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DIRECTIONAL METROPOLIS–HASTINGS UPDATES FOR POSTERIORS
WITH NONLINEAR LIKELIHOODS

HÅKON TJELMELAND
Department of Mathematical Sciences, NTNU, 7491 Trondheim, Norway

JO EIDSVIK
Statoil Research Center, 7005 Trondheim, Norway

Abstract. In this paper we consider spatial problems modeled by a Gaussian
random field prior density and a nonlinear likelihood function linking the hidden
variables to the observed data. We define a directional block Metropolis–Hastings
algorithm to explore the posterior density. The method is applied to seismic
data from the North Sea. Based on our results we believe it is important to
assess the actual posterior in order to understand possible shortcomings of linear
approximations.

1 Introduction

Several applications in the earth sciences are preferably formulated by an underly-
ing hidden variable which is indirectly observed via noisy measurements. Examples
include seismic data, production data and well data in petroleum exploration:
In seismic data the travel times and amplitude measurements are nonlinearly
connected to the elastic parameters of the subsurface, see e.g. Sheriff and Geldart
(1995). Production data contain the history of produced oil and gas, which is a very
complex functional of the porosity and permeability properties in the reservoir,
see e.g. Hegstad and Omre (2001). Well data of radioactivity counts need to be
transformed into more useful information, such as clay content in the rocks, see e.g.
Bassiouni (1994). The Bayesian framework is a natural approach to infer the hidden
variable; this entails a prior model for the variables of interest and a likelihood
function tying these variables to observations.

In this paper we consider Gaussian priors for the underlying spatial variable,
and nonlinear likelihood models. When using a nonlinear likelihood function, the
posterior is not analytically available. However, the posterior can be explored
by Markov chain Monte Carlo sampling (see e.g. Robert and Casella (1999) and
Liu (2001)), with the Metropolis–Hastings (MH) algorithm as a special case. We
describe a directional MH algorithm in this paper, see Eidsvik and Tjelmeland
(2003). We use this algorithm to update blocks of the spatial variable at each MH



iteration. MH block sampling is a trade off between single site sampling schemes
and updating the entire field. We show results of our modeling procedures for
seismic data from a North Sea petroleum reservoir.

2 Methods

In this section we present our assumptions about the Bayesian model and our
methods for analyzing the posterior.

2.1 PRIOR AND LIKELIHOOD ASSUMPTIONS

The variable of interest is denoted x = {xij ∈ R; i = 1, . . . , n; j = 1, . . . ,m},
a spatial random field in two dimensions represented on a grid of size n × m.
We denote its probability density by π(x) = π(x|θ) = N(x;µ(θ),Σ(θ)), where
N(x;µ,Σ) denotes a Gaussian density evaluated in x, with fixed mean µ and
covariance matrix Σ. For generality we condition on hyperparameters θ, but in
this study we treat θ as fixed parameters. The generalization to a vector variable,
xij ∈ Rd, is straightforward. For the application in Section 3 we have xij ∈ R3. A
three dimensional grid, xijk, is of course also possible.

We assume the spatial variable x to be stationary and let the field be defined
on a torus, see e.g. Cressie (1991). As explained below, this has important com-
putational advantages, but the torus assumption also implies that one should not
trust the results close to the boundary of the grid. Thus, one should let the grid
cover a somewhat larger area than what is of interest.

The likelihood model for the data z = {zij ∈ R; i = 1, . . . , n; j = 1, . . . ,m},
given the underlying variable x, is represented by the conditional density π(z|x) =
N(z; g(x), S), where g(x) is a nonlinear function. Hence, the conditional expecta-
tion of the data has a nonlinear conditioning to the underlying field. We assume
that the likelihood noise is stationary with covariance matrix S. It is again straight-
forward to extend this model to vector variables at each location, zij ∈ Rd, or
three dimensional grids. For the application in Section 3 we have zij ∈ R2. We
assume that a linearized version of the likelihood is available, and denote this by
the conditional density πlin

x0
(z|x) = N(z;Gx0x, S), where x0 is the value of x used

in the linearization.
The posterior of the hidden variable x conditional on the data is given by

