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Abstract

Gaussian Markov random fields (GMRFs) are specified conditionally by its precision matrix
meaning that its inverse, the covariance matrix, is not explicitly known. Computing the often
dense covariance matrix directly using matrix inversion is often unfeasible due to time and memory
requirement. In this note, we discuss a simple and fast algorithm to compute the marginal
variances for a GMRF. We also provide extensions to deal with linear soft and hard constraints,
essentially without extra costs.

Keywords: Cholesky triangle, Conditional auto-regressions, Gaussian Markov random fields, Non-homogeneous au-

toregressive processes, Sparse matrices.

Address for Correspondence: H. Rue, Department of Mathematical Sciences, The Norwegian University for Sci-

ence and Technology, N-7491 Trondheim, Norway.

E-mail: Havard.Rue@math.ntnu.no

WWW-address: http://www.math.ntnu.no/ ∼hrue

2



1 Introduction

A Gaussian Markov random field (GMRF) x = {xi : i ∈ V} is a n = |V|-dimensional Gaussian random
vector with additional conditional independence or Markov properties. Assume for simplicity that
V = {1, . . . , n}. The conditional independence properties can be represented using an undirected
graph G = (V, E) with vertices V and edges E , so that xi and xj are conditional independent if
and only if {i, j} 6∈ E . We then say that x is a GMRF with respect to G. The edges in E is in
one-to-one correspondence with the non-zero elements of the precision matrix of x, Q, in the sense
that {i, j} ∈ E if and only if Qij 6= 0 for i 6= j. When {i, j} ∈ E we say that i and j are neighbours,
which we denote by i ∼ j.

GMRFs are also known as conditional auto-regressions (CARs) following seminal work of Besag
(1974, 1975). GMRFs (and its intrinsic versions) have a broad usage in statistics, with important
applications in structural time-series analysis, analysis of longitudinal and survival data, graphical
models, semiparametric regression and splines, image analysis and spatial statistics. For references
and examples, see Rue and Held (2005, Ch. 1).

A zero mean GMRFs are often specified implicitly through the full conditionals

xi | x−i ∼ N (
∑

j

βijxj , 1/κi), κi > 0, i = 1, . . . , n. (1)

The parameters {βij} and {κi} must satisfy consistency requirements for a joint density to exists,
which is that Q = (Qij) where Qii = κi and Qij = −κiβij , is symmetric and positive definite. Then
(1) defines a zero mean GMRF with precision matrix Q. The number of neighbours to i is typical
small and do not depend on n, which implies that the precision matrix Q is sparse with only O(n)
non-zero terms. The specification of the precision matrix through (1) means that the covariance
matrix, Σ = Q−1 is only implicitly know. Although we formally can invert Q, the dimension n is
typically large (103 − 105) so inverting Q directly will be costly and inconvenient.

In this note we discuss a simple and fast algorithm to compute the diagonal of Σ, the marginal
variances, applicable for GMRFs with large dimension. The motivation for this work is a not-well-
known matrix identity which appeared in a IEEE conference proceedings (Takahashi et al., 1973),
see also Erisman and Tinney (1975). In our setting, the identity is as follows. Let V DV T be the
Cholesky-decomposition of Q where D is a diagonal matrix and where V is a lower triangular matrix
with ones at the diagonal, then

Σ = D−1V −1 + (I − V T )Σ. (2)

The upper triangle defines recursions for Σij which provided the basis for fast computations of the
marginal variances of x1 to xn. However, the identity (2) give little insight in how Σij depend on
elements of Q and the graph G. We will therefore in Section 2 derive the recursions defined in (2)
“statistically”, starting from a simulation algorithm for GMRFs and using the relation between
Q and its Cholesky triangle given by the global Markov property. We use the same technique to
prove Theorem 1 which locate a set of indices for which the recursions are to be solved to obtain
the marginal variances. (A similar result was also given in Takahashi et al. (1973)). Our Theorem 2
shows under what conditions this set is tight. We also generalise the recursions to compute marginal
variances for GMRFs defined with additional soft and hard linear constraints, for example under
a sum-to-zero constraint. Practical issues appearing when implementing the algorithm using the
Cholesky triangle of Q computed using sparse matrix libraries, are also discussed.

