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Overlapping block proposals for latent Gaussian

Markov random fields

Ingelin Steinsland & Håvard Rue

Norwegian University of Science and Technology

Abstract

In this report we construct a full dimensional proposal distribution for the pos-

terior of latent Gaussian Markov random fields π(x|y, θ), where x denotes the latent
field which is of dimension n, y data and θ hyper-parameters. We can both sample
from and evaluate these proposal without working directly with an n-dimensional

distribution. The key idea in the construction of the proposals is to combine sam-
ples from overlapping blocks of the latent field. Each block is sampled from its
conditional distribution or an approximation to its conditional distribution. The

overlapping block proposals for x are used together with proposals for the hyper-
parameters θ and an opposite reverse acceptance probability in one-block updating
scheme Metropolis-Hastings algorithms.

Through examples the method prove to work well both when each block is sampled
exact and when an approximation is necessary. Overlapping block proposals are
successfully applied for a latent GMRF problem of dimension 100000. For some

of the problems hyper-parameters with a Gaussian prior are also included in the
overlapping blocking scheme.
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1 Introduction

Markov chain Monte Carlo (MCMC) techniques are a general and powerful tool for making
inference from analytically intractable statistical models, see e.g. Robert and Casella
(1999), Gilks et al. (1996) and Liu (2001).

Traditionally single site updating schemes (updating one variable in each iteration)
have been the most commonly used methods. In recent years it has been discovered that
for highly structured problems these sampling schemes give unsatisfactory slow mixing; the
Markov chain explore our target distribution too slowly. Updating several variables simul-
taneous, known as blocking or grouping, is a remedy for improving mixing, see Liu (1994),
Liu et al. (1994), Knorr-Held and Rue (2002) and Gamerman et al. (2003). Knorr-Held
and Rue (2002) empirically demonstrates that for some problems updating all variables in
one block gives by far the best mixing. We will from now on refer to an updating scheme
where all variables are updated simultaneously as an one-block updating scheme. Apply-
ing an one-block updating scheme for an n-dimensional model requires both sampling from
and evaluation of an n-dimensional distribution. In most cases finding an appropriate dis-
tribution to sample from is hard, and both the sampling and the needed evaluations are
computationally expensive.

In this report we focus on a much used class of spatial models; spatial latent Gaussian
Markov random field models (presented below). For these models an one-block updating
scheme not involving direct sampling from an n-dimensional distribution is constructed
and tested on several problems.

1.1 Spatial latent GMRF models

In many situations data are collected with a spatial index and is indirect observations of
the phenomena of interest. In this report we consider problems where the phenomena of
interest is modelled as a latent field x, possible given some hyper-parameters θ. Further
the observations y are modelled conditioned on x and as mutually independent; π(y|x) =
∏M

i=1 π(yi|x). The likelihood may has its own hyper-parameter, but they are suppressed
here. The dimension of x and y is not necessarily equal, but they share the spatial reference
system. The latent field is assumed to have a spatial dependence structure specified through
a prior π(x|θ), a popular choice is multivariate Gaussian priors. We will restrict our
examples to a special version of these; Gaussian Markov random fields (GMRFs). A
GMRF is a multivariate Gaussian distribution, also known as a Gaussian random field
(GRF), with a neighbourhood structure and a corresponding Markov property. Let i ∼ j
denote that element i and j are neighbours and denote i’s neighbourhood Ni = {j : j ∼ i}.
The Markov property gives that xi conditioned on its neighbourhood is independent of all
other variables:

π(xi|x−i) = π(xi|xNi
) ∀i

where −i denotes the complement of the whole set {1,2,. . . ,n} and i. The non-zero structure
of the precision matrix Q (the inverse of the covariance matrix) reflects x’s neighbourhood
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structure. Let qij denote element (i, j) of Q, then qij 6= 0 if and only if i ∼ j or i = j. If
the neighbourhood is relatively small Q is sparse; a matrix where most elements are zero.
We benefit from using GMRF rather then GRF models because computational complexity
of both evaluation and sampling of GMRFs is more then an order cheaper then for GRF,
see results in Rue (2001), Rue and Follestad (2003) and Steinsland (2003). GMRFs often
appear as building blocks in spatial models, see e.g. Cressie (1993), Wikle et al. (1998),
Besag and Higdon (1999), Fernandez and Green (2002), Heikkinen and Arjas (1998) and
Besag and Kooperberg (1995).

The distribution of interest is the posterior π(x, θ|y) and it is given by

π(x, θ|y) ∝ π(y|x)π(x|θ)π(θ)

where π(θ) is the prior of the hyper-parameters. An illustration of the general model
setting we work with is given in figure 1.

θ

x4x3

x2x1

y1 y2

y3 y4

Figure 1: A typical latent field model. The latent field x = (x1, x2, x3, x4) depends on hyper-
parameter(s) θ. The observations y = (y1, y2, y3, y4) is modelled as independent given x.

Image analysis and disease mapping are two areas where latent GMRF models have
been popular. To give the reader a better notion of the kind of problems considered we
introduce two problems to be analysed in examples later and set up models for them.

Disease mapping in Germany

The German oral cavity cancer dataset consists of all cases of oral cavity cancer mortality
for males from 1986 to 1990 in each of Germany’s 544 administrative regions. It has
previously been studied in Knorr-Held and Raßer (2000) and in this report used in example
10, section 5.2. There are between 1 and 505 cases in each region and the number of cases
relative to population size, yi/ci, is given in figure 2. Here ci is the expected number of
cases in region i if the individual risks were equal; let hi be the population in region i,
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Figure 2: Administrative map of Germany with oral cavity cancer point-vise relative risk
yi/ci.

then ci = hi

∑

∀j yj/
∑

∀j hj. Our interest is the log relative risk and its spatial structure.
In disease mapping a common approach is to give the log relative risk an intrinsic GMRF
prior, where region i and j are neighbours, i ∼ j, if they share a boarder. The smoothing
parameter is set to κ and

π(x|κ) ∝ κ(n−1)/2 exp(−1

2
κ

∑

i∼j

(xi − xj)
2)

The number of cases in the regions, yi i = 1, 2, . . . , n = 544, is assumed conditionally inde-
pendent Poisson with expected values ci exp(xi). Our interest is the posterior distribution
of the log relative risk x and the smoothing parameter κ, given as

π(x, κ|y) ∝ π(y|x)π(x|κ)π(κ)

where π(κ) is the prior of κ.

Magnetic Resonance Image of the brain

In example 9 (section 4.4) a time series of magnetic resonance (MR) images is analysed,
see figure 3 for the first image of the time series. Here we introduce only a part of the
problem; estimating the underlying truth from one image.
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Figure 3: The first MR image of the image time series analysed in example 9.

The MR image is a lattice of observed magnetic resonance responses from the corre-
sponding area in the brain. The measurement process is not perfect and observations are of-
ten assumed independent Gaussian conditioned on the true responses x, yi|x ∼ N(xi, τ

−1).
The true image x is given the same intrinsic GMRF prior (with smoothing parameter θ)
as the log relative risk field above. For the image we use a neighbourhood where each
non-boarder pixel has four neighbours. Our interest is the posterior distribution of the
true image and the hyper-parameters θ = (κ, τ ). It is given by

π(x, θ|y) ∝ π(y|x, τ )π(x|κ)π(θ)

where π(θ) is the prior of θ.

1.2 One-block updating scheme in MCMC

Only for a few special likelihood and prior choices it is possible to do analytically inference
from latent GMRF models. In this report focus is on Markov chain Monte Carlo sampling
methods for doing inference. Empirical studies, e.g. Knorr-Held and Rue (2002) and
Gamerman et al. (2003), demonstrate that the latent field x and the hyper-parameters θ
should be updated simultaneously to get appropriate mixing. In Rue and Follestad (2003)
a model with µ ∼ N(0, τ−1

µ ) and x = (x1, x2, . . . , xn), xi i.i.d. N(µ, τx) is consider. The
aim is to sample from the posterior of µ (which is N(0, τµ)), and a two-block Gibbs sampler
is used sampling µ in one block and x in one block, see algorithm 1. They prove that the
correlation length of µ1, µ2, . . . is linear in the dimension of x, n. Hence the importance
of one-block updating increase with the dimension of the latent field and is essential for
high-dimensional problems.

The updating scheme we aim to use is given in algorithm 2. This is an one-block
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Algorithm 1 Two-block Gibbs-sampler

• Given x0 and µ0

• for j = 0 : (niter − 1)

– µj+1 ∼ π(µ|xj)

– xj+1 ∼ π(x|µj+1)

• Return (x1, x2, . . . , xniter) and (µ1, µ2, . . . , µniter)

Algorithm 2 General one-block Metropolis-Hasting sampler

• Given x0 and θ0

• for j = 0 : (niter − 1)

– Sample θnew ∼ q(θ|θj)

– Sample xnew ∼ q(x|xj , θnew).

– Calculate the acceptance probability and accept / reject

– if(accept)

∗ θj+1 = θnew and xj+1 = xnew

– else

∗ θj+1 = θj and xj+1 = xj

• Return (x1, x2, . . . , xniter) and (θ1, θ2, . . . , θniter)

updating scheme where the proposal consists of two steps. In the first step a set of new
hyper-parameters, θnew, is proposed. This proposal distribution is independent of the
current values of the latent field, but may depends on the current values of the hyper-
parameter. The dimension of θ is low and in most cases some kind of independent random
walk proposal is appropriate. In the second step of the proposal a latent field xnew is
proposed. The next stage of the algorithm is to accept or reject (θnew, xnew) jointly.

The challenging part of this algorithm is to find a good proposal for the latent field;
q(x|xold, θnew). Distributions that are approximations to π(x|θnew) and that are indepen-
dent of xold are proposed in Rue et al. (2003) and also used in Steinsland (2003). These
kind of xold independent proposals are computationally demanding with a minimum cost
of O(n3/2) for a spatial Gaussian Markov random field of dimension n. In this report we
construct a proposal for x based on overlapping small blocks. This overlapping blocks pro-
posal enable us to get samples from an distribution that is an approximation of π(x|y, θ)
without sampling directly from an n dimensional distribution.
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1.3 Outline

The overlapping block Gibbs proposal is presented in chapter 2 when each sub-block is
sampled exact and it can be concidered a Gibbs sampler. We also look more into an
important subclass with an one-dimensional structure of the overlapping blocks and briefly
introduce a partial conditioning block sampler. Since q(x|xold, θnew) is only one part of the
overall proposal we need to use it in a Metropolis-Hasting accept/reject step even when it
is build up by block Gibbs samplings steps. In chapter 3 we introduce an opposite kernel.
Together with an opposite reverse acceptance probability it makes us keep the acceptance
rate equal to one for the updates of x|θ when the blocks are sampled using Gibbs steps.
The full one-block updating scheme Metropolis-Hasting algorithm is set up in chapter 4
followed by examples. In chapter 5 an overlapping block proposal with sampling from
approximated distributions is introduced and empirically tested. The report is enclosed
with a discussion in chapter 6.
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2 Proposal from overlapping block Gibbs sampler

In this section we assume we are able to sample exact from the conditional posterior
distribution for each sub-block xB of the latent field i.e. from π(xB|x−B, y, θ). Further the
hyper-parameters θ are assumed fixed and we are in a setting where we are able to run a
Gibbs sampler. For evaluation of the samplers we keep in mind our purpose; to construct
a proposal for the latent field x when hyper-parameters change. There are three important
features we want our proposal to have: We want it to be a distribution close to the exact
one, π(x|y, θ), we want succeeding samples to have low dependency, and evaluation and
sampling should be computationally affordable. The first property is necessary to get
acceptance in the one-block updating scheme sampler, while the second is important for
the mixing of the Markov chain. In the following θ and y are suppressed from our target
distribution, which is now denoted π(x).

2.1 Traditional block Gibbs sampler

One opportunity is to use one scan of a Gibbs sampler as the proposal for the latent field.
One scan of a single site Gibbs sampler is not appropriate because of slow mixing. A
Gibbs sampler with sampling done on disjunct sets of variables instead of single variables
is known as a block Gibbs sampler, see algorithm 3.

Algorithm 3 Traditional block Gibbs sampler
.