π(x|z) ∝ π(x)π(z|x), (1)

an analytically intractable posterior. The linearized alternative;

πlin
x0

(x|z) ∝ π(x)πlin
x0

(z|x), (2)

for fixed x0, can be written in a closed form, and is possible to evaluate and
sample from directly. But note that in general this becomes computationally
expensive in high dimensions. With our torus assumption discussed above, the
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covariance matrices involved become circular and the linearized posterior can then
be evaluated and sampled from effectively in the Fourier domain (Cressie (1991),
Buland, Kolbjørnsen, and Omre (2003)). The actual nonlinear posterior can also
be evaluated, up to a normalizing constant, in the Fourier domain, by treating the
prior and likelihood terms in equation (1) separately.

2.2 METROPOLIS–HASTINGS BLOCK UPDATING

A MH algorithm is an iterative sampling method for simulating a Markov chain
that converges to a desired posterior distribution, see e.g. Robert and Casella
(1999) and Liu (2001). Each iteration of the standard MH algorithm consists of
two steps: (i) Propose a new value for the underlying variable, (ii) Accept the new
value with a certain probability, else keep the value from the previous iteration.

We describe a MH algorithm which updates blocks of the random field at
each iteration. Let Xi = x denote the variable after the i-th iteration of the MH
algorithm. For the (i+1)-th iteration we draw a block of fixed size k× l at random,
where k < n, l < m. Since the grid is on a torus, there are no edge problems when
generating this block. We denote the block by A, a defined boundary zone of the
block by B, and the set of nodes outside the block and boundary by C, see Figure
1. Further, we split the variable into these blocks; x = (xA, xB , xC) as the parts in

A

B

C

Figure 1. Block updating. The full size of the grid is n×m. We illustrate the
block A of gridsize k × l, a boundary zone B, and the other parts of the field C.

the block, the boundary, and outside the block and boundary zone, respectively.
Correspondingly, we denote the data vector by z = (zA, zB , zC). To propose a
new value in the block we define a proposal density for the part in A, and denote
the proposal on this block by yA. The rest of x remains unchanged, and hence
the proposed value is y = (yA, xB , xC). One proposal density in the block is the
linearized posterior for yA, conditional only on values in the boundary zone and
data in A and B. We denote this by πlin

x (yA|xB , zA, zB) = N(yA;m,T ), where the
mean m and covariance T can be calculated directly (Cressie, 1991). Note that
the linearization is done at the current value Xi = x. The final step in the MH
iteration is to accept or reject the proposed value y, and we thus obtain the next
state Xi+1.
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2.3 DIRECTIONAL METROPOLIS–HASTINGS

Directional MH algorithms are a special class of MH algorithms. Each iteration
consists of the following steps; (i1) Generate an auxiliary random variable which
defines a direction, (i2) Draw a proposed value on the line specified by the current
state and the auxiliary direction, (ii) Accept the proposed value with a certain
probability, else keep the variable from the previous iteration.

We present a directional updating scheme where the proposal step is done
effectively in one dimension, see Eidsvik and Tjelmeland (2003). We outline our
method following the block sampling setting in Section 2.2. Denote again the
variable at the i-th iteration by Xi = x = (xA, xB , xC), and the data by z =
(zA, zB , zC). We generate an auxiliary direction (step i1) as follows; First, draw
wA from πlin

x (·|xB , zA, zB). Next, define the auxiliary direction as u = ± wA−xA

|wA−xA| ,
where we use + or − so that the first component of u is positive, see the discussion
in Eidsvik and Tjelmeland (2003). Since this density for wA is Gaussian, it is
possible to calculate the density for the auxiliary unit direction vector u (Pukkila
and Rao, 1988). We denote this density by g(u|xA, xB , zA, zB).

