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Abstract

Experimental inversion is defined as traditional inversion problem with additional com-
plication that the forward model is not directly accessible. It can only be determined
including an error term. The usual methods such as Markov chain Monte Carlo (MCMC)
sampling and maximum aposteriori (MAP) estimation are not directly available to this ex-
tended inverse problem, hence a new experimental Bayesian inversion algorithm is defined.
This algorithm is evaluated in a simulation study. It compares favorably with traditional
stochastic approximation algorithms in a special case of experimental inversion for which
this class of algorithms is applicable. In linear experimental Bayesian inversion problems,
the algorithm provides consistent estimates of conditional expectation and conditional
variance. The convergence rate appears as faster than the rate for traditional approaches
where focus is on estimating the forward model first and thereafter to perform the inver-
sion.
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1 Introduction

Inverse problems appear in many applications, for example image analysis, seismic inversion,
signal processing and reservoir characterization. The inverse problems are frequently over
or underdetermined and there may be lack of stability in the solution. These characteristics
make the inverse problem ill-posed, see Hansen (1998). By casting the inverse problem in
a Bayesian setting, a solution may be found in spite of the ill-posedness, see Kolbjørnsen
(2002).

The Bayesian formulation includes a likelihood model and a prior model, and the ultimate
solution is the posterior model which is uniquely defined by the likelihood and the prior.
Let the variable of interest be denoted by x, and assume that a related variable yo has been
observed. The objective of an inverse problem is to characterize x given yo, termed [x | yo].
The likelihood model links the datum yo to the variable of interest, yo = g(x)+uo, where g(x)
is a known forward function which can be computed for arbitrary values of x, and uo is an error
term which is given a probabilistic interpretation. The likelihood model is termed f(yo | x)
and it has the functional form of a probability density function (pdf) but it is a function of
the conditioning value x while yo is a constant. The prior model is represented by a prior
pdf on x, i.e. f(x), which often is subjectively assessed. The posterior model is the ultimate
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aim of Bayesian inversion and it is represented by the pdf f(x | yo) = const × f(yo | x)f(x),
where const is a normalizing constant.

Only in very few cases can the posterior pdf f(x | yo) be analytically determined. The linear-
Gaussian case with g(x) linear in x, and uo and x Gaussian random variables is known to
be analytically tractable. Normally, the posterior pdf f(x | yo) will be explored by sampling,
often by Markov chain Monte Carlo sampling (MCMC), see Robert and Cassela (1999). Best
estimates and estimation variances for [x | yo] can then be obtained from the estimate of f(x |
yo). The sampling approach will usually require the forward function g(x) to be computed a
very high number of times. In complex inverse problems where x is a spatio-temporal variable
for example, even one assessment of g(x) for arbitrary x may require considerable computer
resources. Hence sometimes MCMC-sampling is prohibited. In these cases, [x | yo] can be

estimated by ˆ[x |yo] = argmaxx{f(x | yo)}, the maximum aposteriori (MAP) estimate, and
the estimation variance can be assessed by linearization of g(x) around this estimate and use
of Gaussian theory. The MAP-solution can be phrased as an optimization problem, where
standard optimization techniques on g(x) can be applied, see Hansen (1998).

The current study is concerned with problems where MCMC-sampling is prohibited from a
processing point of view. Hence one must rely on MAP-estimates of [x | yo] and assess the
estimation variance by linearization of g(x) around this estimate. An additional complications
in the current study is that the forward function g(x) can not be computed exactly for an
arbitrary x. One can only obtain y∗ = g(x) + u∗, where u∗ is an error term. This relation is
termed an experimental model, and the problem is termed experimental Bayesian inversion.
It is obvious that this error term will cause problems in the optimization since repeated runs
with the same x as input provide different outputs of y∗.

To the knowledge of the authors, this type of Bayesian inversion problems has not previously
been discussed in literature. Further, we feel that this type of inverse problem does exist in
practice. One example occurs in a laboratory setting where g(x) only can be assessed through
a physical experiment associated with measurement error u∗. Another example appears when
g∗(x∗) is a complex computer code requiring a very high-dimensional input x∗, where x∗

can be decomposed into x∗ = (x, xr). Let the variable of interest be x, and [x | yo] will be
estimated by randomizing over xr. These examples are further discussed in Section 4.

The problem has some similarity with stochastic approximation as defined in Robbins and
Monro (1951) and Frees and Ruppert (1990). In the stochastic approximation setting, there
exist one unique solution x to the equation yo = g(x), and this solution is obtained by
sequential sampling of the experimental model. The objective is to determine the unique
solution x and asymptotic convergence rate is the criterion. A further discussion on the
similarities of experimental Bayesian inversion and the stochastic approximation is included
in Section 4.

The rest of the report is organized as follows. In Section 2, the experimental inversion problem
is defined. In Section 3, algorithm for the experimental Bayesian inversion is presented.
Special cases are discussed and their corresponding algorithms are presented in Section 4.
Empirical studies based on three algorithms are considered and their results are discussed
in Section 5. An empirical study of the experimental Bayesian inversion algorithm is also
presented and discussed in Section 5. Conclusions are forwarded in Section 6. References are
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listed in Section 7. Figures are displayed in the Appendix.

2 Problem Definition - Experimental Inversion

The variable x ∈ Rm is the variable of interest, and one observation is made as:

yo = g(x) + uo; yo ∈ R1 (1)

where g(.) = Rm → R1 is an unknown function and uo is an error term including modelling
and observation error. Assume further that for a given value of x, one can perform an
experiment to obtain:

y∗ = g(x) + u∗; y∗ ∈ R1 (2)

where g(x) is as above and u∗ is an experimental error.

The focus of the study is to estimate the value of x given the observed yo, termed [x | yo],
and to quantify the associated estimation uncertainty. More specifically, the objective is to
estimate [x | yo] within a pre-specified precision by minimizing the number of runs of the
experiment.

This appears as an ill-posed inverse problem with the additional complexity that the for-
ward model can not be exactly reproduced. The problem is termed the experimental inverse
problem. It will be cast in a Bayesian setting and the approach will be termed experimental
Bayesian inversion.
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The stochastic formulation of the problem is as follows:

• Likelihood model

The observed value yo is generated through:

[Y o | x] = g(x) + U o
 f(yo | x) → N

1
(g(x), σ2

o) (3)

with Nm(µ,Σ) being an m-variate Gaussian pdf with expectation µ and covariance
Σ of proper dimensions. The observation likelihood model will then be f(yo | x)
as a function of x. Recall however that g(.) is unknown, but σ2

o is considered known.

• Prior model

The variable of interest x ∈ Rm is assigned a prior model as follows:

X  f(x) → Nm(µ
X

,Σ
X

) (4)

with parameters (µ
X

,Σ
X

) considered to be known.

• Experimental model

The experimental model is defined as follows:

[Y ∗ | x] = g(x) + U ∗
 f(y∗ | x) → N

1
(g(x), σ2

∗) (5)

with g(.) unknown as above and σ2
∗ considered known. Moreover, it is assumed

that the experiment is expensive to perform.