• Given x0 and a disjunct partition of x; x = {xB1, xB2 , . . . , xBK
}

• for j = 0 : (niter − 1)

– x = xj

– for k = 1 : K

∗ Sample x∗
Bk

∼ π(xBk
|x−Bk

)

∗ xBk
= x∗

Bk

– xj+1 = x

• Return x1, x2, . . . xniter

It is well known that sampling in blocks can improve mixing within the blocks, but
on block borders high correlation is still a problem. An illustration is given in example 1
below. Common solutions to this problem are to select block sizes and locations randomly
or to let succeeding scans systematically have different border locations. These solutions
do not suite us since we want to use one scan of a Gibbs sampler as the proposal for the
latent field and hence only as one part of our overall one-block proposal. In the next section
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we try to overcome the border problems of block Gibbs samplers and construct a block
Gibbs sampler with blocks that are not disjunct.

Example 1: Traditional block sampling

We consider a zero-mean Gaussian Markov random field (GMRF) on a lattice of size
100 × 100 which is a proxy to a GRF with exponential correlation function;

ρ(xi, xj) = exp(
−3d(i, j)

r
)

where d(i, j) is the distance between element i and j (each pixel is set to be of size 1× 1).
A 5×5 neighbourhood is used and the coefficients in the precision matrix Q is chosen using
the way of approximating a GMRF to a GRF introduced in Rue and Tjelmeland (2002).
We keep in mind that we want to use the Gibbs sampler as a proposal for the latent field
when also hyper-parameters are changing and set the initial values of the latent field to
3. For range r = 40 we have run a single site Gibbs sampler, block Gibbs samplers with
16 blocks (each of size 25 × 25 pixels) and 4 blocks (each of size 50 × 50 pixels) and an
exact sampler. Images of the samples after one and 200 systematic scans are in figure 4.
In figure 5 is the first sample for a block Gibbs sampler with 2 × 2 blocks for different
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2x2 blocks
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100

Single site
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Single site
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20
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Figure 4: To example 1: The first (left) and 200th (right) sample form (from upper left)
single site Gibbs, block Gibbs with four and eight blocks and an exact sampler. In lower
left images is element (5, 5) and (48, 48) are marked with stars.

ranges r. From these figures we see how blocking helps for the convergence and also how
the border regions are held back by the initial values. As the internal dependence in the
field (here r) increases the slow converging border regions become wider.
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r=10 r=20 r=40 r=100

Figure 5: To example 1: The first sample from block Gibbs samplers for different ranges
(r). The initial values for the field is three.

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1
Estimated auto correlation

(5,5)

(48,48)

Figure 6: To example 1: Estimated auto-correlation for element (5, 5) and (48, 48) for the
block Gibbs sampler with 2×2 blocks. These pixels are marked with stars in figure 4. Model
as in example 1 with r = 40, and with a sample from the target distribution as initial value.

In figure 6 the estimated auto-correlations for a point close to the edge of the field and
a point close to the border between blocks are shown for r = 40. We see that the variable
of the border pixel has much poorer mixing then the variable of the edge pixel.

2.2 Overlapping block Gibbs sampler

Our idea is to let the blocks overlap such that the border regions are in (at least) two
blocks. This results in a block Gibbs sampler with non-disjunct blocks, see figure 7 and
algorithm 4. We will refer to these kind of samplers as overlapping block Gibbs samplers.

Consider a field of variables blocked as in figure 7. The grey block covering x1, x2, x4

and x5 is the first block of the overlapping block Gibbs sampler; B1 = {1, 2, 4, 5}. The
second block B2 = {2, 3, 5, 7}, the third one B3 = {4, 5, 7, 8} and B4 = {5, 6, 8, 9}. Of
the variables sampled in B1 only those in x1 are part of the sampled returned after a
whole scan, the other variables {x2, x4, x5} are sampled over later in the scan. The first
sample of {x2, x4, x5} works as a buffer between the new field being sampled (here {x1})
and the part of the old field yet not sampled over (here {x3, x6, x7, x8, x9}). We hope these
buffers make the new sample for the field (almost) independent of the old one, also when
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Figure 7: Illustration of the blocks of an overlapping block Gibbs sampler. Notation used
in algorithm 4 and in the proof in appendix A1.

its hyper-parameters have changed.
Let x be the old sample, x

′

the new one and index the temporary samples for the buffers
with their block numbers. The transition kernel of the sampler is then given by;

K(x, x
′

) =

∫

[π(x
′

1, x
B1
2 , xB1

4 , xB1
5 |x3, x6, x7, x8, x9)

π(x
′

2, x
′

3, x
B2
5 , xB2

6 |x′

1, x
B1
4 , x7, x8, x9)

π(x
′

4, x
B3
5 , x

′

7, x
B3
8 |x′

1, x
′

2, x
′

3, x
B2
6 , x9)

π(x
′

5, x
′

6, x
′

8, x
′

9|x
′

1, x
′

2, x
′

3, x
′

4, x
′

7)]dxB1
2 dxB1

4 dxB1
5 dxB2

5 dxB3
5 dxB2

6 dxB3
8

It is intuitive that π(x) is the stationary distribution for the corresponding Markov
chain and a proof is given in appendix A1. The sampler is also valid with other block and
buffer configurations. The only requirement is that each element is updated at least once.
A special case is the traditional block Gibbs sampler.

The extra computational cost caused by the buffers depends on the cost of the sampler.
To sample from a spatial Gaussian Markov random field (GMRF) of dimension n costs
O(n3/2). Let the size of blocks to be sampled be (lb

√
n)×(lb

√
n) variables in the overlapping

case when a traditional block Gibbs sampler would have blocks of
√

n×√
n variables. This

corresponds to buffers of length 2(lb − 1)
√

n and the computation time per iteration has
increased with a factor l3b due to the overlapping blocks for π(x) a GMRF.
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Algorithm 4 Overlapping blocks Gibbs sampler

• Given x0

• for i = 0 : (niter − 1)

– Sample (xi+1
1 , xB1

2 , xB1
4 , xB1

5 ) ∼ π(xB1 |xi
3, x

i
6, x

i
7, x

i
8, x

i
9)

– Sample (xi+1
2 , xi+1

3 , xB2
5 , xB2

6 ) ∼ π(xB2 |xi+1
1 , xB1

4 , xi
7, x

i
8, x

i
9)

– Sample (xi+1
4 , xB3

5 , xi+1
7 , xB3

8 ) ∼ π(xB3 |xi+1
1 , xi+1

2 , xi+1
3 , xB2

6 , xi
9)

– Sample (xi+1
5 , xi+1

6 , xi+1
8 , xi+1

9 ) ∼ π(xB4 |xi+1
1 , xi+1

2 , xi+1
3 , xi+1

4 , xi+1
7 )

• Return ((x1
1, x

1
2, . . . , x

1
9), (x

2
1, x

2
2, . . . , x

2
9), . . . , (x

niter
1 , xniter

2 , . . . , xniter
9 ))

Example 2: Mixing with overlapping block Gibbs samplers

To explore how overlapping blocks influence the mixing we have tested different blocking
schemes. We use the same case as in example 1; a zero mean Gaussian Markov random
field on a 100 × 100 lattice, with a 5 × 5 neighbourhood. It is a proxy of a GRF with an
exponential correlation function ρ with range r = 40;

ρ(xi, xj) = exp(
−3d(i, j)

r
)

where d(i, j) is the distance between pixel i and j, and each pixel has size 1× 1. We use a
sample from the target distribution π(x) as out initial field and run all the Gibbs samplers
for 200 systematic scans. The Gibbs samplers we test are single site, traditional block
Gibbs sampler with 2×2 blocks (i.e. each block is of 50×50 pixels), and overlapping block
Gibbs samplers with 2× 2 blocks each extended with buffers of one, two and five pixels in
both directions (hence blocks of (51 × 51), (52 × 52) and (55 × 55) pixels and overlapping
buffer lengths two, four and ten, respectively). An one-block Gibbs sampler is also ran for
reference purposes. This is the ideal case; the samples are exact samples from π(x), they
are independent and the Markov chain converges immediately. Figure 8 shows the initial
field and the sample from the 200th scan for the five blocking schemes tested. We can see
many similarities between the initial field and the 200th iteration of the single site sampler
and believe the 200th sample is highly correlated with the initial field.

Since the same model is used here as the traditional block Gibbs sampler was tested for
in example 1 section 2.1, we know from figure 6 that succeeding samples at (5, 5) are almost
independent, while they at (48, 48) are very dependent. To explore how different buffer
lengths influence the mixing we have made trace plot, cumulative mean plot, cumulative
variance plot and plotted the estimated auto-correlation for pixel (48, 48) for each sampler
tested, see figure 9. We observe that the auto-correlation decreases faster with larger
buffers. For buffers of length four and ten the estimated auto-correlation decreases much
faster then in the block sampler without buffers. This example support our hypotheses
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Figure 8: To example 2: The initial field (top left) and the sample after 200 scans for the
different blocking schemes. The bottom row is for the overlapping block Gibbs samplers
with 2 × 2 blocks each of (from left) 51 × 51, 52 × 52 and 55 × 55 pixels.

that overlapping blocks give better mixing and the pay-off is better then the increase in
computation time. In the overlapping block sampler with buffer length ten blocks of 55×55
variables are sampled. Compared with the corresponding traditional block Gibbs sampler
where blocks of 50× 50 variables are sampled the computational cost has increased about
30%.

Example 3: Burn-in with different ranges for overlapping block Gibbs samplers

In this example we visually and with estimated auto-correlation inspect a case relevant for
how we intend to use the sampler. We want to be able to update the hyper-parameters
independent of the field, i.e. the initial field can be quite far away from the high density
areas of the distribution we now want to sample from. A sampler with a short burn-in
would be helpful. In this example a constant field with value three is used as initial values.
The distribution we want to sample from is the same as in example 1, i.e. the initial field
is three standard deviations from the expected value zero. We have explored how different
values of the range (r) influence the dependence to the initial field and how overlapping
blocks change this dependence. Figure 10 shows the first sample from samplers with
different buffer sizes and different ranges, and plots of the estimated auto-correlations are
in figure 11.

The images in figure 10 suggest what is to be accepted; larger range gives higher
dependence between the initial field and the first sample, overlapping blocks decrease
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Figure 9: To example 2: From top left; an exact sampler, a traditional block Gibbs sampler
with 2×2 blocks, and overlapping block Gibbs samplers with 2×2 blocks and blocks extended
with one, two and five pixels in both direction. For each sampler, from top left to right:
Trace plot, plot of cumulative mean, plot of cumulative estimated variance and plot of the
estimated auto-correlation function.
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Figure 10: To example 3: The first sample from overlapping block Gibbs samplers for dif-
ferent ranges (r) and buffer sizes (each block extended with buffer pixels in both direction).
The initial values of the field is three.
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Figure 11: To example 3: Estimated auto-correlation function for samples at pixel (48, 48)
for the traditional block Gibbs sampler with 2 × 2 blocks (left) and the overlapping block
Gibbs sampler with 2 × 2 blocks, each extended with a buffer of five pixel in both direction
(right)

the dependence, and larger buffers are required to give equal results for increased range.
The plots of estimated auto-correlation in figure 11 support this: As the range increases
auto-correlation between samples also increase. Further, overlapping blocks decrease the
auto-correlation for all the tested ranges, especially for the largest ranges.

2.3 Time series overlapping block Gibbs sampler

A special case of the overlapping block Gibbs sampler is a time series version of the overlap-
ping blocks. If we only let blocks overlap in one direction, or more precise never condition
on temporary (buffer) samples, we obtain some nice simplifications, see figure 12 and the
corresponding algorithm, algorithm 5. The algorithm looks similar to the general over-

Algorithm 5 Overlapping block Gibbs sampler, time series

• Given x0

• for i = 0 : (ninter − 1)

– Sample (xi+1
1 , xB1

2 ) ∼ π(xB1 |xi
3, x

i
4, x

i
5)

– Sample (xi+1
2 , xi+1

3 , xB2
4 ) ∼ π(xB2 |xi+1

1 , xi
4)

– Sample (xi+1
4 , xi+1

5 ) ∼ π(xB3 |xi+1
1 , xi+1

2 , xi+1
3 )

• Return ((x1
1, x

1
2, . . . , x

1
5), (x

2
1, x

2
2, . . . , x

2
5), . . . , (x

niter
1 , xniter

2 , . . . , xniter
5 )

lapping block Gibbs sampler in algorithm 4. The simplification is found in the transition
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Figure 12: Illustration of the the time series version of the overlapping blocks Gibbs sampler.
Notation as used in algorithm 5.

kernel: We are now able to integrate out the buffers;

K(x, x
′

) =

∫

[π1(x
′

1, x
B1
2 |x3, x4, x5)

π2(x
′

2, x
′

3, x
B2
4 |x′

1, x5)

π3(x
′

4, x
′

5|x
′

1, x
′

2, x
′

3)]dxB1
2 dxB2

4

= π(x
′

1|x3, x4, x5) · π(x
′

2, x
′

3|x
′

1, x5) · π(x
′

4, x
′

5|x
′

1, x
′

2, x
′

3)

In the time series situation the overlapping block Gibbs sampler gives us partial condi-
tioning sampling, where the buffers in each block are integrated out. Partial conditioning
sampling is mentioned in Besag et al. (1995) as a way doing MCMC, but then as an
alternative to Gibbs sampling and not a way of constructing a proposal.

