrite
π(x|r, τ, β) as a function of β:

π(x|r, τ, β) = Nx(β1, (τQ)−1)

= (2π)−
n
2 τ

n
2 det(Q) exp−(

1

2
τ (x − β1)T Q(x − β1))

= (2π)−
n
2 τ

n
2 det(Q) exp−(

1

2
τ (β − 1−1x)T 1TQ1(β − 1−1x)

= (2π)−
n−1

2 τ
n−1

2 | det(Q)|1/2|1TQ1|−1/2Nβ(1−1x, (1TQ1)−1)

= const(φ)τ
n−1

2 Nβ(1−1x, (1TQ1)−1)

Hence can π(x|r, τ, β) be written as a product of a constant (as a function of x and β) and
a Gaussian density for β. We write up the expression for π(y), and integrate out β:

π(y) ∝
∫ ∫ ∫

π(y|x)π(r)π(τ )[
∫

π(x|β, φ, τ )π(β)dβ]dτdφdx

π(y) ∝
∫ ∫ ∫

π(y|x)π(r)π(τ )const(φ)τ
n−1

2 [

∫ ∞

−∞

Nβ(1−1x, (1TQ1)−1)dβ]

︸ ︷︷ ︸

=1

dτdφdx

π(y) ∝
∫ ∫

π(y|x)π(φ)const(φ)[
∫ ∞

0
τ

n−3

2 dτ ]dφdx

which is not integrable for τ . Hence the posterior π(x, θ|y) is not proper.
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