This formulation is different from standard Bayesian inversion since there is a random com-
ponent in the experimental model. In Bayesian inversion, one would assume that g(x) is
directly obtainable without error for an arbitrary x. The objective in any Bayesian analysis
will be to assess the posterior model, and in the Bayesian inversion setting this is f(x | yo).
Sampling based inference of the entire posterior pdf is considered to be prohibited since it
will require a large number of experiments. In this study, estimating some central location
measures of the posterior pdf will be in focus. Moreover, the estimation variance will be as-
sessed through linearization around this estimate. The objective is to determine this estimate
within a pre-specified precision through a minimum number of experiments.

The problem above is not frequently discussed in literature, but as mentioned in the intro-
duction, two familiar examples exist. These examples will be briefly discussed below.

4



Laboratory inversion

Let yo ∈ R1 be a measurement of some phenomenon in the field. The phenomenon is thought
of as primarily a simple physical process represented by the unknown g(x) characterized by
some parameters. There will, of course, be other less important processes involved and pos-
sibly an observation error. These effects are modelled by the error term U o. The relatively
simple physical process can, however, be reproduced in a laboratory where it is controlled by
the parameters x. The laboratory experiments are associated with measurement errors U ∗.
The objective is to assess the parameter value x which gave rise to the field measurement yo

by running the laboratory experiment as few times as possible.

Complex mathematical model inversion

Let yo ∈ R1 be a measurement of some phenomenon in the field. Assume that the phenomenon
can be mathematically modelled by a very complex model g∗(x∗) that requires a high number
of parameters representd by x∗. It is useful to think about this mathematical model as
a computer code requiring x∗ as input. The field measurements are associated with error
represented by U o. Assume further that a subset of the parameters x ⊂ x∗ has major
influence on g∗(x∗) where x∗ = (x, xr). The objective is to estimate the parameter subset x
which gave rise to the measurement yo, since estimating the full vector x∗ is considered to be
too difficult.

The inversion defined above can be seen as a slight generalization of the experimental Bayesian
inversion model defined earlier, with x∗ = (x, xr) ∈ Rm ×Rn:

• Likelihood model

[Y o | x] = g(x) + U o
 N

1
(g(x), σ2

o)

• Prior model

X∗  Nm+n(µX∗
,ΣX∗

)

• Experimental model

[Xr | x] Nn(µXr |x,ΣXr|x)

[Y ∗ | x] = g∗(x,Xr)

The unknown function g(.) will then have the interpretation:

g(x) =

∫

g∗(x, xr)f(xr | x)dxr = EXr|x{g∗(x,Xr)}

5



which entails that the less important parameters xr are randomized over.

The objective is to assess the value of the crucial parameters x which gave rise to the field
measurement yo by minimizing the number of calculations of the complex mathematical
model.

3 Experimental Bayesian Inversion Algorithm

The experimental Bayesian inversion algorithm is aiming at estimating [X | yo] within a pre-
defined tolerance on the estimation variance by running a minimum number of experiments.
The construction of the algorithm is inspired by the following results from linear regression.

Define:

[Y
L | x] = ẋ

T

θ + U
L

 N
1
(ẋ

T

θ, σ2
L
)

where x ∈ Rm, ẋ = (1, x)
T

and θ ∈ Rm+1 is considered unknown. Consider n experiments
with experimental design (x1, . . . , xn) with n > m + 1:

[Y
L

1 | x1], . . . , [Y
L

n | xn] iid N
1
(ẋ

T

θ, σ2
L
)

Then from linear regression theory, Mardia et al (1979), the following results are obtained:

θ̂ = (D
T

D)−1D
T

Y
L

θ̂  N
m+1

(θ, (D
T

D)−1σ2
L
)

[Ŷ
L | xo] = θ̂xo

[Y
L | xo] − [Ŷ

L | xo] N1

(

0, [1 + ẋoT (D
T

D)−1ẋo]σ2
L

)

where D = (ẋ1, . . . , ẋn)
T

and Y
L

=
(

Y
L

1 , . . . , Y
L

n

)T

and ẋo = (1, xo)
T

. Note that [Ŷ
L | xo] is

the prediction of Y
L

at xo.

Take a closer look at the one-dimensional case, i.e. m = 1, with θ = (θ0, θ1) and n ≥ 2,

θ̂  N
2

(

θ,
σ2

L
Pn

i=1
(xi−x̄)2

[
∑

x2
i −∑

xi

−∑

xi n

])

[Y
L | xo] − [Ŷ L | xo] N1

(

0, ( 1
n + 1 + (x̄−xo)2

Pn
i=1

(xi−x̄)2 )σ2
L

)

with x̄ = 1
n

∑n
i=1 xi.
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If estimating the model parameters θ is the objective, minimizing the estimation variance is
reasonable. This leads to maximizing

∑n
i=1(xi − x̄)2 and hence use a spread experimental

design. This is the underlying idea of experimental design theory, see Pukelsheim (1993) and

Mayers and Montgomery (2002). If, on the other hand, the objective is to predict Y
L

at xo,
minimizing the prediction variance at xo is reasonable. This leads to setting x̄−xo = 0 which
entails centering the experimental design around xo. This minimizes the prediction variance
regardless of the spread of the design. One can, of course, meet both objectives by defining a
spread design centred at xo without increasing the prediction variance. But, if one has some
doubt about the assumption of linearity in E[Y | x] one may use a narrow design centred at
xo without increasing the prediction variance. This observation is used in the construction of
the experimental Bayesian inversion algorithm.

The algorithm draws heavily on results from linear Bayesian inversion, hence some basic
results are summarized here. The objective is to estimate x ∈ Rm based on the observed
value yo ∈ R1. Assume the following model:

• Likelihood model
[Y o | x] N

1
(ẋ

T

θ, σ2
o) (6)

with ẋ = (1, x)
T

and θ ∈ Rm+1 being known.

• Prior model

X  Nm(µ
X

,Σ
X

) (7)

with µ
X

and Σ
X

being known expectation and covariance matrix of proper dimen-
sions.

• Posterior model

[X | yo] Nm(µX|yo ,ΣX|yo) (8)

with

µX|yo = E{X | yo; θ} = µ
X

+ Σ
X

θ
[

θ
T

Σ
X

θ + σ2
o

]−1 (

yo − µ
T

X
θ
)

(9)

ΣX|yo = V ar{X | yo; θ} = Σ
X
− Σ

X
θ
[

θ
T

Σ
X

θ + σ2
o

]−1
θ

T

Σ
X

(10)

The experimental Bayesian inversion algorithm is a sequential algorithm with the following
major steps:

Initiate

- define stop criterion on relative estimation variance
- define initial estimate of [x | yo] termed x̂o
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Iterate i=0, 1, 2, . . .