If we consider only the variables of a block not sampled later they are sampled from
their marginal conditional distribution with the other variables of the block integrated out.
This can be thought of as local version of collapsing as defined in Liu (1994). And the
time series version of the overlapping Gibbs sampler can be viewed as a traditional block
Gibbs sampler with local use of collapsing.

When we later want to calculate the density for the transition a way of doing that is
to use (for each block);

π(x
′

1|x∗
3, x

∗
4, x

∗
5) =

π(x
′

1, x
B1
2 |x∗

3, x
∗
4, x

∗
5)

π(xB1
2 |x′

1, x
∗
3, x

∗
4, x

∗
5)

for any xB1
2 , e.g. the actual buffer we have sampled. Hence, the time series version of the

overlapping block Gibbs sampler enables us to calculate the transition density for the full
update of the field. This is essential when we later want to incorporate it into an one-block
updating scheme together with hyper-parameters.
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While an overlapping block Gibbs sampler and a partial conditional block sampler is
equal with a time series version of blocking is this generally not the case. In a partial
conditional block sampler there are non temporary buffer samples. In figure 13 and algo-
rithm 6 the partial conditional block sampler corresponding to the overlapping block Gibbs
sampler in figure 7 and algorithm 4 is set up.
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Figure 13: Illustration of the blocks of a partial conditional block sampler. Notation used in
algorithm 6. In each step the gray area is sampled from its partially conditional distribution
with the hatched area integrated out.

The transition kernel is given by;

K(x, x
′

) = π(x′
1|x3, x6, x7, x8, x9)

π(x′
2, x

′
3|x′

1, x4, x7, x8, x9)

π(x′
4, x

′
7|x′

1, x
′
2, x

′
3, x6, x9)

π(x′
5, x

′
6, x

′
8, x

′
9|x′

1, x
′
2, x

′
3, x

′
4, x

′
7)

The actual sampling can be done as in the overlapping block Gibbs sampler, but the
samples for the buffers are not kept. The density for the transition can be calculated as in
the time series overlapping case.

We will in this report only use the time series overlapping blocks Gibbs sampler when
we need to calculate the transition density. Our largest problems are time series and to
use the time series overlapping blocks approach is then a natural choice.
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Algorithm 6 Partial conditional block sampler

• Given x0

• for i = 0 : (niter − 1)

– Sample (xi+1
1 ) ∼ π(x1|xi

3, x
i
6, x

i
7, x

i
8, x

i
9)

– Sample (xi+1
2 , xi+1

3 ) ∼ π(x2, x3|xi+1
1 , xi

4, x
i
7, x

i
8, x

i
9)

– Sample (xi+1
4 , xi+1

7 ) ∼ π(x4, x7|xi+1
1 , xi+1

2 , xi+1
3 , xi

6, x
i
9)

– Sample (xi+1
5 , xi+1

6 , xi+1
8 , xi+1

9 ) ∼ π(x5, x6, x8, x9|xi+1
1 , xi+1

2 , xi+1
3 , xi+1

4 , xi+1
7 )

• Return ((x1
1, x

1
2, . . . , x

1
9), (x

2
1, x

2
2, . . . , x

2
9), . . . , (x

niter
1 , xniter

2 , . . . , xniter
9 ))

Example 4: Sampling variance in an AR(1) process

We want to explore the difference between a traditional block Gibbs sampler and an over-
lapping one for an AR(1) process. The block border is of special interest. We consider an

.......x1

B2

B1

B2B1

Overlapping block Gibbs

Traditional block Gibbs

x2 xpx3 x4 x(p−1)

Figure 14: To example 4: Illustration of the AR(1) blocking example.

AR(1) process x of length p, block Gibbs samplers with blocks of length b = p − 1, and
for the overlapping block Gibbs sampler buffer of length β = p − 2 = b − 1. See figure 14
for an illustration. We choose the variance to be 1 and set the correlation at lag one to ρ.
This gives a covariance matrix;

Σ =















1 ρ ρ2 . . . ρp−1

ρ 1 ρ . . . ρp−2

...
. . .

...
1 ρ

ρp−1 . . . ρ 1















An exact sampler and the transition kernels of the two Gibbs samplers can be written as:

Exact sampler: q(x|x′) = π(x1)π(x2, . . . , xp|x1)

Traditional block Gibbs: q(x|x′) = π(x1|x′
2, . . . , x

′
p)π(x2, . . . , xp|x1)

Overlapping block Gibbs: q(x|x′) = π(x1|x′
2+β)π(x2, . . . , xp|x1)
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The last block would be exact sampled if x1 was. We therefore focus on the first part
π(x1| . . . ). How good the mixing is depends on the variance of this distribution. In the
traditional case it is

Var(x1|x2, . . . , xp) = V ar(x1|x2) = 1 − ρ2

while in the overlapping blocks case it is

Var(x1|x2+β) = [Cov(x1, x2, . . . , xβ+1|xp)](1,1)

= [Cov(x1, x2, . . . , xp−1) − [ρβ+1 ρβ . . . ρ]T [ρβ+1 ρβ . . . ρ]](1,1)

= 1 − ρ2(β+1)

where [A](i,j) is element (i, j) of matrix A. The result is not surprising: As the buffer-length
β increases the variance in x1’s proposal, 1 − ρ2(β+1), approaches x1’s marginal variance
(here 1).

Example 5: Acceptance rate versus number of blocks and buffer lengths

For an independent Metropolis-Hastings sampler with the optimal acceptance probability
from Peskun (1973) the acceptance rate is a good measure of how close the proposal is the
target distribution, see section 6.4.1 in Robert and Casella (1999). If we use one scan of the
time series version of an overlapping Gibbs sampler as proposal and a sample from π(x)
as initial values the proposed sample, xnew, is from π(x), but it is not independent of the
current sample xold. Our Metropolis-Hasting algorithm produces a reversible Markov chain
and this motivates us to use the acceptance rate as a measure of how far from reversible
samples our proposal gives. We aim to propose xnew that is (almost) independent of xold.
If we succeed reversibility with respect to π is achieved and we would get acceptance
probability one in the Metropolis-Hasting algorithm. We can therefore in this situation
use the acceptance rate as a measure of how independent the proposed field, xnew, is the
current field, xold. We have used different numbers of blocks and different buffer lengths
for the same GMRF model as in example 2 on a 100 × 10 lattice. The initial field was
a sample from the target distribution and all the samplers were run for 1000 scans. The
acceptance rates are plotted in figure 15.

We find that the acceptance rate decreases as the number of blocks increases and as the
buffer length decreases. More blocks means more troublesome borders and less reversibility.
Our cure for this is overlapping blocks and as the buffer length increases the border problem
decreases; we get more independent samples. For buffer length 10 we get an acceptance
rate > 0.99 and we believe the samples are close to independent exact samples.
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Figure 15: To example 5: Acceptance rates with fixed hyper-parameters for a 10 × 100
lattice with buffer lengths 0, 2 and 10.
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3 From Gibbs to Metropolis-Hastings

The proposal for x, q(x|xold, θnew) is going to be incorporated into an one-block up-
dating scheme Metropolis-Hastings algorithm together with the proposal for the hyper-
parameters. If one step of the overlapping Gibbs sampler presented in chapter 2 is used
as proposal together with the optimal acceptance probability in Peskun (1973) we do not
get acceptance probability 1 even when hyper-parameters are fixed. As discussed in ex-
ample 5 this is not due to samples not being from π(x), but because the Gibbs sampler
used does not produce a reversible Markov chain. Getting “any” acceptance is often a
problem, and we would like to keep the Gibbs property of acceptance probability 1 when
hyper-parameters are fixed. For a given q(x|xold, θnew) the tuning of the hyper-parameters’
proposals then control the level of the acceptance probability.

A way of achieving this is to use a symmetric scan Gibbs sampler. A symmetric scan
could for the blocks in figure 7 be B1 → B2 → B3 → B4 → B3 → B2 → B1. This
proposal would give acceptance probability 1 with fixed hyper-parameter. Though, the
computational cost is twice the original one.

It is possible to use a mixture of proposals as a proposal. Let q0 be the proposal
distribution for updating scheme B1 → B2 → B3 → B4, and q1 the proposal distribution
for updating scheme B4 → B3 → B2 → B1. We randomly choose which proposal to use,
each with probability 0.5; P (q0) = P (q1) = 0.5. This gives us an overall proposal

q(x
′|x) = 0.5q0(x

′ |x) + 0.5q1(x
′|x)

Instead of using the Peskun’s optimal acceptance probability formulae;

α(x′|x) = min
{

1,
π(x′)q(x|x′)

π(x)q(x′|x)

}

we use the acceptance probability suggested in Tjelmeland and Hegstad (2002):

αi,1−i(y|x) = min
{

1,
π(x′)q1−i(x|x′)

π(x)qi(x′|x)

}

i ∈ {0, 1}

We will refer to this acceptance probability as opposite reverse acceptance probability. It
does not give optimal convergence as a function of Metropolis-Hastings steps. But if the
overall proposal is computationally expensive to evaluate it may give optimal convergence
as function of computation time. We write our proposal distributions as a product of
transition kernels:

q0(x|x′) =

∫

q1(x′
1|y)q2(x′

2|x′
1) . . . qb(x|x′

b−1)dx′
1dx′

2 . . . dx′
b−1 (1)

and

q1(x|x′) =

∫

qb(x′
b−1|x′)qb−1(x′

b−2|x′
1) . . . q1(x|x′

1)dyb−1dyb−2 . . . dy1 (2)
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In our setting is

qi(x|x′

) =

{

π(xBi
|x′

−Bi
), if xj = x

′

j,∀j 6∈ Bi

0, if ∃j 6∈ Bi such that xj 6= x
′

j

If x ∼ π(x) will also xi ∼ π(x). We first consider α0,1 and its denominator π(x)q0(x
′|x).

π(x)q0(x
′|x) = π(x)

∫

q1(x′
1|x)q2(x′

2|x′
1) . . . qb(x′|x′

b−1)dx′
1dx′

2 . . . dx′
b−1

=
∫

q1(x′
1|x)π(x)q2(x′

2|x′
1) . . . qb(x|x′

b−1)dx′
1dx′

2 . . . dx′
b−1

=
∫

q1(x′
1|x′)π(x′

1)q
2(x′

2|x′
1) . . . qb(x′|x′

b−1)dx′
1dx′

2 . . . dx′
b−1

...

=
∫

q1(x′
1|x′)q2(x′

1|x′
2) . . . π(x′

b−1)q
b(x′|x′

b−1)dx′
1dx′

2 . . . dx′
b−1

= π(x′)
∫

q1(x′|x′
1)q

2(x′
1|x′

2) . . . qn(x′
b−1|x′)dx′

1dx′
2 . . . dx′

b−1

= π(x′)q1(x|x′)

Hence
α0,1 = 1

We get the same result for α1,0. By using the opposite reverse acceptance probability for the
proposal we have developed a Metropolis-Hastings algorithm with acceptance probability
1 from the overlapping blocks Gibbs sampler, see algorithm 7. We observe that the only

Algorithm 7 Metropolis-Hasting overlapping blocks Gibbs sampler, oppo-

site reverse

• Given x0

• for j = 0 : (niter − 1)

– Sample i, P (i = 0) = P (i = 1) = 0.5

– Sample xj ∼ qi(x|xj−1).

• Return (x0, x1, . . . , xniter)

calculations we need to do is those involved in the sampling, hence without any extra
computational cost. The same acceptance probability could have been achieved using a
systematic scan Gibbs sampler, but this would require twice as many calculations.