The recursions for Σij are applicable to a GMRF with respect any graph G and generalise the
well known (fixed-interval) Kalman recursions for smoothing applicable for dynamic models. The
computational effort to solve the recursions depends on both the neighbourhood structure in G and
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the size n. For typical spatial applications, the costs is O(n log(n)2) when the Cholesky triangle of
Q is available.

The outline of this note is as follows. We derive the recursions in Section 2 and the corrections
needed to account for soft and hard linear constraints in Section 3. Practical issues are discussed
in Section 4 which discuss how to compute the recursions efficiently using numerical algorithms for
sparse matrices. In Section 5 we discuss a geostatistical application using the recursions to assess
the error in spatial predictions. We end with a discussion in Section 6.

2 The Recursions

Let L be the Cholesky triangle of Q such that Q = LLT and L is lower triangular. The Cholesky
triangle is the starting point both for producing (unconditional and conditional) samples from a zero
mean GMRF and to evaluate the log-density for any configuration. Refer to Rue and Held (2005,
Ch. 2) for algorithms and further details. In short, (unconditional) samples are found as the solution
of LT x = z where z ∼ N (0, I). The log-density is computed using that log |Q| = 2

∑
i log Lii.

Using that the solution of LT x = z is a sample from a zero mean GMRF with precision matrix Q,
we obtain that

xi | xi+1, . . . , xn ∼ N (− 1
Lii

n∑
k=i+1

Lkixk, 1/L2
ii), i = n, . . . , 1. (3)

Eq. (3) provide a sequential representation of the GMRF backward in “time” i, as

π(x) =
1∏

i=n

π(xi | xi+1, . . . , xn).

Let Li:n be the lower-right (n− i− 1)× (n− i− 1) submatrix of L. It follows directly from (3) that
Li:nLT

i:n is the precision matrix of xi:n = (xi, . . . , xn)T . The non-zero pattern in L is important for
the recursions, see Rue and Held (2005, Ch. 2) for further details about the relation between Q and
L. Zeros in the i’th column of L, Lki relates directly to the conditional independence properties of
π(xi:n). We have for i < k

−1
2
xT

i:nLi:nLT
i:nxi:n = −xixkLiiLki + remaining terms

hence Lki = 0 is equivalent to xi and xk are conditional independent given xi+1, . . . , xk−1, xk+1, . . . , xn.
This is similar to the fact that Qij = 0 is equivalent to xi and xj are conditional independent given
the remaining elements of x. To ease the notation, define the set

F (i, k) = {i + 1, . . . , k − 1, k + 1, . . . , n}, 1 ≤ i ≤ k ≤ n

which is the future of i except k. Then for i < k

xi ⊥ xk | xF (i,k) ⇐⇒ Lki = 0. (4)

It is however not easy to verify that xi ⊥ xk | xF (i,k) without computing L and check if Lki = 0
or not. However, the global Markov property provides a sufficient condition for Lki to be zero; If i
and k > i are separated by F (i, k) in G, then xi ⊥ xk | xF (i,k) and Lki = 0. This sufficient criteria
depends only on the graph G. If we use this to conclude that Lki = 0, then this is true for all Q > 0
with fixed graph G. In particular, if k ∼ i then Lki is non-zero in general. This imply that the
Cholesky triangle is in general more dense than the lower triangle of Q.
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To obtain the recursions for Σ = Q−1, we note that (3) implies that

Σij = δij/L2
ii −

1
Lii

n∑
k∈I(i)

LkiΣkj , j ≥ i, i = n, . . . , 1, (5)

where I(i) as those k where Lki is non-zero,

I(i) = {k > i : Lki 6= 0} (6)

and δij is one if i = j and zero otherwise. We can compute all covariances directly using (5) but the
order of the indices are important; The outer loop is i from n to 1 and the inner loop is j from n to
i. The first and last computed covariance is then Σnn and Σ11, respectively.

It is possible to derive from (1) a similar set of equations to (5) which relates covariances to elements
of Q instead of elements of L, see Besag (1981). However, these equations does not define recursions.

Example 1 Let n = 3, I(1) = {2, 3}, I(2) = {3}, then (5) gives

Σ33 =
1

L2
33

Σ23 = − 1
L22

(L32Σ33)

Σ22 =
1

L2
22

− 1
L22

(L32Σ32)

Σ13 = − 1
L11

(L21Σ23 + L31Σ33)

Σ12 = − 1
L11

(L21Σ22 + L31Σ32)

Σ11 =
1

L2
11

− 1
L11

(L21Σ21 + L31Σ31)

where we also need to use that Σ is symmetric.