- compute new design point xi+1 such that x̄i+1 = 1
i+1

∑i+1
j=1 xj is approximately

centred at x̂i

- perform experiment at xi+1 to obtain y∗i+1

- compute updated estimate, x̂i+1

- compute relative estimation variance by bootstrap sampling
- go to STOP if the relative estimation variance is below the stop criterion
- return to iterate

STOP

- Estimate of [x | yo] is x̂i+1

- Estimation variance is bootstrap estimate of variance

According to the linear regression theory discussed above, one should define the new design
point such that:

x̄i+1 = 1
i+1

∑i+1
j=1 xj = x̂i

implying that

xi+1 = (i + 1)x̂i − ix̄i

since x̂i is the currently best estimate on [x | yo]. Note that xi+1 appear as a weighted average
of x̂i and x̄i.

A more general updating procedure, including the one defined above, is used in the algorithm
however:

x̄i+1 = aix̂i + (1 − ai)x̄i

implying that

xi+1 = ai(i + 1)x̂i + [1 − ai(i + 1)]x̄i

where {ai} is a sequence of weights. Note that by setting {ai = 1}, one obtains the above
updating procedure. This choice will later be shown to be unfortunate, however. A reasonable
updating procedure is obtained by setting {ai = i−α} with 0.5 < α ≤ 1.0.

The experimental Bayesian inversion algorithm is defined to be:

Algorithm - experimental Bayesian inversion
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Initiate

∂ - tolerance in the relative prediction variance
{ai} - sequence of weights

A

[x1, . . . , xm+1] - initial experimental design B

x̄m+1 = 1
m+1

∑m+1
j=1 xj

[y∗j | xj ]; j = 1, . . . ,m + 1 f(y∗ | x)

V ∗
m+1 =

(

y∗1 , . . . , y
∗
m+1

)T

Dm+1 =
(

( 1
x1

)

, . . . ,
( 1
xm+1

)

)T

θ̂m+1 =
(

D
T

m+1Dm+1

)−1
D

T

m+1V
∗
m+1

x̂m+1 = E{X | yo; θ̂m+1}

ΣX̂
m+1 = V ar{X | yo; θ̂m+1}

C

Iterate i = m + 1,m + 2, . . .

xs
 N

m+1

(

0,ΣX̂
i

)

xi+1 = ai(i + 1)x̂i + [1 − ai(i + 1)]x̄i + xs
D

[y∗i+1 | xi+1] f(y∗ | x)

Update x̄i+1, V
∗
i+1, Di+1

θ̂i+1 = (D
T

i+1Di+1)
−1D

T

i+1V
∗
i+1

x̂i+1 = E{X | yo; θ̂i+1}

ΣX̂
i+1 = V ar{X | yo; θ̂i+1}

E

Σθ
i+1 = (D

T

i+1Di+1)
−1σ2

∗

θb
l ; l = 1, . . . , B  N

m+1

(

θ̂i+1,Σ
θ
i+1

)

x̂b
l = E{X | yo; θb

l }; l = 1, . . . , B

ΣXb
l = V ar{X | yo; θb

l }; l = 1, . . . , B

Σ̂
X

i+1 = 1
B

∑B
l=1

(

x̂b
l − x̂i+1

) (

x̂b
l − x̂i+1

)T

+ 1
B

∑B
l=1

(

ΣXb
l

)

F
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if
[

trace{Σ̂X

i+1}/trace{ΣX̂
i+1}

]

< ∂ goto STOP G

STOP

x̂i+1 - experimental Bayesian inversion estimate of [X | yo]

Σ̂
X

i+1 - experimental Bayesian inversion estimate of V ar{X | yo}
H

This algorithm can be understood as follows:

Block A - Specify a stop criterion for the algorithm. This criterion relates to the bootstrap
estimate of V ar{X | yo} taking the uncertainty in g(.) into account relative to an estimate of
V ar{X | yo} for the true g(.). Specify the weighting sequence {ai} in the selection of design
points.

Block B - Specify an initial design of dimension m+1 such that a first linear approximation to
g(.) can be obtained. This design should be based on classical Bayesian experimental design.

Block C - Perform the initial experiments, estimate a first global linear approximation to g(.)
and obtain the initial estimate of [X | yo] with associated estimation variance.

Block D - In iteration i + 1, determine the new design point xi+1 such that the average of
the design points is a weighted average of the current estimate of [X | yo] and the average
previous design points. An additional centred random term due to the uncertainty in the
prior and likelihood models is added. This step focuses the experiments in the area around
the solution and robustifies the design against deviations from linearity in g(.).

Block E - In iteration i + 1, perform the (i + 1)th experiment, estimate a new linear approx-
imation to g(.) and obtain a new estimate of [X | yo] with associated estimation variance.
Note that the design points are focused such that the linear approximation will be more
representative of g(.) around the estimate of [X | yo].

Block F - In iteration i + 1, provide a bootstrap estimate of V ar{X | yo} taking also the
uncertainty in the approximation to g(.) into account. The following relation is used:

V ar{X | yo} = V arΘ{EX
{X | yo,Θ}} + EΘ{V ar

X
{X | yo,Θ}}

Block G - In iteration i+1, terminate iteration when the uncertainty in the approximation of
g(.) do not contribute significantly to the estimation of the estimation variance V ar{X | yo}.
Note that the best one can obtain is V ar{X | yo} given the true g(.).

Block H - Stop, use the current values of x̂i+1 and Σ̂
X

i+1 as the experimental Bayesian inversion
estimate of [X | yo] and V ar{X | yo}, respectively.
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4 Special Cases

The experimental Bayesian inversion problem has a couple of familiar special cases. These
cases are discussed in this section in some detail.

4.1 Traditional Bayesian inversion

Consider the following special case of experimental Bayesian inversion:

• Likelihood model

[Y o | x] = g(x) + U o
 f(yo | x) → N

1
(g(x), σ2

o )

• Prior model

X  f(x) → Nm(µ
X

,Σ
X

)

• Experimental model

[Y ∗ | x] = g(x) δ1(y
∗, g(x))

where δ1(y
∗, g(x)) is the Dirac delta pdf.

Hence this is the experimental Bayesian inversion model with σ2
∗ = 0, which entails that g(x)

can be directly obtained without error for arbitrary x. This corresponds to the traditional
Bayesian inversion model, see Kolbjørnsen (2002).

The ultimate objective of Bayesian inversion is to determine the posterior pdf:

f(x | yo) = const × f(yo | x)f(x)

If g(x) is linear in x, this posterior can be determined analytically from standard Gaussian
theory. When g(x) is non-linear in x, the posterior may be explored by sampling, for example
MCMC sampling. In the current case, g(x) is expensive to obtain for an arbitrary x and
sampling based inference will be prohibited since it requires a high number of experiments.
The usual approach in this situation is to represent [X | yo] by the MAP-estimate:

ˆ[X |yo] = argmaxx{f(x | yo)}

which can be determined from an optimization problem. The associated estimation variance
is estimated by linearizing g(x) around ˆ[X |yo] and using standard Gaussian theory.

If the posterior pdf f(x | yo) is multimodal, the optimization problem is hard. Few, if any,
algorithms can in practice guarantee global optimization. Simulated annealing claims global
optimization properties in theory, but it would require an enormous number of experiments
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in practice. The multimodal challenge can be met by assuming that a good initial guess lying
in the drainage area of the global optimum can be obtained. In practice, this entails that any
optimization algorithm suitable for unimodal posterior pdf f(x | yo) can be applied.