For the general partial conditional block sampler (as in algorithm 6) we do not achieve
acceptance rate one when using opposite reverse acceptance probability.
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4 One-block updating scheme Metropolis-Hasting with

overlapping block Gibbs proposal

Recall the distribution of our interest is the posterior π(x, θ|y) given by

π(x, θ|y) ∝ π(y|x)π(x|θ)π(θ)

As stated earlier, the latent field x and the hyper-parameters θ should be updated simu-
lations to improve mixing. Using the one-block updating scheme in algorithm 2 the ideal
proposal for x would be q(x|xold, θnew) = π(x|θnew), but this could be computational too
expensive. One scan of the overlapping block Gibbs sampler from chapter 2 seems to be
a good alternative, giving algorithm 8. We name this kind of proposals overlapping block
Gibbs proposals. This algorithm is set up with opposite reverse acceptance probability as

Algorithm 8 Metropolis-Hastings algorithm with overlapping Gibbs blocks

• Given θ0 and y0

• for j = 0 : (niter − 1)

– Sample θnew ∼ q(θ|θj)

– Sample i: P (i = 0) = P (i = 1) = 0.5.

– Sample from overlapping block Gibbs proposal xnew ∼ q(x|xold, θnew)

– Calculate acceptance probability

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)qi(x

j |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)q1−i(xnew|xj , θnew)
)

– Sample u ∼ Unif(0, 1)

– if(u < α)

∗ θj+1 = θnew

∗ xj+1 = xnew

– else

∗ θj+1 = θj

∗ xj+1 = xj

• Return ((θ1, x1), (θ2, x2), . . . , (θn, xn)).

introduced in chapter 3. Also a non-randomised proposal with Peskun’s acceptance prob-
ability will be used. The i sampling step is then omitted, and the acceptance probability
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is

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)q0(x

j |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)q0(xnew|xj , θnew)
)

The challenge using this algorithm is to evaluate the proposal q(xnew|xj, θnew) (subscript
suppressed). It is given by the transition kernel in chapter 2.2 and is generally not known.
As demonstrated in chapter 2.3 an exception is the time series version of the overlapping
blocks. Before the expressions are set up we introduce some useful notation for the time
series version of overlapping blocks: For each block Bi there are (at most) two kind of
elements, those sampled over later, the buffer elements, and those finally sampled in this
block. We denote the buffer elements βi and the final sampled ones bi, so Bi = {bi, βi}. We
denote the complement of the whole field and a block Bi by −Bi. Further this complement
is divided into two disjunct parts; those elements in blocks with a lower index are in Bi−
while those in a block with higher index are in Bi+. This is formalised below:

Bi = {bi, βi}
−Bi = {j} such that j ∩ Bi = ∅
Bi− = {j} such that j ∩ Bi = ∅ and j ∈ Bk with k < i

Bi+ = {j} such that j ∩ Bi = ∅ and j ∈ Bk with k > i

Note that while βi and bi change for q0 and q1, −Bi, Bi− and Bi+ are fixed. If the setting
is as in figure 12 as B2 is sampled using q0 {B2−} = {1}, {b2} = {2, 3}, {β2} = {4} and
{B2+} = {5}. The transition kernels can be calculated from;

q0(x|x′, θ) =

nB
∏

i=1

π(xBi
|xBi−, x′

Bi+
, , θ) =

nB
∏

i=1

π(xBi
|xBi−, x′

Bi+
, θ)

π(xβi
|xBi−, x′

Bi+
, xbi

, θ)

and

q1(x|x′, θ) =

nB
∏

i=1

π(xBi
|x′

Bi−
, xBi+, , θ) =

nB
∏

i=1

π(x′
Bi
|xBi−, xBi+, θ)

π(xβi
|x′

Bi−
, xBi+, xbi

, θ)

where nB is the number of blocks. For each block both π(xnew
Bi

|xnew
Bi−

, xj
Bi+

, θnew) and

π(xnew
βi

|xnew
Bi−

, xj
Bi+

, xnew
Bi

, θnew) have to be calculated. The calculation of π(xnew
Bi

|xnew
Bi−

, xj
Bi+

, θnew)

is done while sampling without any extra costs. The denominator π(xnew
βi

|xnew
Bi−

, xj
Bi+

, xnew
Bi

, θnew)
has to be calculated from scratch. In the spatial GMRF case this costs O(n1.5

βi
), where nβi

is the dimension of xβi
.

4.1 Example 6: Toy example with one-block updating scheme

As a first investigation of the one-block updating scheme Metropolis-Hastings algorithm
with overlapping block Gibbs proposal for x, we apply it to sample from a known distri-
bution.
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We aim to sample from a GMRF on a lattice with expected value β;

x ∼ N(β1, τQ(r))

with a 5 × 5 neighbourhood and with precision matrix Q(r) such that it is a proxy of a
GRF with exponential correlation function

ρ(xi, xj) = exp(
−3d(i, j)

r
)

denoted as described in example 1. The hyper-parameters θ = (β, τ, r) are given indepen-
dent priors; β ∼ N(0, 1), r ∼ Unif(1, 50) and τ ∼ Gamma(0.25, 0.05). The elements of
Q(r) approximating a GRF with range r have to be calculated for each r. To decrease the
computational cost r is discretised and all the possible proxies Q(r) can be calculated once
and in a pilot run. Hence r’s prior is here discrete uniform over its discretion. We apply
this model for two lattices, one of size 100 × 10 and one of size 32 × 32.

To use the one-block updating scheme of algorithm 2 both a proposal for the hyper-
parameters θ and the field x are needed. For the hyper-parameters we chose independent
random walk proposals; βnew ∼ N(βold, 0.5), τnew ∼ Unif(τ old/f, fτ old) with f = 1.5 and
rnew ∼ Unif(rold − ∆r, rold + ∆r) with ∆r = 50. For the field x we have used different
overlapping block Gibbs proposals. For both lattices overlapping block Gibbs proposals
with two, four and eight blocks are tested, in the 32 × 32 case with buffer lengths zero
(i.e. traditional block Gibbs sampler), two and four, and in the 100 × 10 case with buffer
lengths zero, two and ten. Remark the buffer of length 10 in the 100×10 case (nβ = 100) is
computationally cheaper then buffer length 4 in the 32× 32 case (nβ = 128). For reference
purposes also an exact proposal for x, q(x|xold, θnew) = π(x|θnew), is used. Both opposite
reverse acceptance probability (as in algorithm 8) and Peskun’s acceptance probability are
tested.

A well known problem in MCMC is slow mixing of hyper-parameters, Knorr-Held and
Rue (2002). To evaluate the different one-block samplers we have therefore chosen to
investigate the Markov chain for the hyper-parameter β.

To see how the number of blocks, buffer lengths and choice of acceptance probability
influence the mixing, auto-correlation between samples of β are estimated, see figure 16.
In figure 17 and 18 are trace plots, cumulative mean plots and estimated density (ad-
justed histograms) for β for the two different lattices. The same quantities using the exact
proposal for x is plotted in figure 19 and figure 20.

From these plots we first of all observe that correlation between samples is smaller for
the opposite reverse acceptance probability, especially with many blocks and small buffers.
This is the cases where the acceptance rate is low and the improved mixing seems to come
from increased acceptance. As the length of the buffer increases and the number of blocks
decreases the difference between the acceptance probability methods becomes invisible.
(Buffer length 10 gives the same acceptance rate as using exact proposal for x). For the
square lattice the auto-correlation is higher and the mixing poorer then in the rectangular
case even for equal buffer lengths. We suspect this is caused by boundary effects; the
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Figure 16: To example 6: Estimated auto-correlation from samples of β for 2, 4 and 8
blocks with buffers of lengths 0, 2 and 10 and Peskun’s (dashed line) and opposite reverse
(dash-dot line) acceptance probability. Estimated auto-correlation for exact proposal for x
is included in all plots (solid line).
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Figure 17: To example 6: Plots from simulations of β for a 10 × 100 lattice with buffer
lengths 0, 2 and 10 and both acceptance probability alternatives, Peskun’s method (1) and
opposite reverse method (-1). Left column contains trace plots, middle column cumulated
means and right column histograms (adjusted to become densities) and target distribution.
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Figure 18: To example 6: Plots from simulations of β for a 32 × 32 lattice with buffer
lengths 0, 2 and 4 and both acceptance probability alternatives, Peskun’s method (1) and
opposite reverse method (-1). Left column contains trace plots, middle column cumulated
means and right column histograms (adjusted to become densities) and target distribution.
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Figure 19: To example 6: Plots from simulations of β for a 10 × 100 lattice using exact
proposal for x. From left trace plot, cumulated mean and histogram (adjusted to become a
density) and target distribution.

0 5000 10000
−4

−2

0

2

4

0 5000 10000
−1.5

−1

−0.5

0

0.5

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

Figure 20: To example 6: Plots from simulations of β for a 32 × 32 lattice using exact
proposal for x. From left column contains trace plot, middle column cumulated mean and
right column histogram (adjusted to become a density) and target distribution.

GMRF approximation used for the lattice corresponds to condition on a boundary with
the expected value. This causes less variance closer to the boundary and less correlation
between close to boundary elements.

In figure 17 and 18 we first of all observe that the mixing improves as the buffer lengths
increase. Especially is the difference large going from non to a buffer of length two. The
convergence of the estimated mean of β and the quality of the density estimate have also
improved.

In this example we have used an one-block updating scheme Metropolis-Hasting algo-
rithm with different overlapping block Gibbs samplers as proposals for the field x. The
mixing is investigated for a hyper-parameter; the expected value of the field β. For long
enough buffers the overlapping block Gibbs proposal gives as good mixing as the exact pro-
posal for x, π(x|θ). The necessary buffer length decreases using opposite reverse acceptance
probability.

4.2 Example 7: Graph GMRF model with Gaussian likelihood

In this section overlapping block Gibbs proposals are tested for a GMRF model on an
irregular graph. We have used a map of Germany making a graph and neighbourhood
structure as described in section 1.1. Our interest is a latent field x and its spatial structure.
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It is given a GMRF prior with smoothing parameter κ;

π(x|κ) ∝ κ(n−1)/2 exp(−1

2
κ

∑

i∼j

(xi − xj)
2)

The likelihood is consider mutually independent Gaussian:

π(yi|x) ∼ N(cixi, τ
−1)

where τ is the precision and ci is a region specific constant. As data we have used the
German oral cavity cancer dataset. The Gaussian likelihood is not appropriate for the
data and the study in this example should only be interpreted as a study of the samplers
used. Both hyper-parameters are given vague Gamma-priors.

As in example 6 we use an one-block updating scheme with a proposal of two stages.
For the hyper-parameters θ = (κ, τ ) we use independent log random walk proposals. For
the latent field x we aim to use an overlapping block Gibbs proposal, though how to set
up the blocks is not trivial for an irregular graph.

The method for sampling GMRFs described in Rue (2001) reorders the elements of x
such that the bandwidth of the precession matrix bω is small. To this new ordering there
correspond an auto-regressive time series with conditional dependents length bω. In the
overlapping block Gibbs proposal blocks (and buffers) are set up in this reordered world.
If buffers are of length bω we are guaranteed that all (not earlier sampled) neighbours are
included in the buffer. The bandwidth of the reordered graph of Germany is 44.

The sampler was run for 10000 iterations for different numbers of blocks (1,2,4 and 8),
buffer lengths 10, 22, 44 and 66, and with the two different acceptance probabilities. For
both hyper-parameters scaled uniform proposals ( τ new ∼ Unif( τold

f
, fτ old) with f = 1.3)

are used. The convergence properties are tested for the smoothing parameter κ and for
region 29. This is region 200 in the reordered indexes, and hence about 1.5bω from the
block border for two blocks.

The acceptance rate is a measure for how close the proposal is the target distribution
for a Metropolised independence sampler with Peskun’s acceptance probability. As dis-
cussed in example 5 and in chapter 3 it could be used as a measure of reversibility and
independence of the sampled fields x for an overlapping block Gibbs sampler with fixed
hyper-parameters and Peskun’s acceptance probability. (Recall that with fixed hyper-
parameters opposite reversing acceptance probability gives acceptance rate 1.) In our
algorithm only the field part x aim to be independent and we compare the acceptance
rate for overlapping block Gibbs proposals for x with exact proposal for x using Peskun’s
acceptance probability. We use this difference as a measure of how fare q(x|xold, θnew) is
from π(x|θnew). From figure 21 we see that the decrease in acceptance rate disappears as
the buffer length increase. For buffer lengths 44 and 66 are there no notable difference.
The mixing and convergence for both hyper-parameters and the latent field are good in
this example, see figure 22 for the cumulative mean estimate for some of the samplers. To
investigate the mixing further the auto-correlation within the Markov Chain is estimated
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Figure 21: To example 7: Acceptance-rate for samplers as a function of number of blocks
for buffers of length 0 (stars), 10 (circles), 22(dots), 44(plus sign) and 66 (diamonds).
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Figure 22: To example 7. Cumulated mean for τ , κ and x29 with the one-block x proposal
(solid line) and overlapping block Gibbs proposal for x with 8 blocks without buffers (dot-
ted line) and with buffer length 44 (dashed line). All samplers used Peskun’s acceptance
probability.

for κ and x29 from samplers with overlapping block Gibbs proposals with 8 blocks, see fig-
ure 23 and 24. The auto-correlation is quite good for both variables, even without buffers
and with Peskun’s acceptance probability. We observe the same trends as earlier. The
Markov chain of the hyper-parameter (here κ) has higher autocorrelation then the field
variables (here investigated for x29). The opposite reverse acceptance probability gives
smaller estimated auto-correlation then Peskun’s acceptance probability. For both accep-
tance probabilities the auto-correlation decreases as the buffer length increases. In this
example the auto-correlation is almost equal for the exact proposal for x and overlapping
block Gibbs proposal when the buffer length equals the bandwidth.