At the last part of the proposal step (i2) we draw a one dimensional value t
from some density q(t|u, x, z), and set yA = xA + tu as the proposed value for the
block, and y = (yA, xB , xC) as the proposal for the entire field. This proposal is
accepted, i.e. Xi+1 = y, with probability

r(y|x) = min
{

1,
π(y)
π(x)

· π(z|y)
π(x|y)

· g(u|yA, xB , zA, zB)
g(u|xA, xB , zA, zB)

· q(−t|u, y, z)
q(t|u, x, z)

}
, (3)

else we have Xi+1 = x.
In particular, if we choose the one dimensional density as

q?(t|u, x, z) ∝ π(z|xA +tu, xB , xC)π(xA +tu, xB , xC)g(u|xA +tu, xB , zA, zB), (4)

the acceptance probability in equation (3) is equal to unity, and hence the proposed
variable is always accepted. Two elements are important when considering the
unit acceptance rate proposal in equation (4); (i) An acceptance rate of one is
not necessarily advantageous in MH algorithms. It is advantageous to obtain fast
mixing, i.e. to have a small autocorrelation between successive variables. This is
best achieved with large moves at each iteration of the MH algorithm. (ii) It is
not possible to sample directly from the q? density. To obtain a sample we have
to fit an approximation to q? in some way, either by a parametric curve fit, or by
numerical smoothing of a coarse grid approximation.

In this paper we use an alternative density which does not give unit acceptance
rate. The adjusted density is

q̃(t|u, x, z) ∝ (1 + |t|)λq?(t|u, x, z), λ > 0, (5)

where the (1+|t|)λ term encorages t values away from t = 0. This makes it possible
to have larger moves in the MH algorithm since t = 0 corresponds to yA = xA.
We fit an approximation by first calculating q̃ on a coarse grid and then use linear
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interpolation in the log scale between the evaluated grid points. The approximation
that we obtain with this approach is our proposal denoted q.

In Figure 2 we show the proposal with acceptance one, q?, the adjusted proposal

Figure 2. Sketch of the density q?(solid), the adjusted density q̃ (dash-dots),
and the fitted density q (dashed). This is a typical proposal density for t in our
application in Section 3. The approximation q has an exponential form in each
interval of length 0.1 on a grid (for example between −0.8 and −0.7).

q̃ and its fitted proposal q. This particular plot is obtained in our application in
Section 3. We tuned λ in equation (5) so that the acceptance rate was about 0.5 in
our application. This results in a value of λ = 10. Note that the proposal density
for t has a bimodal shape. One mode is usually close to t = 0, while the other
mode is quite far from 0. The mixing of the MH algorithm improves if we reach
the mode away from 0 more often. This can be established by q̃ or q as shown in
Figure 2. In the case of a linear likelihood the two modes illustrated in Figure 2
are always of equal size. A nonlinear likelihood causes them to have unequal mass,
and most commonly the mode near t = 0 contains most of the probability mass.

3 Example

We apply our modeling procedures to seismic data from the North Sea. We first
present the general motivation, then the statistical model formulated in the setting
of Section 2, and finally the results.

3.1 SEISMIC AMPLITUDE VERSUS OFFSET DATA

Seismic amplitude versus offset (AVO) analysis is commonly used to assess the
underlying lithologies (rocks and saturations) in a petroleum reservoir, see e.g.
Sheriff and Geldart (1995), and Mavko, Mukerji, and Dvorkin (1998). The reflec-
tion amplitude of seismic data changes as a function of incidence angle and as a
function of the elastic properties which are indicative of lithologies.

5



We analyze reflection data at two incidence angles in the Glitne field, North Sea.
The Glitne field is an oil-producing turbidite reservoir with heterogeneous sand
and shale facies, see Avseth et al (2001) and Eidsvik et al (2004). The domain
of our interest is 2.5 × 2.5 km2, and it is split into a grid of size 100 × 100, with
each grid cell covering 25 × 25 m2. The area covers what was interpreted as the
lobe of the turbidite structure in Avseth et al (2001). Figure 3 shows the reflection
amplitude along the grid at reflection angles zero (left) and thirty (right).

Figure 3. Reflection data at the 2D interface. Incidence angle 0 degrees (left)
and 30 degrees (right).