If the posterior pdf f(x | yo) is unimodal, the optimization problem is tractable and numer-
ous algorithms are available. Algorithms that uses gradient information about g(x) in the
search for the optimum has proven to be efficient with respect to the number of experiments
required. These gradients are, if possible, analytically determined or they are estimated from
experiments made in the vicinity of the current estimate of x.

Consider the experimental Bayesian inverse problem as defined above. Recall that the ex-
perimental model includes an experimental error term, which entails that there will be an
uncertainty associated with every experiment. This will not only make it difficult to identify
the optimum whenever it is reached, it will also make estimates of gradients highly unreli-
able. Hence using standard optimization algorithms in the experimental Bayesian inversion
setting is not recommendable. Note further that the gradient estimates are used to assess the
estimation variance.

4.2 Stochastic approximation

Consider the following, slightly adapted, special case of experimental Bayesian inversion for
m = 1, i.e. x ∈ R1:

• Likelihood model

[Y o | x] = g(x) δ1(y
o, g(x))

• Prior model

X  f(x) → Uni
1
[xl, xh]

where Uni
1
[xl, xh] is the uniform pdf within [xl, xh].

• Experimental model

[Y ∗ | x] = g(x) + U ∗
 f(y∗ | x) → N

1
(g(x), σ2

∗)

Hence this is the experimental Bayesian inversion model in one dimension with σ2
o = 0, which

entails that the observation is made without error. Moreover, x is assigned a uniform pdf in
the interval [xl, xh], in stead of being Gaussian, which entails that x is known to be within
this interval and that no value of x is more preferred than others a priori. This corresponds
to the so called stochastic approximation model in one dimension, see Frees and Ruppert
(1990) and Ghosh et al (1997). A multivariate version with yo, x ∈ Rm is also defined, see
Wei (1985), but the constraint that yo and x have to be of same dimension makes it less
interesting in practice.
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The objective of stochastic approximation is to estimate xo = g−1(yo), which has a unique
solution only when g(x) is monotone in [xl, xh], i.e. ∂

∂xg(x) > 0; ∀x ∈ (xl, xh) or ∂
∂xg(x) < 0;

∀x ∈ (xl, xh). Note, however, that g(x) may be non-linear. The estimate should be obtained
by minimizing the number of experiments. Consistency and asymptotic estimation variance
as the number of experiments goes to infinity are normally used as criteria.

Two versions of the stochastic approximation algorithm will be presented here. The classical
algorithm defined in Robbins and Monro (1951) and a parametric version of it defined in
Frees and Ruppert (1990). The latter algorithm has several similarities with the simplified
version of the experimental Bayesian inversion algorithm.
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Algorithm - classical stochastic approximation algorithm

Initiate

x1  Uni[xl, xh]

[y∗1 | x1] f(y∗ | x)

x̂1 = x1

Iterate i = 1, 2, . . .

xi+1 = xi + ci[y
o − y∗i ]

[y∗i+1 | xi+1] f(y∗ | x)

x̂i+1 = xi+1

This defines the so called Robbins-Monro stochastic approximation algorithm, where {ci} is
a sequence of tuning constants converging to zero and {x̂i} is a sequence of estimates of xo.

Under certain relatively weak smoothness assumptions on g(x), it can be shown, see Frees
and Ruppert (1990) and Ghosh et al (1997), that if {ci = ci−β} with c > [2g′(xo)]−1 and
0 < β ≤ 1.0, the asymptotic pdf for the estimator as i → ∞ is:

iβ/2 (x̂i − xo) D−→

{

N
(

0, σ2
∗c

2/[2cg′(xo) − 1]
)

if β = 1

N
(

0, σ2
∗c/2g

′(xo)
)

else

where g′(x) = ∂
∂xg(x). Moreover, if β = 1.0 and c = [g′(xo)]−1 it is known that the asymptotic

variance is minimized, taking the value σ2
∗/ [g′(xo)]2. The problem is, of course, that g′(xo)

is unknown and has to be estimated itself. In Lai and Robbins (1979), a procedure for this is
described, and the algorithm is termed adaptive stochastic approximation. Note that there
is an inherent conflict in this algorithm since the objective is to have the estimate sequence
{x̂i}, which is identical to the sampling sequence {xi}, to approach xo as fast as possible.
This makes the sampling design for estimating the slope g ′(xo) unfavorable, however. The
crucial statistic is the sampling spread sequence {d2

i } defined by:

d2
i =

∑i
j=1 (xj − x̄i)

2 with x̄i = 1
i

∑i
j=1 xj

Note that d2
i corresponds to the denominator in the estimation variance of the slope in the

ith iteration. Hence the sequence {d2
i } should grow fast. Under the optimal case with β = 1.0

and c = [g′(xo)]−1, the growth in {d2
i } is constrained to be:

d2
i ∼ log(i)σ2

∗/ [g′(xo)]2
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The alternative stochastic approximation algorithm is termed parametric stochastic approx-
imation algorithm.

Algorithm - parametric stochastic approximation algorithm

Initiate

Set algorithm parameter β

(x1, x2) = (xl, xh)

[y∗j | xj]; j = 1, 2 f(y∗ | x)

Compute θ̂2 based on [y∗j | xj ]; j = 1, 2

x̂2 =
yo−θ̂2,0

θ̂2,1

Iterate i = 2, 3, . . .

xi+1 = xi + 1
iβ θ̂i,1

(yo − y∗i )

[y∗i+1 | xi+1] f(y∗ | x)

Compute θ̂i+1 based on [y∗j | xj ]; j = 1, 2, . . . , i + 1

x̂i+1 =
yo−θ̂i+1,0

θ̂i+1,1

where θ = (θ0, θ1)
T

are the linear regression coefficients in the approximation y ≈ θ
T

ẋ with

ẋ = (1, x)
T

, θ̂ is the corresponding least squares estimate, and 0.5 < β ≤ 1.0 is a parameter
of the algorithm. This algorithm is defined in Frees and Ruppert (1990), and it is demon-
strated that the parametric stochastic approximation algorithm provides asymptotic pdf for
the estimator:

√
i (x̂i − xo) D−→ N

(

0, σ2
∗/[g

′(xo)]2
)

for any sampling sequence {xi} converging to xo and spread sequence {d2
i } diverging, which

are ensured by 0.5 < β ≤ 1.0. Note in particular that the asymptotic pdf is independent of
β.

The parametric algorithm decouples the sampling sequence {xi} and the estimator sequence
{x̂i}. This decoupling makes it possible to have the same asymptotic estimation variance for
xo as for the optimal classical algorithms without constraints on the sampling spread sequence
{d2

i }. This will obviously be favorable for estimation of the slope g ′(xo).

Consider the experimental Bayesian inversion model as defined in Section 2. There are two
extensions beyond the stochastic approximation model defined above. Firstly, yo is of lower
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dimension than x and secondly, there is an error term in the likelihood model. The stochastic
approximation approach can not be used on the experimental Bayesian inversion problem
without fundamental revisions.