Our aim is to compute the marginal variances Σ11, . . . ,Σnn. In order to do so, we need to compute
Σij (or Σji) for all ij in some set S as evident from (5). Let the elements in S be unordered, meaning
that if ij ∈ S then also ji ∈ S. If the recursions can be solved by only computing Σij for all ij ∈ S
we say that the recursions are solvable using S, or simply S is solvable. It is evident from (5) that
S must satisfy

ij ∈ S and k ∈ I(i) =⇒ kj ∈ S (7)

Further, we need that ii ∈ S for i = 1, . . . , n. Of course S = V×V is a such set, but we want |S| to be
minimal to avoid unnecessary computations. A such minimal set depends however on the numerical
values in L, or Q implicitly. Denote by S(Q) a minimal set. The following result identify a solvable
set S∗ containing the union of S(Q) for all Q > 0 with a fixed graph G.

Theorem 1 The union of S(Q) for all Q > 0 with fixed graph G, is a subset of

S∗ = {ij ∈ V × V : j ≥ i, i and j are not separated by F (i, j)}

and the recursions in (5) are solvable using S∗.
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Proof. We first note that ii ∈ S∗, for i = 1, . . . , n, since i and i are not separated by F (i, i).
We will now verify that the recursions are solvable using S∗. The global Markov property ensure
that if ij 6∈ S∗ then Lji = 0 for all Q > 0 with fixed graph G. We use this to replace I(i) with
I∗(i) = {k > i : ik ∈ S∗} in (7), which is legal since I(i) ⊆ I∗(i) and the difference only identify
terms Lki which are zero. It is now sufficient to show that

ij ∈ S∗ and ik ∈ S∗ =⇒ kj ∈ S∗ (8)

which implies (7). Eq. (8) is trivially true for i ≤ k = j. Fix now i < k < j. Then ij ∈ S∗ says that
there exists a path i, i1, . . . , in, j, where i1, . . . , in are all smaller than i, and ik ∈ S∗ says that exists
a path i, i′1, . . . , i

′
n′ , k, where i′1, . . . , i

′
n′ are all smaller than i. Then there is a path from k to i and

from i to j where all nodes are less or equal to i, but then also less than k since i < k. Hence, k and
j are not separated by F (k, j) so kj ∈ S∗. Finally, since S∗ contains 11, . . . , nn and only depend on
G, it must contain the union of all S(Q) since each S(Q) is minimal. �

An alternative interpretation of S∗, is that it identify from the graph G only, all possible non-zero
elements in L. Some of these might turn out to be zero depending on the conditional independence
properties of the marginal density for xi:n for i = n, . . . , 1, see (4). In particular, if j ∼ i and j > i
then ij ∈ S∗. This provides the lower bound for the size of S∗,

|S∗| ≥ n + |E|. (9)

Example 2 Let x = (x1, . . . , x6)T be a GMRF with respect to the graph

1

2

3

4

5

6

then the set of the possible non-zero terms in L, is

S∗ = {11, 22, 33, 41, 42, 43, 44, 54, 55, 64, 65, 66}. (10)

The only element in S∗ where the corresponding element in Q is zero, is 65, this because 5 and 6 are
not separated by F (5, 6) = ∅ in G (due to 4), so |S∗| = n + |E|+ 1.

The recursions are particular simple if G is decomposable allowing us to be more specific about the set
S∗. Let p be a permutation of the vertices, meaning that vertex i is labelled pi after the permutation.

Theorem 2 If the graph G is decomposable then there exists a permutation p of the vertices, such
that

|S∗| = n + |E| (11)

and S∗ is the union of S(Q) for all Q > 0 with fixed graph G.