The simulations in this example suggest that overlapping block Gibbs proposal with
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Figure 23: To example 7: Estimated auto-correlation for κ for different buffer lengths
and for Peskun’s (dotted line) and opposite (dashed line) reverse acceptance probabilities.
Estimated autocorrelation for a exact sampler for x|θnew included (solid line).
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Figure 24: To example 7: Estimated auto-correlation for x29 for different buffer lengths
and for Peskun’s (dotted line) and opposite reverse (dashed line) acceptance probabilities.

buffers of length the bandwidth gives samples almost with the same mixing and converting
quality as using π(x|θnew) as proposal for x. When the buffer length is small, the opposite
reverse acceptance probability seems to improve the mixing for the hyper-parameters.

33



4.3 Example 8: Space-time GMRF model with Gaussian likeli-

hood

In this section we present a space-time GMRF model and sample from it applying an
one-block updating scheme Metropolis-Hasting algorithm with an overlapping block Gibbs
proposal for the latent field. The spatial graph from example 7 is extended to a space-time
graph by making a copy of the graph for each of the T time steps and making the graphs a
chain by connecting each node xit with the corresponding node for the time step immediate
before (xi,t−1) and after (xi,t+1). We believe the smoothing is different in time and space,
and model it with two parameters, τS for space and τT for time;

π(x|κ, τT ) ∝
T

∏

t=1

exp(−1

2
τS

∑

i∼j

(xit − xjt)
2)

N
∏

i=1

exp(−1

2
τT

∑

s∼t

(xis − xit)
2)

This corresponds to a multivariate N · T dimensional Gaussian distribution with precision
matrix Q:

Qij =























−τS , if i
s∼ j

−τT , if i
t∼ j

κnnbs(i) + τT nnbt(i), if i = j

0 else

where
s∼ denotes neighbours in space and

t∼ in time, nnbs(i) is the number of neighbours
for element i in space and nnbt(i) in time. Also note that Q = τSQS + τTQT where QT

is the precision matrix for the time dependence and QS for the spatial dependence with
τS = 1 and τT = 1. This prior is intrinsic and we need to know how the normalisation
constant depends on τT and τS. In appendix A.2 the normalisation constant is found as
a function of the non-zero eigenvalues of the precision matrix for one region in T time
step, and for the N regions for one time step. As in example 7 the likelihood is consider
mutually independent Gaussian;

π(yi|x) ∼ N(cixi, τ
−1)

Synthetic data were made for this model on the Germany graph with 100 time steps and
with parameters τT = 5.0, τS = 5.0 and τ = 20.0. The latent field has dimension 54400
and we needed 250 seconds to get an exact sample from π(x|θnew) while one scan of an
overlapping block Gibbs sampler with 20 blocks and a buffer length of 544 variables (i.e. one
time step in the space-time graph) needed about 7 seconds. We used this overlapping block
Gibbs proposal for x together with log random walk proposals for the hyper-parameters
and opposite reverse acceptance probability in an one-block updating scheme Metropolis-
Hastings algorithm. Results for the hyper-parameters are plotted in figure 25 (trace plots)
and in figure 26 (histograms and cumulative mean). The sampler was run for 25000
iterations and had an acceptance rate of 0.28. The precision parameters of the GMRF
seems to have stabilised close to their original values (τS = 5.007 and τT = 4.94). The
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Figure 25: To example 8: Trace plots for τS (dotted line), τT (solid line) and τ (dash-dot
line).

12 14 16 18 20
0

1

2

3
τ

0 0.5 1 1.5 2

x 10
4

14.5

15

15.5

16
τ

iteration

4.6 4.8 5 5.2 5.4
0

1

2

3

τ
S

0 0.5 1 1.5 2

x 10
4

4.9

4.95

5

5.05

τ
S

iteration

4.6 4.8 5 5.2 5.4
0

1

2

3

τ
T

0 0.5 1 1.5 2

x 10
4

4.9

4.95

5

5.05

5.1

τ
T

iteration

Figure 26: To example 8: Histograms (adjusted to become densities) and cumulative mean
for τ , τS and τT with a burn-in of 10000 iterations omitted.

precision of the data, τ , has poorer mixing and the cumulated mean has not stabilised.
Simulations from other initial values gave the same level of τ , which indicates that the
Markov chains have converged.

In the space-time problem constructed in this example an one-block updating scheme
for (x, θ) with exact proposal for x|θnew is computationally infeasible. Using an overlapping
block Gibbs proposal for x support us with appropriate samples and is computationally
affordable. It enables us to use an one-block updating scheme.
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4.4 Example 9: Functional magnetic resonance imaging

In this example we use functional magnetic resonance imaging (fMRI) data previously
studied in Göss et al. (2000). The data are from a visual stimulation experiment. The
stimulus was a 8 Hz flickering checkerboard, and the experiment lasted for 210 seconds
with four periods (a 30 seconds) rest and three periods stimulus. A crossection of the
brain (128 × 128 pixels) was observed every third second, hence a time series of 70 time
steps. Images of size 75×67 is enough to cover the brain and we based our analyses on these
images. See figure 27 for images of the mean and standard deviation in time for the data,
the first 20 images can be seen in appendix A.3. Functional magnetic resonance utilise
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Figure 27: To example 9: The mean (left) and standard deviation in time for the data.

the different magnetic properties of oxygenated and disoxygenated blood and is useful
for observing BOLD (blood oxygenation level dependent) effects. External stimulation is
related to the BOLD effect and the aim of the experiment was to detect areas activated
by the visual stimulation.

Traditionally temporal and, if at all, spatial effects have been analysed separately. In
Göss et al. (2001) Bayesian hierarchic parametric and semi-parametric spatial and spatio-
temporal models for this problem are introduced. We will now make a space-time GMRF
model for this problem with smaller dimension then the space-time model in Göss et al.
(2001). To estimate parameters an one-block updating scheme Metropolis-Hastings algo-
rithm with an overlapping block Gibbs proposal is used.

We model the observations of pixel i at time t as:

yit = ai + ztbit + εit

for i = 1, 2, . . . , N and t = 1, 2, . . . , T . Here a is the baseline image (of size N) and bit is
the activation effect of pixel i at time t (of size N ·T ). See figure 28 for the directed acyclic
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graph of the model. A transformed stimulus, zt t = 1, 2, . . . , T of the original stimulus is

y1

a

y2

       ........       ........

Data
τ

..................

T
τ

b70b69b68b2b1

y68 y69.................. y70

b
τ

a
τ

Figure 28: To example 9: The DAG (directed acyclic graph) of our fMRI model.

used. A common choice is to use a temporal shift of the original stimulus x by a time-delay
d and a convolution h:

zt =

t−d
∑

s=0

h(s, φ)xt−d−s

with h either Poisson or gamma density function. The parameters involved here (d, φ) are
estimated by least square from similar data. The measurement errors εit are assumed in-
dependent identically Gaussian distributed εit ∼ N(0, τ−1

Data) with common precision τData.
The tempo-spatial modelling is done through the priors of a and b. They are both given
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intrinsic Gaussian priors:

π(a) ∝ exp(−1

2
τA

T
∑

t=1

∑

i
s
∼j

(ai − aj)
2)

π(b) ∝ exp(−1

2
τB

T
∑

t=1

∑

i
s
∼j

(bit − bjt)
2)

exp(−1

2
τT

N
∑

i=1

∑

t
t
∼r

(bit − bir)
2)

Each non-boarder pixel has four neighbours in space (both in a and b) and two in time (for
b only), see figure 29. The priors for τA, τB and τT were all set to be independent Gamma
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Figure 29: To example 9: Illustration of the space-time neighbourhood structure for b.

distributed with expected value 5.0 and variance 100.
The posterior distribution of the hyper-parameters θ = (τData, τA, τB, τT ), the baseline

image a and the activation effect b is our distribution of interest. In appendix A.4 π(a, b|θ, y)
is found to be multivariate Gaussian with a conditional dependence structure as illustrated
with the graph in figure 30. This distribution is only proper if zi > 0 ∀i. Our pragmatic
solution to this problem is to use zi + 1 instead of zi. This causes some of the “baseline
level” to be moved from a to b. Sampling is conceptually done as in the previous examples:
Independent random walk proposals for the hyper-parameters followed by an overlapping
block Gibbs proposal for π(a, b|θ, y). All variables are accepted/ rejected in one block.

To decrease the problem size we have used only the mid section of the brain. This
gives us a dataset of 75 × 21 pixels ×70 time steps, or 110250 data points, and {a, b} has
dimension 111825. We are not be able to sample exact from a GMRF of this size.

The blocks are chosen as illustrated in figure 30. Because of the dependence structure
a is sampled in every block together with some time-steps of b.

The precision for the data, τData, was estimated from the part of the image not used, and
was fixed to this value (τData = 0.003). We used an updating scheme with blocks consisting
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Figure 30: To example 9: The overlapping blocks used when sampling from a and b. The
images with a brighter shade will be sampled over later.

of a and five b images, and with two b images and a overlap. The hyper-parameters were
proposed independently of each other uniformly on [ 1

f
τ old, fτ old]. The algorithm was run

for 20000 iterations with initial values for the hyper-parameters τA = 1.0 τB = 5.0 and
τT = 1.0. Trace plots with cumulative mean can be found in figure 31. We observe quite
low spatial dependence (τA = 0.000009 and τB = 0.000056), though reasonable values
considering the values of the data. The precision in time is much higher (τT = 0.26).
The mixing of the smoothing parameters of b is quite slow, but the cumulated mean has
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Figure 31: To example 9: Trace plots (doted line) and cumulative mean (solid line) with
burn in of 3000 for τA, τB and τT .

stabilised. Figure 32 contains images of the mean estimate of the baseline image and the
activation for the time steps. The baseline estimate seems to be a smoother version of the
mean in time image in figure 27. The activation estimate images are from two stimulus
time steps (t = 18 and t = 38) and one rest time step (t = 28). From these images we
see that the activation areas are in the upper part of the brain. This agrees with previous
studies of the same data.

Most of the smoothing is done in the time direction. To illustrate this we have in
figure 33 plotted the data and our mean estimates for three pixels; one with high, one with
moderate and one without stimulus activation. We observe that the estimates are smooth
and appears less noisy, but not smoothed too much, -the stimulus activation is well kept.
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Figure 32: To example 9: The mean estimate of baseline image(left), and the mean esti-
mated activation effect ztbṫ for time step 18, 28 and 38.
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Figure 33: To example 9: The observed values and the mean estimates for three pixels.
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5 Overlapping approximated blocks proposals

Until now we have only analysed models with posteriors π(x|y, θ) for which we are able to
sample from π(xB|x−B, y, θ) exact. In this chapter we demonstrate that the overlapping
block approach for constructing a proposal is fruitful even when we are unable to sample
exact from π(xB|x−B, y, θ). We construct approximations to π(xB|x−B, y, θ) and use sample
from these approximations instead of sampling from the exact distribution of the blocks.