A simplified version of the experimental Bayesian inversion algorithm is very similar to the
parametric stochastic approximation algorithm, however. Asymptotic results on the latter
may provide guidelines for choosing the algorithm parameter sequence {ai} of the former.
The updating procedure in the experimental Bayesian inversion algorithm is:

xEI
i+1 = ai(i + 1)x̂i + [1 − ai(i + 1)]x̄EI

i

= x̄EI
i + ai(i + 1)

yo − ȳ∗i
θ̂i,1

where the relations x̂i =
(

yo − θ̂i,0

)

/θ̂i,1 and θ̂i,0 = ȳ∗i − θ̂i,1x̄
EI
i , with ȳ∗i = 1

i

∑i
j=1 y∗j , are

used in the development of the expression.

The corresponding updating in the parametric stochastic approximation algorithm is:

xSA
i+1 = xSA

i +
1

iβ θ̂i,1

(yo − y∗i )

= x̄SA
i +

1

iβ

i
∑

j=1

yo − y∗i
θ̂i,1

Assume that i is large enough such that θ̂i,1 ≈ θ1, ie. the slope estimate has stablized, then:

xEI
i+1 = x̄EI

i + ai(i + 1)
yo − ȳ∗i

θ1

xSA
i+1 = x̄SA

i + i1−β yo − ȳ∗i
θ1

Recall that for ensuring asymptotic unbiased Gaussianity in the parametric stochastic ap-
proximation algorithm, one must have 0.5 < β ≤ 1.0. Hence setting the algorithm parameter
in the experimental Bayesian inversion algorithm like {ai = i−α} with 0.5 < α ≤ 1.0 seems
reasonable. All values of α will make the sampling sequence {xi} converge to xo and make
the spread design {d2

i } diverge. For large value of α, the convergence will be faster and di-
vergence slower; while for small value of α, it will be the other way around. If the slope θ1 is
assumed known, α = 1.0 will provide estimates with minimum asymptotic variance, but if θ1

is unknown and must be estimated, it may be favorable with faster divergence in {d2
i } and

hence a smaller α.
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5 Empirical Study

The finite sample properties of the estimator for [X | yo] and the associated estimation vari-
ance are difficult to evaluate analytically. In this study, an evaluation through simulation is
conducted. Two simulation studies are performed: one in a stochastic approximation setting
and one in full experimental Bayesian inversion setting. In the former case, three different
types of estimators are evaluated and compared, while in the latter only the experimental
Bayesian inversion estimator is involved since this estimator is the only one applicable in this
case.

5.1 Stochastic approximation study

The study consists of two parts based on different models for g(x). In the first part g(x) is
linear and in the second it is smoothly curved. In each part, three different algorithms are
evaluated and compared.

5.1.1 Algorithms

The three algorithms to be compared are similar in many ways. All algorithms are based on
sequential sampling and the inversion relation is defined to be linear approximation to g(x).
They all start with same two initial design points that define lower and upper bounds of
the design interval. The major difference is on the sequence of samples. For all algorithms a
bootstrap estimate of the estimation variance is compared, which will define the stop criterion
in practical applications.

D - algorithm

In this algorithm the sampling sequence corresponds to the sample design which provide
D-optimality in estimating the parameters in the linear approximation to g(x), Pukelsheim
(1993). The algorithm is defined as:

Algorithm: D-algorithm

Initiate

(x1, x2) (xl, xh) in random order

[y∗j | xj]; j = 1, 2 f(y∗ | x)

Compute θ̂2

x̂2 =
yo−θ̂2,0

θ̂2,1
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Iterate i = 2, 3, . . .

xi+1 =

{

xl if xi = xh

xh if xi = xl

[y∗i+1 | xi+1] f(y∗ | x)

Compute θ̂i+1

x̂i+1 =
yo−θ̂i+1,0

θ̂i+1,1

Bootstrap: σ̂2X
i+1

In the algorithm, the sequential sampling alternates xl and xh independent of the function
g(x).

SA - algorithm

This algorithm is based on the parametric stochastic approximation algorithm defined in the
previous section, see Frees and Ruppert (1990). The sampling sequence focuses fast on the
true value of xo and the estimates are defined through a linear approximation to g(x). The
algorithm is defined as:

Algorithm: SA-algorithm

Initiate

(x1, x2) (xl, xh) in random order

[y∗j | xj]; j = 1, 2 f(y∗ | x)

Compute θ̂2

x̂2 =
yo−θ̂2,0

θ̂2,1

Iterate i = 2, 3, . . .

xp = xi +
yo−y∗i
iθ̂i,1

xi+1 =







xl if xp < xl

xp if xl ≤ xp ≤ xh

xh if xp > xl

[y∗i+1 | xi+1] f(y∗ | x)

Compute θ̂i+1
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x̂i+1 =
yo−θ̂i+1,0

θ̂i+1,1

Bootstrap: σ̂2X
i+1

Hence the sampling sequence is according to the adaptive Robbins-Monro procedure with
β = 1.0, see Lai and Robbins (1981), although forced to be in the interval [xl, xh].

EI - algorithm

This is the reduced version of the experimental Bayesian inversion algorithm suited for the
stochastic approximation study. The algorithm is defined as follows:

Algorithm: EI-algorithm

Initiate

Set algorithm parameter 0.5 < α ≤ 1.0

(x1, x2) (xl, xh) in random order

x̄(2) = 1
2(x1 + x2)

[y∗j | xj]; j = 1, 2 f(y∗ | x)

Compute θ̂2

x̂2 =
yo−θ̂2,0

θ̂2,1

Iterate i = 2, 3, . . .

xp = 1
iα (i + 1)x̂i + [1 − 1

iα (i + 1)]x̄i

xi+1=







xl if xp < xl

xp if xl ≤ xp ≤ xh

xh if xp > xl

x̄i+1 = 1
i+1{ix̄i + xi+1}

[y∗i+1 | xi+1] f(y∗ | x)

Compute θ̂i+1

x̂i+1 =
yo−θ̂i+1,0

θ̂i+1,1

Bootstrap: σ̂2X
i+1

The sequential sampling is forced to be within the interval [xl, xh]. The algorithm is evaluated
for three different values of α with 0.5 < α ≤ 1.0.
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5.1.2 Study design

There are two parts of the study design defined by the shape of g(x), one linear and one
smoothly curved. In each part, the size and geometry of the window [xl, xh] relative to the
true value xo and the variance of the experiment σ2

∗ are varied.

Part I. Linear model

This part is defined by the following model:

x, y ∈ R1

g(x) = x

xo = 10, yo = 10, σ2
o = 0

f(x) → Uni[xl, xh]

f(y∗ | x) → N (g(x), σ2
∗)

The study design in this part is:

Design no. I II III IV V VI

xl 5 -40 5 5 -40 5

xh 15 60 60 15 60 60

σ2
∗ 1.0 1.0 1.0 5.0 5.0 5.0

Note that the uniform prior model on x can be interpreted as the range of x for which the
linear model is assumed to be valid.

This linear case is, of course, very particular since the inversion in all algorithms is based on
a linear approximation to g(x). In this case the approximation is exact. The results for this
part is therefore expected to be better than those for general non-linear cases.