The reflection amplitudes are hard to analyze directly because they are a result
of the contrast in elastic properties in the cap rock covering the reservoir and the
properties in the reservoir zone. We next use a statistical model for automatic
analysis of the elastic reservoir properties.

3.2 STATISTICAL MODEL FOR SEISMIC DATA

The seismic data for the two reflection angles are denoted z = (z0, z1), where z0

refers to the zero offset reflection and z1 to 30 degrees incidence angle (both are
plotted in Figure 3). The statistical model that we use is closely connected to the
one in Buland, Kolbjørnsen and Omre (2003).

The variables of interest are the pressure and shear wave velocities, and the den-
sity in the reservoir zone. We denote these by x = (α, β, ρ) = {xij = (αij , βij , ρij); i =
1, . . . , n; j = 1, . . . ,m}, where α is the logarithm of the pressure wave velocity, β is
the logarithm of the shear wave velocity, and ρ is the logarithm of the density. The
velocities and density are the elastic properties of the rocks which in some sense
capture the rock mineral and saturation (Mavko, Mukerji, and Dvorkin, 1998).
The units for the exponential equivalents of α, β and ρ are m/s for velocities and
kg/m3 for density. Let (α0, β0, ρ0) be the logarithm of pressure and shear wave
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velocities, and the logarithm of density for the cap rock. These cap rock properties
are treated as fixed values in this study, and are equal for all locations in the grid.

We assign a Gaussian prior density to the reservoir variables of interest, i.e.
π(x) = N(x;µ,Σ), where µ now becomes a 3mn vector with the mean of the three
log elastic properties. These prior mean values are fixed, and set to µα = E(αij) =
7.86, µβ = E(βij) = 7.09, µρ = E(ρij) = 7.67, for all (i, j). These mean values are
assessed from well logs in Glitne, see Avseth et al (2001). The prior covariance ma-
trix, Σ, is a 3mn×3mn matrix defined by a Kronecker product, giving a 3×3 block
covariance matrix at the diagonal, and 3×3 matrices with this covariance function
and a spatial correlation function on the off-diagonal, see Buland, Kolbjørnsen, and
Omre (2003). The diagonal covariance matrix describing the marginal variability
at each location is defined by Std(αij) = 0.06, Std(βij) = 0.11, Std(ρij) = 0.02,
and correlations Corr(αij , βij) = 0.6, Corr(αij , ρij) = 0.1, Corr(βij , ρij) = −0.1.
These parameters capture the variability expected from previous studies, see Bu-
land, Kolbjørnsen, and Omre (2003). The spatial correlation function is the same
for all three reservoir variables and is an isotropic exponential correlation function
with range 250m (10 grid nodes).

The likelihood function is nonlinear, and is defined by approximations to the
Zoeppritz equations, see e.g. Sheriff and Geldart (1995). The density for the seismic
AVO data, given the underlying reservoir properties, is π(z|x) = N(z; g(x), S),
where the nonlinear function goes only locationwise, i.e. at grid node (i, j) the
expectation term in the likelihood is a function of the variables at this gridnode
only. For each location (i, j) and angle γ = 0, 30 we have

gij,γ(x) = gij,γ(αij , βij , ρij) = a0(αij − α0) + a1,ij(βij − β0) + a2,ij(ρij − ρ0), (6)

where

a0 =
1
2
[1 + sin2(γ)], a1,ij = −4ξijsin

2(γ), (7)

a2,ij =
1
2
[1− 4ξijsin

2(γ)], ξij =
exp(2βij) + exp(2β0)
exp(2αij) + exp(2α0)

.

The noise covariance matrix of the likelihood, S, is a 2mn × 2mn matrix defined
from a Kronecker product. This covariance matrix has a block diagonal 2×2 matrix
on the diagonal, and off-diagonal elements defined from an exponential correlation
structure with range 250m. The diagonal noise covariance matrix is defined by
Std(γ = 0) = 0.015, Std(γ = 30) = 0.012, Corr(γ = 0, γ = 30) = 0.7. This
likelihood noise model is specified using the parameters in Buland, Kolbjørnsen,
and Omre (2003).