5.1 Constructing a proposal for the latent field from approxi-

mated blocks

The models we consider have a latent field x with a GMRF-prior, x|θ ∼ GMRF . The
observations are conditioned on x mutually independent; π(y|x, θ) =

∏n
i=1 π(yi|xi). In the

overlapping block setting the distribution we want to sample from is π(xB |x−B, y, θ). For
our models we get:

π(xB |x−B, y, θ) = π(xB |x−B, yB, θ) ∝ π(xB |x−B, θ)π(yB |xB)

If π(x|θ) is a GMRF is also π(xB |x−B, θ) a GMRF and the conditional independence
structure of π(xB |x−B, y, θ) is the same as for π(x|y, θ). In Rue et al. (2003) these kind of
densities for π(x|y, θ) are named hidden GMRFs (HGMRFs) and a class of approximations
to non-Gaussian HGMRFs is introduced. The approximations are done for full dimensional
x, but as we have seen our conditional problem has the same structure and we want to use
the approximations for these blocks. The approximations in Rue et al. (2003) are done in
three stages: The first stage is to find a Gaussian approximation in the mode of π(x|y, θ).
Denote this approximation πA1(x|y, θ). As a first improvement non-Gaussian corrections
for the likelihood term for the corresponding data point (correct for yi when xi is sampled)
are done. We denote this approximation πA2. The third approximation, πA3, also correct
for non-Gaussian likelihood terms from other locations through sampling.

We denote approximation Ai to π(xBi
|x−Bi

, y, θ) πAi(x;x−Bi
, y, θ), and suppress the

method number i in expressions valid for all methods. For notational convenience y and
θ are suppressed when assumed fixed. For a time series version of overlapping as in figure
12 we make a proposal for the latent field from overlapping approximated blocks, see
algorithm 9. The corresponding transition density can be written as a product of marginal
approximated distributions;

qA(x|x′) = πA(x1;x
′
3, x

′
4, x

′
5)π

A(x2, x3;x1, x
′
5)π

A(x4, x5;x1, x2, x3)

Remark that πA(x1;x
′
3, x

′
4, x

′
5) is the marginal distribution of x1 of the approximation;

πA(x1;x
′
3, x

′
4, x

′
5) =

∫

πA(x1, x2;x
′
3, x

′
4, x

′
5)dx2. In a time series version of overlapping blocks

with nb blocks we get;

qA(x|x′) = πA(xb1 ;x
′
B1+)πA(xb2 ;xB2−, x′

B2+) . . . πA(xbnb
;xBnb−)
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Algorithm 9 Overlapping approximated blocks proposal

• Given x
′

• Sample (x1, x
B1
2 ) ∼ πA(xB1 ;x

′

3, x
′

4, x
′

5)

• Sample (x2, x3, x
B2
4 ) ∼ πA(xB2 ;x1, x

′

4)

• Sample (x4, x5) ∼ πA(xB3 ;x1, x2, x3)

• Return (x1, x2, . . . , x5)

Algorithm 10 Metropolis-Hastings algorithm, sampling from x with over-

lapping approximated blocks proposal

• Given x0

• for j = 0 : (niter − 1)

– Sample from overlapping approximated blocks proposal xnew ∼ qA(x|xold).

– Calculate

α = min(1,
π(x|xnew)π(xnew)qA(xj |xnew)

π(x|xj)π(xj)qA(xnew|xj)
)

– u ∼ Unif(0, 1)

– if(u < α)

∗ xj+1 = xnew

– else

∗ xj+1 = xj

• Return (x1, x2, . . . , xniter).
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with notation as in section 4. Since each block is sampled from an approximated density
we need to include a Metropolis-Hasting step even when hyper-parameters are fixed, see
algorithm 10.

This sampler requires evaluation of the transition density qA(x|x′). Below we describe
ways of doing this for approximation A1, A2 and A3.

Evaluation of qA(x|x′) when using approximation A1

The first approximation, πA1(xB;x−B), is made by finding the mode of π(xB|x−B) and a
Gaussian approximation in the mode. Hence is πA1(xB;x−B) Gaussian and for our mutually
independent likelihood it is a GMRF with the same precision structure as the prior of xB.
The marginal distribution can therefore be calculated by

πA1(xb;x−B) =
πA1(xb, x

B
β ;x−B)

πA1(xB
β |xb;x−B)

for any xB1
β , e.g. the sampled one. Note that πA1(xB

β |xB;x−B) is the conditional distribution
of xB

β given xb of the Gaussian approximation to xB = {xb, xβ} given x−B. Evaluation of
qA1(x|x′) is therefore very similar to evaluation of q(x|x′);

qA1(xnew|xj) =

nB
∏

i=1

πA1(xnew
bi

;xnew
Bi−

, xj
Bi+

) =

nB
∏

i=1

πA1(xnew
bi

, xnew
βi

;xnew
Bi−

, xj
Bi+

)

πA1(xnew
βi

|xnew
bi

;xnew
Bi−

, xj
Bi+

)

Still πA1(xnew
bi

, xnew
βi

;xnew
Bi−

, xj
Bi+

) is evaluated while sampling without any extra cost while

πA1(xnew
βi

|xnew
bi

;xnew
Bi−

, xj
Bi+

) has to be evaluated from scratch. Since the approximation is a

GMRF this costs O(n
3/2
β ) where nβ is the dimension of xβ.

Evaluation of qA(x|x′) when using approximation A2 or A3

The approximations A2 and A3 are refined versions of A1 and the refinements are done
sequential. Assume we want to sample x = (x1, x2, . . . , xk) and x ∼ π(x). The sampling is
inspired of the equality;

π(x) = π(xk)π(xk−1|xk) . . . π(x1|x2, x3, . . . , xk)

The refined approximations are done in this sequential way and can for A2 (and A3) be
written as

πA2(x) = πA2(xk)π
A2(xk−1|xk) . . . πA2(x1|x2, x3, . . . , xk)

where πA2(xk) is an approximation to the marginal distribution of xk, πA2(xk−1|xk) an ap-
proximation to xk−1 conditioned on the xk sampled in the previous step and so forth. Since
the approximation for π(xi|xi+1, . . . , xk) is only done for the sampled (xi+1, xi+2, . . . , xk)
evaluations of πA2(x) and πA3(x) is not straight forward and generally not easily ob-
tained. We are able to calculate the density for our sample, πA2(xB;x−B) or πA3(xB;x−B),
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while sampling without any extra cost. But it is generally not achievable to evaluate
πA2(xβ|xb;x−B) (or πA3(xβ|xb;x−B)) and we need an other way of evaluating πA2(xb|x−B)
and πA3(xb|x−B).

If the sampling of x is stopped when p − 1 steps remain the density of the obtained
sample is given as

πA2(xk)π
A2(xk−1|xk) . . . πA2(xp|xp+1 . . . , xk)

This is the marginal density for (xp, . . . , xk) of πA2(x). If the ordering within each block
is done such that the buffer elements have the lowest indexes, xB = (xβ, xb), we can both
sample from and evaluate πA2(xb;x−B) simply by stopping the sampling process when xb

is sampled.
Indeed, we also sample from multivariate Gaussian distributions in this sequential way.

And we could also previously sample directly from the partial conditional distributions by
reordering. But there is a computational cost of restricting the ordering. Since we do a
time series version of blocking restricting the indexes of the buffer xβ to be indexed first
forces us to use a bandwidth kind of ordering. If we let the block B be of size k the
sampling cost of a k-dimensional spatial GMRF with bandwidth ordering is O(k2) while a
general optimal ordering would cost O(k3/2). On the other hand we do not have to sample

xβ or evaluate πA(xβ|xb;x−B), but the cost of this is only O(n
3/2
β ) with xβ of size nβ.

5.2 Approximated blocks and changing hyper-parameters

Incorporating the latent field sampler in algorithm 10 into an one-block Metropolis-Hasting
algorithm together with hyper-parameters is now trivial. We still want to use opposite
reverse acceptance probability and introduce the two opposite direction transition kernels
for x;

qA
0 (x|x′) = πA(xb1 ;x

′
B1+)πA(xb2 ;xB2−, x′

B2+) . . . πA(xbnb
;xBnb−)

and
qA
1 (x|x′) = πA(xbnb

;x′
Bnb−

)πA(xb(nb−1)
;x′

B(nb−1)−
, xB(nb−1)+) . . . πA(xb1 ;xB1+)

with notation as in section 4. The one-block Metropolis-Hastings sampler with hyper-
parameters is in algorithm 11. The proposals qA

0 (x|x′) and qA
1 (x|x′) are sampled from and

evaluated as described in section 5.1.

5.3 Example 10: Disease mapping in Germany

To explore how an overlapping approximated blocks proposal works we consider the Ger-
man oral cavity cancer dataset described and modelled in section 1.1. We use a GMRF
prior for the log relative risks and a Poisson likelihood;

π(yi|xi) ∼ Po(ci exp(xi))

We are not able to sample exact from π(x|y, κ) nor from π(xB |x−B,y, κ) for a block xB.
The same data and model were analysed in Rue et al. (2003) using full dimensional ap-
proximations of π(x|y, κ) as proposals. We now want to use overlapping approximated
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Algorithm 11 One-block Metropolis-Hastings algorithm with overlapping

approximated blocks proposal

• Given θ0 and y0

• for j = 0 : (niter − 1)

– Sample θnew ∼ q(θnew|θj)

– Sample i: P (i = 0) = P (i = 1) = 0.5.

– Sample from overlapping approximated blocks proposal xnew ∼ qA
i (x|xold, θnew).

– Calculate

α = min(1,
π(y|xnew)π(xnew|θnew)π(θnew)q(θj |θnew)qA

i (xj |xnew, θj)

π(y|xj)π(xj |θj)π(θj)q(θnew|θj)qA
1−i(x

new|xj , θnew)
)

– u ∼ Unif(0, 1)

– if(u < α)

∗ θj+1 = θnew

∗ xj+1 = xnew

– else

∗ θj+1 = θj

∗ xj+1 = xj

• Return θ = (θ1, θ2, . . . , θn) and x = (x1, x2, . . . , xniter).
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blocks proposals. To set up the blocks we use the same bandwidth ordering as described
in section 4.2.

Fixed hyper-parameter and approximation A1

First the Gaussian approximation (A1) was tested for different fixed hyper-parameter;
κ = 1.0, κ = 10.0 and κ = 25.0. This was done for 2, 4 and 8 blocks with buffer lengths 0,
22, 44 and 66 (the bandwidth of the graph is 44) using both Peskun’s and opposite reverse
acceptance probability. For reference purposes also a sampler with full dimensional A1
approximation proposal for x was run for each tested value of κ.

Later in this example we find that κ = 1.0 is a small value for the posterior of κ|y,
κ = 10.0 is close to its mode and κ = 25.0 is a large value. In figure 34 the acceptance
rates from the samplers with Peskun’s acceptance probability are plotted. All samplers
were run for 10000 iterations. With κ = 1.0 we get a posterior far from Gaussian but
with small spatial dependence. This causes low acceptance rate for A1 also for a full
dimensional approximation. Because the elements of x are almost independent blocking
does not change the acceptance rate significantly and hence buffer lengths either. For the
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Figure 34: To example 10, A1 and fixed hyper-parameters: Acceptance rates for different
number of blocks with buffers of length 0 (stars), 22(stars), 44(plus signs) and 66 (dia-
monds) using Peskun’s acceptance probability.

realistic smoothing, κ = 10.0, the posterior is closer to Gaussian and has more spatial
dependence. The full dimensional approximation is closer to the posterior and gives much
higher acceptance rate. Because of the spatial dependence blocking without buffers causes
low acceptance and increasing buffer lengths increases the acceptance rate. The overlapping
approximated blocks proposal with buffer length 1.5 times the bandwidth has acceptance
rate at the same level as the full dimensional approximation proposal. With κ = 25.0 we get
a posterior that is close to Gaussian and with high spatial dependence. The acceptance
rate for the full dimensional approximation proposal increases and decreases faster for
more blocks of the overlapping approximated blocks proposals. Longer buffers are needed
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to “hide” the block borders and buffer length 66 is not enough to get acceptance as for the
full dimensional approximation proposal.

The samplers with opposite reverse acceptance probability all gave acceptance rates
on the same levels as the corresponding full dimensional approximation proposal samplers
and results are not further reported.

The results for fixed hyper-parameters and approximation A1 are very similar to those
in section 2.3, the only difference being that the our reference acceptance rate level is
the acceptance rate of a sampler with the corresponding full dimensional approximation
proposal rather then 1.