In the current study θ = (0, 1) since g(x) = x. All algorithms provide θ̂i for arbitrary i that
are unbiased for θ. The D-algorithm provide minimum variance estimates for θ. All estima-
tors θ̂i are consistent estimators for θ when i → ∞. The estimator for xo, x̂i, at arbitrary i
will be biased due to non-linear dependence on θ. The bias and variance of this estimator as
function of i, (x̂i − xo) and σ2X

i , is the target of this study. It is known, however, that x̂i is
a consistent estimator for xo when i → ∞ for all algorithms, since x̂i is a smooth function of
θ̂i which is consistent. Hence all algorithms are assumed to perform well asymptotically in
this case. The finite sample properties are more difficult to assess, and these properties are
the focus of the study.

Part II. Curved model
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This part is defined by the following model:

x, y ∈ R1

g(x) = x + 0.05δ(x − xo) with δ(t) =

{

0.1t2 if t ≥ 0
t2 else

xo = 10, yo = 10, σ2
o = 0

f(x) → Uni[xl, xh]

f(y∗ | x) → N (g(x), σ2
∗)

The study design in this part is:

Design no. I III IV VI

xl 5 5 5 5

xh 15 60 15 60

σ2
∗ 1.0 1.0 5.0 5.0

The shape of g(x) is displayed in Figure 1. Note that the uniform prior model on x can
be interpreted as the range of x for which one can assume that ∂

∂xg(x) > 0;∀x ∈ (xl, xh).
This property is a general requirement for applying stochastic approximation algorithms.
Under the current model for g(x), few characteristics for the estimators produced from the
algorithms are analytically available. It is know, however, that the estimators x̂i for xo in the
SA-algorithm and the EI-algorithm are consistent when i → ∞, see Frees and Ruppert (1990)
and the discussion in the previous section. The objective is to evaluate the bias (x̂i −xo) and
estimation variance σ2X

i in the finite sample case, however.

5.1.3 Empirical procedure

The simulation study is conducted as follows:

1. For a given model, study design and algorithm, 300 simulations are run resulting in:

• 300 sampling sequences {xi}. Example of one sequence is presented in the upper-
left display in Figure 2.

• 300 sampling sequences {(xi, y
∗
i )}. Example of one sequence is presented in the

upper-right display in Figure 2.

• 300 estimate sequences {x̂i}. Example of these sequences is presented in the
second-left display in Figure 2.

• 300 estimated squared error sequences {(x̂i − xo)2}. Example of these sequences
is presented in the third-left display in Figure 2.
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• 300 bootstrap estimates of estimation variance {σ̂2X
i }, based on 200 bootstrap

replications. Example of these sequences is presented in the lower-left display in
Figure 2.

2. Average of the generated sequences over these 300 simulations are calculated. Examples
of these are presented in the right-column from second and down in Figure 2.

5.1.4 Results and discussion

For a given model and study design, the results provided by the three algorithms are summa-
rized in one figure, see Figure 3 as an example. Each column in the figure corresponds to one
algorithm. The two upper displays represent one simulation of sampling sequence {xi} and
the elements in {(xi, y

∗
i )}, respectively. The third through fifth display in Figure 3 represent

average over the 300 samples of the estimates, estimated squared error and bootstrap esti-
mate of estimation variance, respectively. The lower display is a cross-plot of the bootstrap
estimate of estimation variance versus the average squared error (ie, as vertical axis versus
horizontal axis).

Results: Part I. Linear model

Figure 3 through 8 present the results for the D-algorithm, SA-algorithm and EI-algorithm
with α = 1.0. The latter is used because it is asymptotically comparable with the SA-
algorithm. Figure 9 through 11 present the results for the EI-algorithm with varying α, ie
α = 0.51, 0.75, 1.0. Figure 12 presents a summary of the figures above.

Figure 3 displays the results from Design I, which is a narrow symmetric domain with small
experimental variance. Note that the sampling sequences of the D-algorithm remain on the
border of the domain while those of the two other algorithms focus on xo = 10. The estimate
and the square error sequences for all the three algorithms appear as comparable and very
reliable. Moreover, the bootstrap estimates of estimation variance appear as unbiased for
squared error for all algorithms.

Figure 4 displays the results from Design II, which is a wide symmetric domain with small
experimental variance. The results are almost identical to the ones obtained from Design I.
Hence all algorithms perform similarly.

Figure 5 displays the results from Design III, which is a wide asymmetric domain with small
experimental variance. The sampling sequences are as expected: the D-algorithm remain on
the border of the domain while that of SA-algorithm and the EI-algorithm focus fast on xo.
The empirical squared error sequence shows that the D- and SA-algorithm are very similar.
The EI-algorithm appears significantly better than the two others. The bootstrap estimates
appear reliable for all the three algorithms.

The D-algorithm is optimal for estimating θ = (0, 1), but predicting yo at xo is a different
problem. The prediction variance is dependent on the deviation between xo and the centre of
the sampling sequence. The centre of the D-algorithm sampling sequence is far off xo. It is at
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27.5. This lack of centering around xo makes the D-algorithm inefficient in solving the inverse
problem. The SA-algorithm produces a sampling sequence that eventually focuses at xo, but
the average of the path is not well centred at xo. The sampling sequence of the EI-algorithm
focuses in at xo, and its average is also well centred at xo. This centering is expected to be
crucial such that the EI-estimates appear as superior to the others.

Figure 6 through 8 display the results from Design IV, V and VI, which correspond to Design
I, II and III except that a large experimental variance is considered. Largely, the same
conclusions can be drawn from these figures as from Figure 3 through 5. There appears to
be a lack of stability in the bootstrap estimates for the SA-algorithm and EI-algorithm when
the ratio of experimental variance over domain width is large, and this unstability is probably
caused by the poor sampling design in estimating θ.

Figure 9 through 11 display the results from evaluation of the EI-algorithm with varying value
of the algorithm parameter α. Recall that 0.5 < α ≤ 1.0 in order to ensure consistency in
the estimates for non-linear g(x), which entails that all sampling sequences focus in at xo.
Note, however, that this convergence is much slower for small values of α. For linear g(x),
this slow convergence seems to improve the estimate slightly, probably because the slope can
be more reliably estimated. Moreover, small values of α will provide sampling paths where
the bootstrap estimates of estimation variance are much more stable.

Figure 12 summarizes the results from the empirical study under the linear model. In practice
one will expect that the domain is relatively wide and the experimental variance is small.
Moreover, the solution will normally fall asymmetrically in the domain. The most realistic
design will hence be Design III. For this case, the EI-algorithm is clearly favorable to the D-
and SA-algorithm regardless of the choice of 0.5 < α ≤ 1.0. A small value of α seems to
provide slightly better estimates than a large one, however. Moreover, bootstrap estimates
of estimation variance appear as more reliable for small α.