Note that (11) is the lower bound of |S∗|, see (9), hence S∗ reduces to {ij ∈ V × V : i ∼ j or i = j}
after the vertices in G are permuted by p.
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Proof. Rose et al. (1976) shows if (11) holds then the graph is decomposable and for all decompos-
able graphs there exists a permutation p of the vertices such that (11) holds. Assume for simplicity
that pi = i for all i. From the lower bound (9) we know that S∗ equals {ij ∈ V × V : i ∼ j or i = j}.
We will now construct one particular Q, denoted by Q̂ such that S(Q̂) = S∗ and from this we can
deduce that S∗ is the union of S(Q) for all Q > 0 with fixed graph G. Let L̂ji = 1, j ≥ i, for all

ij ∈ S∗ and define Q̂ = L̂L̂
T

so that

Q̂ij = |{k ∈ V : k ∼ i or k = i, k ∼ j or k = j, and k ≤ min(i, j)}|. (12)

If i ∼ j, then k = min(i, j) ensure that the set in (12) is non-empty, hence Q̂ij 6= 0. For i 6∼ j we
know that ij 6∈ S∗, and then Q̂ij = 0 which can be seen as follows; Assume Q̂ij > 0 and i < j, then
there must exists a k such that the set in (12) is non-empty. For a such k there is a path from i to
k and from k to j where k < i hence ij ∈ S∗ which is a contradiction. Since Q̂ij 6= 0 if and only if
ij ∈ S∗ then I(i) = I∗(i). From (5) it is evident that to compute Σii we need Σij for all j ∈ I∗(i).
To compute Σ11, . . . ,Σnn, we need Σij for all ij ∈ ∪n

i=1I∗(i). Since S∗ =
⋃n

i=1 {I∗(i) ∪ ii} we must
compute Σij for all ij ∈ S∗ hence S(Q̂) = S∗. �

The maximum cardinality search-algorithm of Tarjan and Yannakakis (1984) can be used to find the
permutation need to obtain (11).

Example 3 A homogeneous autoregressive model of order p satisfy

xi | x1, . . . , xi−1 ∼ N (
p∑

j=1

φjxi−j , 1), i = 1, . . . , n,

for some parameters {φj} where for simplicity we assume that x−1, . . . , x−p+1 are fixed. Let {yi}
be independent Gaussian observations of xi such that yi ∼ N (xi, 1). Then x conditioned on the
observations is Gaussian where the precision matrix Q is a band-matrix with band-width p and L is
lower triangular with the same bandwidth. When {φj} are such that Qij 6= 0 for all |i− j| ≤ p, then
the graph is decomposable and the permutation needed in Theorem 2 is the identity. In this case the
recursions correspond to the (fixed-interval) smoothing recursions derived from the Kalman filter for
(Gaussian) linear state-space models.

Although the situation is particular simple for decomposable graphs, most GMRFs are defined with
respect to graphs that are not decomposable. This is the case for GMRFs used in spatial or spatio-
temporal applications, but also for GMRFs used in temporal models outside the state-space frame-
work. Additional to be able to identify the set S∗ efficiently, we also need to compute the Cholesky
triangle L. It is important to have efficiently algorithms for these tasks as the dimension of GMRFs
is typically large. Fortunately, algorithms that compute L efficiently also minimise (approximately)
the size of S∗ and then also the cost of solving the recursions. We return to this and other practical
issues in Section 5, after discussing how to compute marginal variances for GMRFs with additional
linear constraints.

3 Correcting for hard and soft linear constraints

We will now demonstrate how we can correct the marginal variances computed in (5) to account for
additional linear constraints, for example a simple sum-to-zero constraint. Let A be a k×n matrix of
rank k. The goal is now to compute the marginal variances of the GMRF under the linear constraint
Ax = e. If e is fixed we denote the constraint as hard, and if e is a realisation of N (µe,Σe), Σe > 0,
we denote the constraint as soft.
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A constrained GMRF is also a GMRF meaning that recursions (5) are still valid using the Cholesky
triangle for the constrained GMRF. Since linear constraints destroy the sparseness of the precision
matrix it will not allow fast computation of the marginal variances. However, the covariance matrix
under hard linear constraints, Σ̃, relates to the unconstrained covariance matrix Σ as

Σ̃ = Σ−Q−1AT
(
AQ−1AT

)−1
AQ−1. (13)

There is a similar relation with a soft constraint (Rue and Held, 2005, Ch. 2). Assume a hard
constraint in the following. It is evident from (13) that

Σ̃ii = Σii −
(
Q−1AT

(
AQ−1AT

)−1
AQ−1

)
ii

, i = 1, . . . , n.