Changing hyper-parameters and approximation A1

The one-block Metropolis-Hastings sampler in algorithm 11 was run for 10000 iterations
with overlapping A1-approximated blocks proposals for eight blocks with overlap 0 and 44
(the bandwidth). For reference purposes also a sampler with full dimensional approxima-
tion proposal was run. See figure 35 for estimated auto-correlation for κ and for element
x410. The blocks are set up in the bandwidth reordered graph and there x410 is element
number 270, i.e. close to a block border. In figure 36 is trace plots and cumulative means
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Figure 35: To example 10, A1 and changing hyper-parameters: Estimated auto-correlation
for κ and x410 with Peskun’s (dashed line) and opposite reverse (dashed-dotted line) accep-
tance probabilities. Estimated auto-correlation for a full dimensional approximated proposal
is included in all plots (solid line).

for the different samplers for 1000 iterations after 1000 iterations burn-in. From the figures
we see that blocking with Peskun’s acceptance probability and without buffers causes slow
mixing for κ and x410. Both using the opposite reverse acceptance probability and buffers
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Figure 36: To example 10, A1 and changing hyper-parameters: Trace-plots and cumulative
means for κ. Proposals with buffer length (bl) zero and 44 and Peskun’s (r = 1) and
opposite reverse (r = −1) acceptance rate. Burn-in of 1000 iterations omitted.

make the mixing almost as fast as for the sampler with the full dimensional approximation
proposal for x. This agrees with results for the sampler in section 4.1.

Fixed hyper-parameter and approximation A2

A Metropolis-Hastings sampler with an overlapping A2-approximated blocks proposal was
tested with fixed hyper-parameters for the same hyper-parameters, number of blocks and
buffer lengths as for approximation A1. The samplers were run for 1000 iterations. Plots of
the acceptance rates as function of number of blocks for samplers using Peskun’s acceptance
probability are in figure 37. The most significant difference from the A1 samplers (see
figure 34 ) is the improved acceptance rates for κ = 1.0, i.e. little spatial dependence and
a posterior far from Gaussian. The posterior is then much influenced by the non-Gaussian
likelihood. Approximation A2 point-wise correct for non-Gaussian parts of the likelihood
term. For κ = 1.0 the acceptance rate does not decrease much when blocking and only
a short buffer is needed to reestablish the acceptance rate level of the full dimensional
approximation proposal. For the realistic smoothing parameter, κ = 10.0, the sampler
with full dimensional A2-approximation proposal has improved compared to A1. As in
the A1 case the acceptance rate decreases as the number of blocks increases and increases
with increased buffer length. With a buffer length of 66 (1.5 times the bandwidth) the
acceptance rate for samplers using overlapping approximated blocks proposals are at the
same level as for the full dimensional approximation proposal sampler. For κ = 25.0 the
posterior is almost Gaussian and the refinements of A2 do not increase the acceptance rate
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Figure 37: To example 10, A2 and fixed hyper-parameters: Acceptance rates buffers length 0
(stars), 22(stars), 44(plus signs) and 66 (diamonds) using Peskun’s acceptance probability.

much. As a function of the number of blocks and buffer lengths it also behaves as A1.

Changing hyper-parameter and approximation A2

As for A1-approximated proposals the one-block Metropolis-Hastings sampler in algorithm
11 was run with overlapping A2-approximated blocks proposals for eight blocks with over-
lap 0 and 44 (the bandwidth) and with a full dimensional approximation proposal. Due to
higher computational cost the A2 samplers were run for only 2000 iterations. See figure 38
for estimated auto-correlation for κ and for x410. In figure 39 is trace plots and cumulative
means for the different samplers for the last 1000 iterations, i.e. after 1000 iterations burn-
in. For the range of κ with high posterior density π(x|y, κ) is close enough to Gaussian to
use approximation A1 and we can not observe any improved mixing of either κ nor x410

from using approximation A1 for this dataset.

5.4 Example 11: Cervical cancer in GDR

In this example data on new incidences of cervical cancer in the former German Democratic
Republic (GDR) are analysed. The data are available on a yearly basis from 1961 until
1989 (i.e. for T = 29 years) and for each of GDR’s N = 216 administrative districts.
Further are the incidences reported with the age-group of the woman (J = 15 age-groups;
0−20, 20−24, 25−29, . . . , 80−84, 85+) and which stage the cancer was discovered in (six
stages, with stage six as the most severe). We aggregate the data into a premalignant stage
(stage 1 and 2), denoted S1, and a malignate stage (stage 3-6) denoted S2. Our interest
is the proportion of cases discovered in S1 and its variation in time, age and space. Data
from 1975 have previously been analysed in Knorr-Held et al. (2002). Pap smear screening
programs were introduced in this period and results in Knorr-Held et al. (2002) as well as
earlier results suggest large spatial variability with respect to the time of introduction and
effectiveness of the screening.
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Figure 38: To example 10, A2 and changing hyper-parameters: Estimated auto-correlation
for κ and x410 with buffers length 0 and 44 and Peskun’s (dashed line) and opposite reverse
(dashed-dotted line) acceptance probability and with a full dimensional approximation (solid
line).
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Figure 39: To example 10, A2 and changing hyper-parameters: Trace-plots and cumulative
means for κ, buffer lengths (bl) zero and 44 and Peskun’s (r = 1) and opposite reverse
(r = −1) acceptance probability.
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In this example we model the proportion of discoveries in S1 for age-space and time-
space. An age-time-space model is not yet developed and from a data-analysis point of
view the analysis in this example should be considered a pre-study.

Let pijt denote the probability that a discovered cervical cancer case in year t is in
stage S1 for a woman in district i and age-group j. We only model either age-space or
time-space and the third index is then suppressed. The number of cases discovered in S1
for a cell, yijt, is assumed binomial;

yijt ∼ bin(pijt, Nijt)

where Nijt is the total number of discovered cases for region i, age-group j and year t. The
likelihood is assumed mutually independent; π(y|p) =

∏

i

∏

j

∏

t π(yijt|pijt). We use the
logit transform, and further model the log relative success probability;

logit(pijt) = log(
pijt

1 − pijt
) = xijt

Space-time-age dependence is introduced through the prior of x. We start off considering
data for one year making a space-age model. Later we us the same model for space-time
for data aggregated over age-groups.

Space-age model

It is reasonable that there is an overall level for each age-group, βj (j = 1, 2, . . . , J),
E(xij) = βj. Further we believe there are dependence both in time- and in age-direction,
and we choose to use the time-space prior introduced in section 4.3 with some additional
white noise;

π(x|β, τS , τA, τ ) ∼ N((IA ⊗ 1N )β,Q(τS , τA) + τI)

where 1N is a vector of length N containing ones and element (i, j) of Q(τS , τA) is given
by

Qij =



















−τS, if i
s∼ j

−τA, if i
a∼ j

τSnnbs(i) + τAnnba(i), if i = j

0 else

where
s∼ denotes neighbours in space and

a∼ in age, nnbs(i) is the number of neighbours for
element i in space and nnba(i) in age. Age-group j’s neighbours are the age-group below,
i = j − 1, and above, i = j + 1. The overall level β is given an intrinsic Gaussian prior,

π(β|τβ) ∝ exp(−1

2
τβ

∑

j
a
∼k

(βk − βj)
2)

The prior is illustrated in figure 40. The joint distribution (x, β) is also a GMRF, see
Appendix A.5.
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Figure 40: To example 11: An illustration of the prior model for (x, β) (hyper-parameters
not included).

There have appeared four hyper-parameters, θ = (τS , τA, τβ, τ ). In addition β can be
viewed as hyper-parameters. In our updating scheme θ is first proposed, then x and β
jointly using an overlapping block proposal. Since β serves as a hyper-parameter for x it
is included in every block. This is similar to what was done with the baseline image a in
the fMRI example in section 4.4.

Data from 1961, 1975 and 1989 are analysed using the model suggested above. There
are very few cases in the youngest age-group and we therefore only use the 14 oldest age-
groups; J = 14. The dimension of the problem (14 · 216 + 14 = 3024) is small enough
to use a full dimensional approximation as proposal for (x, β). For 1975 and 1989 A1-
approximations were used while A2 was used for 1969 due to low acceptance rate else. All
samplers were run for 10000 iterations.

In figure 41, 42 and 43 are trace plots of the hyper-parameters for 1961, 1975 and 1989,
respectively, and in figure 44 their estimated auto-correlation functions. All parameters
seem to have converged, but for 1961 we should have had a longer simulation. For
all years we find a relatively small spatial dependence and a strong age dependence. The
spatial dependence is smaller in 1961 then in 1975 and 1989, which can be explained
with the screening programs introduced later on district level. Marginal estimated means
and standard deviation for β are plotted in figure 45. We see an improvement in cases
discovered in stage S1 between 1961 and 1989 with its largest step between 1961 and 1975.
We further observe that the standard deviation for 1975 is much larger then for the other
years. In figure 46, 47 and 48 are maps with the difference between the estimated mean
of xij and the estimated mean of the corresponding age-group level βj. A first observation
is that there is not much difference in the spatial pattern for different age-groups, but
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Figure 41: To example 11, space-age model: Trace plots for hyper-parameters for 1961 data
with full dimensional approximation proposal for (x, β).
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Figure 42: To example 11, space-age model: Trace plots for hyper-parameters for 1975 data
with full dimensional approximation proposal for (x, β).

the latent field is more homogeneous for the elder age-groups. It could be argued that a
two-dimensional model would be adequate. If we compare the different years we see that
the spatial pattern has changed. While the north-west of GDR had some of the lowest

54



0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

2.5

3

log(τβ)

0 2000 4000 6000 8000 10000
−4

−3.5

−3

−2.5

−2

−1.5

log(τ
S
)

0 2000 4000 6000 8000 10000
1

2

3

4

5

6

log(τ
A
)

0 2000 4000 6000 8000 10000
−10

−8

−6

−4

−2
log(τ)

Figure 43: To example 11, space-age model: Trace plots for hyper-parameters for 1989 data
with full dimensional approximation proposal for (x, β).
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Figure 44: To example 11, space-age model: Estimated auto-correlation for hyper-
parameters for 1961 data (dashed line), 1975 data (solid line) and 1989 data (dash-dotted
line) with full dimensional approximation proposal for (x, β)

proportions in 1961 it had some of the best ones in 1975 and 1989. This indicates that a
space-time model should be three dimensional.
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Figure 45: To example 11, space-age model: Marginally estimated means and standard
deviation of the posterior of β from every 10th sample of the one-block sampler with full
dimensional approximation proposal for (x, β).
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Figure 46: To example 11, space-age model: The difference of mean estimates, x̄ij − β̄j,
for 1961.

For 1975 we have also ran samplers with overlapping block proposals for (x, β). In
these samplers we include β in every block. The latent field can be divided either in age
direction or in space. Samplers with the two different overlapping approximated blocks
proposals were run; one age divided and one space divided. For the age divided proposal
blocks consisted of β and nine age-groups with two age-groups and β overlap. Also the
space divided proposal had two blocks. The blocks was set up from a bandwidth ordering
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Figure 47: To example 11, space-age model: The difference of mean estimates, x̄ij − β̄j,
for 1975.
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Figure 48: To example 11, space-age model: The difference of mean estimates, x̄ij − β̄j,
for 1989.

for one age-group and the overlap corresponded to a bandwidth (for GDR bw = 20, i.e. an
overlap in x of 20 × 13 elements) in addition to β. Trace plots for the age-group divided
proposal sampler are in figure 49, and for the space divided proposal sampler in figure 50.
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We know from the full dimensional approximation proposal sampler that there are much
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Figure 49: To example 11, space-age model: Trace plots for hyper-parameters for 1975 data
with age divided overlapping approximated blocks proposal.
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Figure 50: To example 11, space-age model: Trace plots for hyper-parameters for 1975 data
with space divided overlapping approximated blocks proposal.

stronger dependence in age than in space. The strong dependence in age direction causes
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problems for the age divided sampler. Comparing plots in figure 42 and 49 we observe that
the spread for τA is smaller for the overlapping block sampler: With high age dependence
an overlap of two age-groups is not enough to propose “acceptable” samples for the latent
field for large changes in τA.
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Figure 51: To example 11, space-age model: Estimated auto-correlation for the hyper-
parameters for the different proposals for 1975 data; full dimensional (solid line), age
divided overlapping blocks (dashed line) and space divided overlapping blocks (dash-dotted
line)

The low spatial dependence makes the space divided overlapping block sampler look
appealing. Though, we most not forget that βj is the expected value for x·j, and not
sampling the whole of x·j and βj together causes the same high auto-correlation problem
of expected value (here βj) as described in Rue and Follestad (2003) (and in section 1.2).
The acceptance rate for the full block sampler was 0.35, while the space divided overlapping
block sampler gave 0.45. We see from figure 51 that the estimated auto-correlation has
increased for the space divided overlapping block proposal, especially for τS.