The empirical study on Part I. Linear model can be summarized as follows. The EI-algorithm
regardless of value of 0.5 < α ≤ 1.0 seems to be uniformly dominant over the two other al-
gorithms, ie it has smaller or equal empirical squared error sequence for all cases. Small
value of α may be slightly preferable. All algorithms performed reasonably well for domains
that are symmetric around xo. If xo falls asymmetrically in the domain, the EI-algorithm is
clearly preferable. Bootstrap estimates of expected square error appear as very reliable and
may be used as stop criterion in the inversion. One exception is for narrow domain with high
experimental variance, where the bootstrap estimates seem to be unstable.

Results: Part II. Curved model

Figure 13 through 16 present the results for the D-algorithm, SA-algorithm and EI-algorithm
with α = 1.0. The latter is used because it is asymptotically comparable with the SA-
algorithm. Figure 17 presents the results for the EI-algorithm with varying α. Figure 18
presents a summary of the figures above.

Figure 13 displays the results from Design I, which is a narrow symmetric domain with small
experimental variance. The sampling sequences are similar to the ones for the linear model.
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The results are, however, very different since the skewness in the estimates of xo appears as
critical. The D-algorithm provides dramatically skewed estimates of the xo since θ is estimated
based on samples at the borders of the domain only. Note further that the skewness is not
corrected as i → ∞. The two other algorithms focus the sampling sequence to xo fairly fast,
hence the skewness is corrected fairly fast. Both the SA- and EI-algorithm provide reliable
estimates and the bootstrap estimates of estimation variance are largely representative.

Figure 14 displays the results from Design III, which is a wide asymmetric domain with small
experimental variance. Here the convergence problems are larger since the non-linearity is
more pronounced. The D-algorithm is completely unreliable. Both SA- and EI-algorithm
appear to provide estimates which converge towards xo according to theory. The convergence
of the SA-algorithm is faster than that for the EI-algorithm, but for both algorithms the
bootstrap estimates of estimation variance are downward biased.

Figure 15 and 16 correspond to Figure 13 and 14, respectively, except for the experimental
variance which is increased. The picture is largely the same, except for lack of stability in
bootstrap estimates for the narrow domains with large experimental variance.

Figure 17 displays results from the evaluation of the EI-algorithm with varying value of α on
Design III. The results are very comparable for α = 0.51, 0.75, 1.0, although α = 1.0 appear
as slightly best.

Figure 18 summarizes the results from the empirical study under the non-linear model. In
practice, the non-linearity may be pronounced and the experimental variance may relatively
be small. Moreover, the solution will normally fall asymmetrically in the domain. The most
realistic design will hence be Design III. The D-algorithm is completely useless. The SA- and
EI-algorithm, for all values of 0.5 < α ≤ 1.0, converge correctly. The SA-algorithm appears
with fastest convergence while for the EI-algorithm large α-value should be used. Moreover,
bootstrap estimates appear as severely downward biased.

5.2 Experimental Bayesian inversion study

The study consists of one model with g(x) being linear and different designs. Only the
experimental Bayesian inversion algorithm is evaluated since it is the only algorithm applicable
for this case.

5.2.1 Algorithm

The experimental Bayesian inversion algorithm is defined in Section 3. The version used here
is based on algorithm parameters {ai = i−1}, ie α = 1.0. This ensures convergence even
for non-linear g(x) in the stochastic approximation setting and is expected to do so in the
experimental Bayesian inversion. In addition, an algorithm with sampling sequence generated
independently from the prior pdf of x is evaluated. It is termed prior-sampling experimental
Bayesian inversion algorithm. This corresponds to the naive choice of sampling sequence
which focuses on estimating the parameters in g(x).
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5.2.2 Study design

The model is as follows:

x ∈ R2, y ∈ R1

g(x) = a
T

x with a =

[

1
1

]

yo = 20, σ2
o = 1.0

f(x) → N
2
(µ

X
,Σ

X
) with µ

X
=

[

µ
X1

µ
X2

]

and Σ
X

=

[

σ2
X1

0

0 σ2
X2

]

f(y∗ | x) → N
1
(g(x), 9.0)

and the study designs are:

Design no. I II III IV V

µ
X1

10 -5 5 4 4

µ
X2

10 25 5 6 6

σ2
X1

9 9 9 9 9

σ2
X2

9 9 9 9 4

5.2.3 Empirical procedure

The empirical procedure is largely the same as in Section 5.1.3, but since the dimension of x
is larger the displays in the figures are somewhat different.

5.2.4 Results and discussion

For a given study design, the results provided by the experimental Bayesian inversion al-
gorithm are summarized in one figure, see Figure 19 as an example. Top left presents the
elements in the sampling sequence {xi} in the x = (x

1
, x

2
) - plane, while top right displays

the experimental value sequence {y∗
i }. Row two and three display the results for the x

1
-

dimension. Row two contains the estimate sequence {x̂
1i
} for the 300 realizations and the

average over them. Row three contains the bootstrap estimate of estimation variance for the
300 realizations and the average over them. Row four and five illustrate the corresponding
plots for the x

2
-dimension. The last row displays the bootstrap estimate of the estimation

variance including uncertainty in g(x) divided by estimation variance given g(x), which cor-
responds to the stop criterion. This ratio will, of course, approach unity as i → ∞ since the
parameters in g(x) will be consistently estimated.

Figure 19 contains the results from Design I, which has a prior model that is correctly centred.
The samples are centred around the correct value (10, 10) although having some variability.
This is not surprising as the prior is centred at the plausible solution. The estimator sequence
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{x̂i} converges very fast to the correct value (x
1
, x

2
) = (10, 10). The bootstrap estimated

variance is close to the theoretically correct value.

Figure 20 contains the results from Design II. Again the centre of the prior (−5, 25) is a
plausible solution since it adds up to 20. The results are very similar to the ones in Figure
19, ie fast convergence to the correct solution both for estimate and estimation variance.

Figure 21 contains the results from Design III which has a prior expectation that can not
be a solution. The prior model is symmetric in (x1, x2), however, and one observes that the
estimate is somewhat below 10 for both x1 and x2. The observation error in yo provides free-
dom for this. The estimation variance is consistently determined by the bootstrap estimate,
however, although a number of samples are required to ensure convergence.

Figure 22 contains the results from Design IV which has asymmetric prior. Hence the es-
timates for x1 and x2 are different, one above and the other below 10. Again estimation
variance appear to be consistently determined by the bootstrap estimate.

Figure 23 contains the results from Design V where both expectation and variance vary in the
(x1, x2)-dimensions of the prior. The results correspond to the ones in Figure 22, although
convergence of the bootstrap estimates are somewhat slower.

Figure 24 contains the results from the prior-sampling experimental Bayesian inversion from
Design III. Recall that this is the naive approach to solving the experimental Bayesian inver-
sion problem focusing on estimating the parameter in g(x). The convergence as i → ∞ is the
same as in the comparable Figure 21. The convergence rate is considerably slower, however.
Note how the sampling sequence in the upper left display of both figures vary. In Figure 21
it is centred around the solution [x | yo] while in Figure 24 it is centred around the prior
expectation µ

X
.