Hence, we can compute the diagonal of Σ and then correct it to account for the hard constraints.
Define the n × k matrix W as Q−1AT which is found from solving QW = AT for each of the k
columns of W . As the Cholesky triangle to Q is available, the j’th column of W , W j , is found
by solving Lv = AT

j and then solving LT W j = v. We now see that Σ̃ii = Σii − Cii where
C = W (AW )−1 W T . We only need the diagonal of C. Let V = W (AW )−1, and then C = V W T

and Cii =
∑k

l=1 VilWil. The cost of computing V and W is for large k dominated by factorising the
(dense) k× k matrix AW , which is cubic in k. As long as k is not to large it is nearly free to correct
for linear soft and hard constraints.

A special case of the hard constraint is to condition on a subset, B say, of the nodes in G. This is
however equivalent to compute the marginal variances for xA|xB where x = (xA,xB). In most cases
it is more efficient not to use (13), but utilise that xA|xB is a GMRF with precision matrix QAA

and mean µ given by the solution of QAAµ = −QABxB. (Note that solving for µ require only the
Cholesky triangle of QAA which is needed in any case for the recursions.) The marginal variances
are then computed using (5), possibly correcting for additional linear constraints using (13).

4 Practical issues

Since the precision matrix Q is a sparse matrix we can take advantage of numerical algorithms for
sparse symmetric positive definite matrices. Such algorithms are very efficient and makes it possible
to factorise precision matrices of dimension 103−105 without to much effort. A major benefit is that
these algorithms also minimise (approximately) the size of S∗ and then also the cost of solving the
recursions. Rue (2001) and Rue and Held (2005) discuss numerical algorithms for sparse matrices
from a statistical perspective and how to apply them for GMRFs.

An important ingredient in sparse matrix algorithms, is to permute the vertices to minimise (approx-
imately) the number of non-zero terms in L. The idea, is that if Lji is known to be zero, then Lji is
not computed. It turns out that the set S∗ is exactly the set vertices for which Lji is computed, see
Rue and Held (2005, Sec. 2.4.1). Hence, an efficient permutation to compute L minimise (approxi-
mately) |S∗|, hence is also an efficient permutation for solving the recursions. However, this implies
that we have little control over which other Σij ’s that are computed in the recursions, apart from
the diagonal and for i ∼ j.

Permutation schemes based on the idea of nested dissection are particular useful in statistical ap-
plications. The idea is to find a small separating subset that divides the graph into two (roughly)
equal parts, label the nodes in the separating set after the others, and continuous recursively. For
such a permutation, the computational complexity to compute L for a GMRF on a square m ×m
lattice with a local neighbourhood, is O(n3/2) for n = m2. This also the optimal complexity in the
order sense. The number of possible non-zero terms in L is O(n log(n)) which corresponds to the
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size of S∗. The complexity for solving the recursions can estimated from these numbers; We need to
compute O(n log(n)) covariances, each involving on average O(log(n)) terms in I∗(i), which in total
gives a cost of O(n log(n)2) operations. For a local GMRF on a m×m×m cube with n = m3, then
the size of S∗ is O(n4/3) and the cost of solving the recursions is then O(n5/3) which is dominated
by the cost of factorising Q which is O(n2).

A practical concern arise when numerical libraries return a list with the non-zero elements in L, but
the set S∗ or S(Q) is needed by the recursions. In fact, any easily obtainable solvable set S(Q)+

where S(Q) ⊆ S(Q)+ ⊆ S∗ is acceptable. A simple approach to obtain a S(Q)+ is the following.
Let S0 = {j ≥ i : Lji 6= 0}. Traverse the set S0 with i from n to 1 as the outer loop, and j from n
to i such that ij ∈ S0. For each ij, check for each k ∈ I(i) if kj ∈ S0. If this is not true, then add
kj to S0. Repeat this procedure until no changes appear in S0. By construction, S0 ⊆ S∗ and S0 is
solvable, hence we may use S(Q)+ = S0. Two iterations are often sufficient to obtain S(Q)+, where
the last verify only that S0 is solvable. Alternatively, S∗ can either computed directly or extracted
from an intermediate result in the sparse matrix library, if this is easily accessible.

Needless to say, solving the recursions efficiently requires very careful implementation in a appropriate
language, but this is the rule not the exception working with sparse matrices.