Space-time model

We now aggregate data over age-groups and make a space-time model for the proportion
of incidences discovered in S1. We use the same model as for space-age: We assume there
is an overall level for each year, βt (t = 1, 2, . . . , T ), E(xit) = βt. Further we choose similar
prior for x as in the space-age model;

π(x|β, τS , τT , τ ) ∼ N((IT ⊗ 1N )β,Q(τS , τT ) + τI)
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where 1N is a vector of length N containing ones and element (i, j) of Q(τS, τT ) is given
by

Qij =























−τS, if i
s∼ j

−τT , if i
t∼ j

τSnnbs(i) + τT nnbt(i), if i = j

0 else

where
s∼ denotes neighbours in space and

t∼ in time, nnbs(i) is the number of neighbours
for element i in space and nnbt(i) in time. Year ts neighbours are the year before, t = t−1,
and after, t = t + 1. The overall level β is given an intrinsic Gaussian prior,

π(β|τβ) ∝ exp(−1

2
τβ

∑

j
t
∼k

(βk − βj)
2)

The illustrated in figure 40 is also valid for this prior. The latent field (x, β) now has
dimension 6293 together with a quite dense dependency structure this makes a full dimen-
sional approximation proposal for (x, β) computationally too expensive. We have run an
one-block Metropolis-Hastings sampler with an overlapping A1-approximated blocks pro-
posal for this problem. We used time-divided blocks each of length 15 years and with ten
years and β as overlap. The sampler was run for 10000 iterations, see trace plots for the
hyper-parameters in figure 52 and their estimated auto-correlation in figure 53. The sam-
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Figure 52: To example 11, space-time mode: Trace plots for the hyper-parameters.

pler seems to have converged. Though, both from the trace plots and from the estimated
auto-correlation we see that the mixing is not very rapid and the samplers should have
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Figure 53: Example 11, space-time model: Estimated auto-correlation for the hyper-
parameters

been run for more iterations. Comparing the hyper-parameters we find, not surprisingly,
that the spatial dependence in the space-time model is at the same level as in the space-
age model with data from 1975 and 1989. In figure 54 is estimated mean and standard
deviation of the posterior of β. As indicated from the results from 1961, 1975 and 1989
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Figure 54: Example 11, space-time model:Mean and and standard deviation for β estimated
from every 10th sample.

the proportion of cases discovered in stage S1 has increased especially in the first 15 years.
In figure 55 is maps with the differences of the sample mean of xit and mean of βt. We see
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Figure 55: Example 11, space-time model: The difference of mean estimates; x̄ij − β̄j.

that the spatial structure changes over the years, and then in particular for the north-west
of GDR from 1961 to the mid-seventies.
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6 Discussion

We have in this report presented a method for constructing proposals for the latent field in
spatial latent Gaussian Markov random field models. The key idea of the method is to do
conditional sampling from small blocks of the field and to let these blocks overlap. We refer
to this class of proposals as overlapping block proposals including both when each block is
exact sampled and when an approximation is used. Overlapping block proposals have the
appealing properties that they are relatively cheap to sample from and to evaluate, they
are in most cases a good approximation to the ideal distribution π(x|θ, y) and they produce
samples relatively independent of the previous one. These are all necessary properties when
we combine a proposal for the hyper-parameters with an overlapping block proposal to the
proposal of an one-block updating scheme Metropolis-Hastings algorithm.

Through examples overlapping block proposals have proved to work well for many
problems both when each block is exact sampled and when an approximation is used. But
the method has its limitations: As the dependence within the field gets stronger more
overlap is needed. Further to evaluate the overlapping blocks proposal the blocks have
to be set up such that temporary samples are never conditioned on. We have achieved
this by setting up the blocks as a time series. This restricts how small blocks we can use.
We have also seen that that including variables in the blocking with hyper-parameters
function can cause problems and should be done with care. We can the easily fall back to
the situation we want to avoid using an one-block updating scheme; slow mixing because
of strong interaction between variables proposed conditioned on each other.

We have presented and named the method after how the sampling is performed. It
could also been viewed as block wise partial conditional sampling. This is theoretically an
other approach as we then never condition on temporary samples. But in practice this is
not done anyway because we are then not able to evaluate the proposal. This approach
does not have the limitation when it come to block sizes as the time series approach. A
natural extension of the work done here would be to explore the opportunities of partial
conditional samplers as proposals.

We believe we have introduced a powerful method for constructing proposals for the
latent field when evaluating spatial latent GMRF models using one-block updating scheme
Metropolis-Hasting algorithms. Overlapping block proposals can also be used for similar
time and space-time models. The method enable us to use our knowledge about the de-
pendence structure of the problem: The blocks are set up such that variable we believe are
highly dependent are either sampled together or integrated out. And we achieve appro-
priate proposals for the latent field without working with the full dimensional distribution
directly.
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A Appendix

A.1 Proof of the overlapping Gibbs sampler

We will here prove that the overlapping block Gibbs sampler suggested in section 2.2 has
π(x) as its stationary distribution. We do this for a special case, but the extension is trivial
and intuitive.

We consider a field of variables blocked as shown in figure 7. We let π(x) be our target
distribution, and π(xBi

|xB−i
) be the conditional distribution for block Bi given the rest of

the field.
The transition kernel is

K(x, x
′

) =

∫

[π(x
′

1, x
B1
2 , xB1

4 , xB1
5 |x3, x6, x7, x8, x9)

π(x
′

2, x
′

3, x
B2
5 , xB2

6 |x′

1, x
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4 , x7, x8, x9)

π(x
′
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′

7, x
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′

2, x
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π(x
′

5, x
′

6, x
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′

9|x
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1, x
′

2, x
′

3, x
′

4, x
′

7)]dxB1
2 dxB1

4 dxB1
5 dxB2

5 dxB3
5 dxB2

6 dxB3
8

where x is the old sample, x
′

the new one and the extra samples for the buffers are indexed
with their block numbers. From Markov chain theory it is known (see e.g. Robert and
Casella (1999)) that π(x) is the stationary distribution of an ergodic Markov chain with
kernel K(x, x′) if

π(A) =

∫

A

K(x,A)π(dx)

for any A ∈ B(χ). Here χ is the chains support, and B(χ) any Borel set on χ. For
convenience we denote all the buffer sample xB. Let π(x) be continuous, and hence the
integration order can be changed.
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P (X
′ ∈ A) =

∫

IA(x
′

) K(x, x
′

)π(x)dx
′

dx
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∫
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If we imaging each block as a leaf, in each step of the proof we integrate out those
variables just covered by the leaf. This can of course be extended to more blocks, and
other configurations. The only requirement is that each element is updated all least once.
A special case is the traditional block Gibbs sampler.

A.2 The normalisation constant for the prior

The precision matrix for the space-time model in section 4.3 is non-positive definite, and
the determinant is 0. We still need to know the normalisation constant as a function of κ
and τT . A fruitful approach is to define the determinant det* of a non-negative matrix as
the product of its non-zero eigenvalues.

det*(Q) =
m
∏

i=1

λi

where λi, i = 1, . . . ,m is the non-zero eigenvalues of Q. If Q is positive definite is det*(Q) =
det(Q). For definitions and proofs of linear algebra results used in this appendix, see Strang
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(1987) and Harville (1997). First we notice that QT and QS can be written as Kronecker
products. Let RT be the precision matrix (with τT = 1) for one region, and RS the precision
matrix for one time-step (with κ = 1):

QT = RT ⊗ IN

QS = IT ⊗ RS

where IN and IT are identity matrices of dimension N × N and T × T . The spectral
theorem gives that that symmetric real matrices can be decomposed as:

QS = VSΛSVS

QT = VT ΛTVT

with orthonormal eigenvectors of Q
�
in V

�
and eigenvalues in Λ

�
. Two diagonalisable ma-

trixes A and B share eigenvector matrix V if and only if AB = BA, and

QSQT = (IT ⊗ RS)(RT ⊗ IN )

= (IT RT ) ⊗ (RSIN )

= RT ⊗ RS

QTQS = (RT ⊗ IN )(IT ⊗ RS)

= (RT IT ) ⊗ (INRS)

= RT ⊗ RS

hence QT and QS share eigenvector matrix V , and

QS + QT = V ΛSV T + V ΛTV T = V (ΛS + ΛT )V T

The eigenvalues and -vectors of the factors in a Kronecker product gives eigenvalues
and -vectors of the product: If A has eigenvalues (λA1, λA2, . . . , λAN ) and eigenvectors
(eA1, eA2, . . . , eAN ) and B has eigenvalues (λB1, λB2, . . . , λBT ) and eigenvectors (eB1, eB2, . . . , eBT )
A ⊗ B has eigenvalues and vectors given by λAiλBj and eAieBj ∀i ∈ {1, 2, . . . , N} and
j ∈ {1, 2, . . . , T}. Since the identity matrix has eigenvalues 1 and eigenvectors equal the
standard basis we see that;

diag(ΛT ) = (λT1, λT1, . . . , λT1, λT2, . . . , λT2, . . . , λTT , . . . , λTT )

diag(ΛS) = (λS1, λS2, . . . , λSN , λS1, . . . , λSN , . . . , λS1, . . . , λSN )

Further we see that

det(QS + QT ) = det(ΛS + ΛT ) =

N
∏

i=1

T
∏

j=1

(λSi + λTj)
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or for our determinant det*:

det*(QS + QT ) = det(ΛS + ΛT ) =

N
∏

i=1

T
∏

j=1

f (λSi + λTj)

where f (x) = x for x > 0 and f (x) = 1 for x = 0. We observe that

det*(κQS + τTQT ) =

N
∏

i=1

T
∏

j=1

f (κλSi + τTλTj)

and hence can be calculated from the eigenvalues of RT and RS .

A.3 Functional magnetic resonance images

In figure 56 are the first 20 images of the fMRI experiment.

A.4 Calculating π(a, b|τData, τA, τB, τT )

The distribution is given by the likelihood π(y|x, τData) and the priors of a and b:

π(a, b|τData, τA, τB, τT ) ∝ π(y|a, b, τData)π(a|τA)π(b|τB , τT ))

The likelihood term is multivariate Gaussian, and can be written as:

y|a, b, τData ∼ N(1T ⊗ a + (diag(z) ⊗ IN )b, τDataINT )

where 1 is a column vector of size T containing ones, and Im is an identity matrix of size m.
The priors are intrinsic Gaussian as given in section 4.4. Hence is π(a, b|τData, τA, τB, τT )
multivariate Gaussian, and can be written as.

π(a, b|τData, τA, τB, τT ) ∝ exp(
1

2
[a, b]Q[a, b]T + cT [a, b]T )

with

Q =

[

TτDataIN + Qa τData(z
T ⊗ IN )

τData(IN ⊗ z) τData(diag(z2) ⊗ IN ) + Qb

]

where diag(z2) is a diagonal matrix with elements z2
i . And

cT =

[ T
∑

t=1

y1t,

T
∑

t=1

y2t, . . . ,

T
∑

t=1

yNt, y11z1, y21z1, . . . , yN1z1, y12z2, . . . yNTzT

]
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t=1 t=2 t=3 t=4

t=5 t=6 t=7 t=8

t=9 t=10 t=11 t=12

t=13 t=14 t=15 t=16

t=17 t=18 t=19 t=20

Figure 56: To example 9: The first 20 images of the fMRI experiment.

A.5 Calculating π(x, β|τS , τA, τβ, τ )

The distribution is given by the priors of a and b:

π(x, β|τS , τA, τβ, τ ) ∝ π(x|β, τS , τA, τ )π(β|τβ)

The precision matrix of x|β can be written as

Qx = τA(RA ⊗ IN ) + τS(IJ ⊗ RS) + τIN ·J

where RA is the precision matrix for the one region over all age-groups and RS is for one
age-group over all regions with τA = 1 and τS = 1. In the same way we set Qβ = τβRβ.
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We now get

π(x, β|τS , τA, τβ, τ )

∝ exp(−1

2
[x − (IT ⊗ 1N )β]T (τA(RA ⊗ IN ) + τS(IJ ⊗ RS) + τIN ·J)[x − (IT ⊗ 1N )β])

exp(−1

2
τββT Rββ)

= exp(−1

2
(x, β)T Q(x, β))

with

Q =

[

τA(RA ⊗ IN ) + τS(IJ ⊗ RS) + τIN ·J τT (RA ⊗ 1T
N ) + τ (IJ ⊗ 1T

N )
τT (RA ⊗ 1N ) + τ (IJ ⊗ 1N) τβRβ + N(τARA + τIJ)

]

.
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