The empirical study in the experimental Bayesian inversion setting can be summarized as
follows. The experimental Bayesian inversion algorithm provides consistent estimates of the
posterior expectation and posterior variance and the convergence is fast. It is much more
efficient than a naive algorithm that focuses on estimating the parameter of g(x) instead of
solving the inverse problem, see Figure 25.

6 Conclusions

Experimental inversion is defined as a traditional inversion problem with the additional com-
plication that the forward model is not directly accessible. It can only be determined including
an error term. By casting the problem in a Bayesian setting, the experimental Bayesian in-
version problem is defined. Bayesian inversion is usually solved through MCMC or MAP
approaches, but these approaches are not directly applicable to the extended inversion prob-
lem. Hence a new experimental Bayesian inversion algorithm is defined. A simplified version
of this algorithm has several similarities with stochastic approximation algorithms as defined
in literature.

An empirical simulation study is conducted in order to evaluate the finite sample properties
of the estimators which are defined by the algorithms. Focus is on solving the inverse problem
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at a pre-defined precision by a minimum number of calls of the forward model. The study
has two parts: stochastic approximation setting and experimental Bayesian inversion setting.

The stochastic approximation setting consists of a special case of the experimental Bayesian
inversion, and it includes a simplified well-posed inversion problem. Both linear and non-linear
forward models are studied. The conclusions from the study are as follows. The experimental
Bayesian inversion algorithm appears to be favorable to all stochastic approximation algo-
rithms presented in literature for linear forward models. Both the experimental Bayesian
inversion and stochastic approximation algorithms provide consistent estimates for non-linear
forward models, but the latter appears to have a slightly faster convergence rate.

It is worth noting that the experimental Bayesian inversion algorithm is constructed to solve
complex ill-posed inverse problems, and hence much more general than traditional stochastic
approximation algorithms.

The experimental inversion setting includes an underdetermined inverse problem with a linear
forward model. The conclusions from the study are as follows. The experimental Bayesian
inversion algorithm provides consistent estimates of conditional expectation and conditional
variance. The convergence rate is fast. The experimental Bayesian inversion algorithm ap-
pears to be more efficient than traditional algorithms which focus on estimating the forward
model first for thereafter to perform the inversion.
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Appendix - Figures
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Figure 1: Plot of the curved model for g(x) (solid line).
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Figure 2: Simulation results of the EI-algorithm with α = 1.0 based on the linear model
/Design III, ie with (xl, xh) = {5, 60) and σ2

∗ = 1.0.
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Figure 3: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model /Design I, ie (xl, xh) = (5, 15) and σ2

∗ = 1.0.
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Figure 4: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model /Design II, ie (xl, xh) = (−40, 60) and σ2

∗ = 1.0.
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Figure 5: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model /Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0.
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Figure 6: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model/Design IV, ie (xl, xh) = (5, 15) and σ2

∗ = 5.0.
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Figure 7: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model/Design V, ie (xl, xh) = (−40, 60) and σ2

∗ = 5.0.
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Figure 8: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the linear
model/Design VI, (xl, xh) = (5, 60) and σ2

∗ = 5.0.
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Figure 9: Simulation results of the EI-algorithm with varying α based on the linear
model/Design I, ie (xl, xh) = (5, 15) and σ2

∗ = 1.0.
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Figure 10: Simulation results of the EI-algorithm with varying α based on the linear
model/Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0.
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Figure 11: Simulation results of the EI-algorithm with varying α based on the linear
model/Design IV, ie (xl, xh) = (5, 15) and σ2

∗ = 5.0.
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Figure 12: Comparison plots for D-, SA- and EI-algorithm with varying α based on the linear
model/Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0. The displays from top to bottom are
estimates, estimated squared error and bootstrap estimate of estimation variance.
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Figure 13: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the
curved model/Design I, ie (xl, xh) = (5, 15) and σ2

∗ = 1.0.
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Figure 14: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the
curved model/Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0.
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Figure 15: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the
curved model/Design IV, ie (xl, xh) = (5, 15) and σ2

∗ = 5.0.
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Figure 16: Simulation results of the D-, SA- and EI-algorithm with α = 1.0 based on the
curved model/Design IV, ie (xl, xh) = (5, 60) and σ2

∗ = 5.0.

44



α = 0.51 α = 0.75 α = 1.0

0 20 40 60 80 100 120 140 160

10

20

30

40

50

60

x design

0 20 40 60 80 100 120 140 160

10

20

30

40

50

60

x design

0 20 40 60 80 100 120 140 160

10

20

30

40

50

60

x design

10 20 30 40 50 60

10

20

30

40

50

60

70

y* vs x

10 20 30 40 50 60

10

20

30

40

50

60

70

y* vs x

10 20 30 40 50 60

10

20

30

40

50

60

70

y* vs x

0 50 100 150
8

8.5

9

9.5

10

10.5

11

11.5

12
x estimate, average

0 50 100 150
8

8.5

9

9.5

10

10.5

11

11.5

12
x estimate, average

0 50 100 150
8

8.5

9

9.5

10

10.5

11

11.5

12
x estimate, average

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE, bootstrap

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE, bootstrap

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
MSE, bootstrap

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE bootstrap vs MSE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE bootstrap vs MSE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSE bootstrap vs MSE

Figure 17: Simulation results of the EI-algorithm with varying α based on the curved
model/Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0.
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Figure 18: Comparison plots of D-, SA- and EI-algorithm with varying α based on the curved
model/Design III, ie (xl, xh) = (5, 60) and σ2

∗ = 1.0. The displays from top to bottom are
estimates, estimated squared error and bootstrap estimate of estimation variance.
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Figure 19: Simulation results of the experimental Bayesian inversion algorithm with α = 1.0
based on the linear model/Design I, ie µ

X
= (10, 10), σ2

X
= (9, 9).
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Figure 20: Simulation results of the experimental Bayesian inversion algorithm with α = 1.0
based on the linear model /Design II, ie µ

X
= (−5, 25), σ2

X
= (9, 9).
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Figure 21: Simulation results of the experimental Bayesian inversion algorithm with α = 1.0
based on the linear model /Design III, ie µ

X
= (5, 5), σ2

X
= (9, 9).
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Figure 22: Simulation results of the experimental Bayesian inversion algorithm with α = 1.0
based on the linear model /Design IV, ie µ

X
= (4, 6), σ2

X
= (9, 9).
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Figure 23: Simulation results of the experimental Bayesian inversion algorithm with α = 1.0
based on the linear model /Design V, ie µ

X
= (4, 6), σ2

X
= (9, 4).
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Figure 24: Simulation results of the prior-sampling experimental Bayesian inversion algorithm
based on the linear model/Design III, ie µ

X
= (5, 5), σ2

X
= (9, 9).
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Figure 25: Comparison of the experimental Bayesian inversion algorithm with α = 1.0 and the
prior-sampling experimental Bayesian inversion algorithm based on the linear model/Design
III, ie µ

X
= (5, 5), σ2

X
= (9, 9). The two upper displays are average of estimate and bootstrap

estimation variance in x1-dimension while the display three and four are the corresponding
ones in the x2-dimension. Lower display is ratio of bootstrap estimation variance including
uncertainty in g(x) over estimation variance given g(x).
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