5 Example

In this example we will use the algorithm to compute the marginal variance to assess the error doing
spatial prediction on a (square) spatial domain, also knows as (Bayesian) kriging. We assume the
mean function is a linear combination of p know functions with parameters β = (β1, . . . , βp) with a
Gaussian prior. For the (intrinsic) Gaussian field, we assume a variogram corresponding to the de
Wijs process. Although the precision matrix for the de Wijs process is dense, there exists an accurate
intrinsic GMRF approximation. Mondal and Besag (2004) shows that the variogram of the intrinsic
GMRF defined by the full conditionals,

E(xij | x−ij) =
1
4

(xi+1,j + xi−1,j + xi,j+1 + xi,j−1) , Prec(xij | x−ij) = κ > 0

converge to that one of the de Wijs process as the lattice resolution increases. The precision κ is for
simplicity assumed fixed. Let y be k noisy observations of {xi : i ∈ Y} where yi = xi + εi where {εi}
are independent Gaussians with known variances {σ2

i }. The posterior for (x,β) is then

π(x,β | y) ∝ π(x)π(β)
∏
i∈Y

π(yi | xi).

The task is to compute the posterior mean and posterior marginal variance for x and β. Note that
x and β, jointly, is a GMRF where each of the p (global) nodes corresponding to β have edges to
each of the n nodes corresponding to x.

An advantage with GMRF models is that the size of |Y| does not influence the computational costs,
neither is there any requirements that all σ2

i should be equal. There is neither any real cost due to p.
To compute the conditional mean we need to permute the vertices and factorise Q, while computing
the marginal variance makes use of these quantities in the recursions. The obtained CPU-usage
are displayed in Table 1 for a 50 × 50 to 200 × 200 lattice and p = 5. The computations where
performed using the free software library GMRFLib (Rue and Follestad, 2002) and a 2.6MHz laptop.
The speed is impressive considering the dimension of the matrices, which range from 2 500 × 2 500
to 40 000 × 40 000. However, the cost could be reduced further, as to compute the permutation
for the 200 × 200 lattice require about 3.5 seconds. We know that the p nodes corresponding to β
has to be numbered last and using this information we could have decreased the time to compute
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CPU-time 50× 50 100× 100 200× 200
E(xij | y) 0.06 0.35 6.0

Var(xij | y) 0.04 0.29 3.7

Table 1: Cpu-time in seconds use to compute on a 2.6MHz laptop the conditional mean and marginal
variance for a m×m lattice, for m = 50, 100 and 200, with additional 5 global nodes.

the permutation to about 1/10 × 3.5 seconds. With this adjustment, the computational cost using
400 × 400 lattice, i.e. a 160 000 × 160 000 matrix, is about 10 seconds each for both computing the
conditional expectation and the marginal variance.

We are not limited to only use the de Wijs process but other intrinsic GMRFs (Besag and Kooperberg,
1995; Rue and Held, 2005) and non-intrinsic covariance functions can be used as well. Rue and
Tjelmeland (2002) demonstrate how to fit Gaussian fields with Exponential, Gaussian, Spherical and
Matérn covariance functions to GMRFs. For these choices there is no limiting argument as for the
de Wijs process, but each value of the correlation range is fitted separately. However, the size of the
neighbourhood must be 5 × 5 in order to obtain acceptable fits. The CPU-usage does not increase
that much for these choices compared to the values in Table 1.

6 Discussion

In this note we have discussed an algorithm to compute the marginal variances for a GMRF specified
by a sparse precision matrix. Extensions are given to correct for hard and soft constraints, essentially
without extra costs. The derivation of the recursions starts from an equivalent formulation of the
GMRF as a non-homogeneous autoregressive process, and then use properties of conditional inde-
pendence and the interpretation of the elements in the Cholesky triangle of the precision matrix. The
algorithm is potentially very useful as GMRFs have found applications in many fields (see Rue and
Held (2005, Ch. 1)) and because marginal variances are of direct interest for statisticians. Although
we always can estimate marginal variances from independent realisations from the (constrained)
GMRF, exact computations are in general preferable. The nice connection between GMRFs and
numerical methods for sparse matrices makes such computations feasible in practise for even huge
GMRFs, and easily accessible using the library GMRFLib; a free software library for GMRFs (Rue
and Follestad, 2002).
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