A linear likelihood model can be defined by fixing the ratio ξij in equation (7).
For a constant linearization point we have πlin

µ (z|x) = N(z;Gµx, S). A similar
linearization is used in Buland, Kolbjørnsen, and Omre (2003), and with this lin-
earization they assess the analytically available posterior directly. For a linearized
proposal density on the block A we have πlin

x (·|xB , zA, zB). For our block sampling
algorithm we use a block size of 9×9, and a boundary zone of width one grid node.
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3.3 RESULTS

The posterior is sampled using the block directional MH algorithm discussed
above. We denote 144 updates as one iteration, i.e. on average each grid node
is (proposed) updated about once in each iteration. Figure 4 shows trace plots for

Figure 4. Trace plots of the three variables at one location in the grid. Log of
pressure wave velocity α (left), log of shear wave velocity β (middle), and log of
density (right).

the log elastic properties at one location in the grid. The traceplots are explained
to some extent by the bimodal proposal density q (see Figure 2). In Figure 4 the
variables move short distances at some iterations, while moves are large at other
iterations, reflecting the bimodal density for the proposal.

In Figure 5 we show the estimates of the marginal mean and standard deviation
for all three variables as images. Near grid coordinate (North,East) = (60, 80) (see
Figure 5, top left image, water sand arrow) both pressure and shear wave velocities
are large. In the same area the reflection data (Figure 2) are large at both angles.
Going south from gridnode (60, 80) (see Figure 5, top left image, oil sand arrow)
the pressure wave velocity decreases, and so does the shear wave velocity, but
to a smaller degree. In Figure 2 the reflection data become smaller in this area.
These two regions comprise the lobe of the turbidite structure, see Avseth et
al (2001). In Eidsvik et al (2004) these two regions were estimated to be water
and oil saturated sands, respectively. Pressure wave velocity is larger in water
than oil saturated sands (Mavko, Mukerji, and Dvorkin, 1998) and our interpreted
velocities are in accordance with the results in Eidsvik et al (2004). The western
part of the domain were predicted to contain mostly shales (a low velocity rock)
in Eidsvik et al (2004).

The prior standard deviations for the three variables are (0.06, 0.11, 0.02). In
Figure 5 (right) the mean standard deviations in the posterior are (0.033, 0.065, 0.02).
This indicates that there is information about α and β in the AVO data (standard
deviation decreases by a factor two), but not much about ρ.

Note that the standard deviations in Figure 5 (right) varies quite a lot across
the field (a factor of two). The standard deviation for β is smaller where the
velocities large. For a linear model [Buland, Kolbjørnsen, and Omre (2003)] the
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Water sand

Oil sand

Figure 5. Mean and standard deviation of the three variables at each location
in the grid. Log of pressure wave velocity α (top). Log of shear wave velocity β
(middle), and log of density (bottom). The two regions indicated by arrows (upper
left image) were interpreted to be oil and water saturated sands in a previous study.

standard deviations are constant across the field. The expected values also differ
somewhat between a linear model and our nonlinear model; for example E(β

α )
is shifted significant between the two approaches. These differences suggest that
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the linearized Gaussian posterior in Buland, Kolbjørnsen, and Omre (2003) might
introduce a bias in the estimation of the elastic parameters.

4 Closing Remarks

In this paper we consider Bayesian models with a Gaussian random field prior
and nonlinear likelihood functions. Such models are common in the earth sciences,
but are usually simplified (linearized) to make the posterior analytically available.
We propose a directional block Metropolis–Hastings sampler for exploring the
original nonlinear posterior. When we apply our methods to a seismic dataset
from the North Sea, we recognize some differences between our results and the
ones obtained by a linearized model. These differences indicate that it is useful to
check the validity of a simplified likelihood model by sampling the full nonlinear
models.

One of the current challenges with the Glitne field is uncertainty in the thick-
ness of the turbidite structure, associated with the noise in seismic data due to
overburden effects. A natural extension is hence to study the full 3D seismic data.
An extension of our statistical methods is to assign priors to the hyperparameters
in the statistical model, and hence include the variability of these parameters into
the final results.
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