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Abstract

This note discusses the approach of specifying a Gaussian Markov random field (GMRF) by
the Cholesky triangle of the precision matrix. A such representation can be made extremely
sparse using numerical techniques for incomplete sparse Cholesky factorisation, and provide very
computational efficient representation for simulating from the GMRF. However, we provide the-
oretical and empirical justification showing that the sparse Cholesky triangle representation is
fragile when conditioning a GMRF on a subset of the variables or observed data, meaning that
the computational cost increases.

1 Introduction

Gaussian Markov random fields (GMRFs) are frequently used in statistics due to the nice analytical
properties of the Gaussian distribution combined with Markov properties. GMRFs have a wide
area of applications, including structural time-series analysis, analysis of longitudinal and survival
data, graphical models, semiparametric regression and splines, image analysis, spatial statistics and
geostatistics. For references and examples, see Rue and Held (2005, Ch. 1). GMRFs are also named
as conditional autoregressive models (CARs) due to the seminal work of Besag (1974, 1975) in spatial
statistics. Intrinsic versions of GMRFs are also extensively used, see for example Besag and Higdon
(1999), Fahrmeir and Lang (2001), Knorr-Held and Rue (2002) and Banerjee et al. (2004).

One major feature of GMRFs, is the computational superiority due to the close link between GMRFs
and numerical methods for sparse matrices (Rue, 2001). These algorithms allow for fast algorithms
for simulation and evaluation of the log-density and includes those based on the Kalman-filter for
Gaussian dynamic models as a special case (Knorr-Held and Rue, 2002, Appendix). These fast
algorithms also includes the possibilities for treating various forms for conditioning, like conditioning
on subset of variables and linear constraints. See Rue and Held (2005, Ch. 2) for a complete discussion.
These fast algorithms can also be extended to construct non-Gaussian approximations to (non-
Gaussian) hidden GMRFs which can be sampled exactly with computable normalising constants
(Rue et al., 2004), and to compute marginal variances for GMRFs (Rue, 2005).

A GMRF is nearly always specified through its precision matrix or (equivalently) through specifying
the set of the full conditionals in the spirit of Besag (1974, 1975). Although a such approach is natural,
we investigate in this report the option of specifying a GMRF, implicitly, by the Cholesky triangle
of the precision matrix. The main idea is to compute the incomplete Cholesky factorisation of the
precision matrix for a GMRF, and use this factorisation to specify an extremely sparse representation
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of a GMRF, which properties are close to the original one. The extremely sparse representation
implies that computing with this model is extremely efficient and computational costs is nearly
linear in the dimension. We demonstrate in this report that it is possible to construct such extremely
sparse representations, but unfortunately, this construction is fragile when doing conditioning. We
provide theoretical results which explain why a such construction is fragile in this sense. The fraglie
nature of these representations limits their usefulness in pratical applications.

The outline of this paper is as follows. In section 2 we give some background of GMRFs and
interpretation of the Cholesky triangle. Then we describe how to construct extremely sparse precision
matrices by using incomplete Cholesky factorisation in section 3. In section 4 we examine how sparse
the Cholesky triangle can be and discuss the possibility of using this model in various application.
We conclude with a discussion in section 5.

2 Background

2.1 Definition of a GMRF

A Gaussian Markov random field (GMRF) is a Gaussian distributed random vector x = (x1, . . . , xn)T

with additional Markov properties. The Markov properties are commonly represented by an undi-
rected graph G = (V, E), where V is the set of vertices {1, . . . , n} and E a set of edges, where there
is no edge between node i and node j if and only if xi ⊥ xj | x−ij . The Markov properties appear in
the precision matrix Q (the inverse covariance matrix) of the GMRF, as

Qij = 0 ⇐⇒ xi ⊥ xj |x−ij , i 6= j. (1)

We then say that x is a GMRF with respect to G.

Since Q is a symmetric positive definite matrix, then there exists a unique Cholesky triangle L such
that L is a lower triangular matrix and Q = LLT . To sample x ∼ N (µ, Q−1), we first sample
z ∼ N (0, I). Then the solution of LT v = z has the correct covariance matrix

Cov(v) = Cov(L−T z) = (LLT )−1 = Q−1. (2)

Finally, x = µ + v. If the mean is only known through the canonical representation µ = Q−1b, then
we calculate µ by solving Lw = b and LT µ = w.

2.2 The sparsity pattern in the Cholesky triangle

The sparsity pattern of L can be decided before computing the Cholesky factorisation. It is no need
to compute elements known to be zero, hence the factorisation can be computed rapidly for sparse
matrices. The following result (see Rue and Held (2005, Ch. 2)) can be used to decide the sparsity
pattern of L. Define for 1 ≤ i < j ≤ n the set

F (i, j) = {i + 1, . . . , j − 1, j + 1, . . . , n}, (3)

which is the future of i except j. Then

xi ⊥ xj | xF (i,j) ⇐⇒ Lji = 0. (4)

Using the global Markov property, it follows that

F (i, j) separates i and j =⇒ xi ⊥ xj | xF (i,j). (5)
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Thus, if F (i, j) is a separating subset for node i and j, then xi and xj are conditionally independent
in the marginal distribution, and Lji = 0. One should note that if Lji = 0 from the statement above,
then it is zero for all Q > 0 with the same graph G .

For two neighbours i ∼ j, F (i, j) is not a separating subset, since Q(i, j) 6= 0. Hence, we know that
L is always more or equally dense than the lower triangular part of Q, and for many graphs the
number of possible non-zero elements in L (nL) is much larger than the number of non-zero elements
in the lower triangular part of Q (nQ). The difference nL − nQ is called number of fill-ins. Since the
positions of the fill-ins can be determined from the graph G , we compute and store only the terms in
L that we know is possibly non-zero. This makes the algorithms for sparse matrices computationally
efficient.

2.3 Example

We will illustrate the relationship between the Cholesky triangle and the graph by considering a
GMRF x with respect to the graph G in Fig. 1. The precision matrix is given by

Q =


× × ×
× × ×
× × ×

× × ×

 ,

where × denotes possible non-zero terms. The only nodes that are not neighbours are nodes 1 and
4 and nodes 2 and 3. Since F (1, 4) = {2, 3} is a separating subset for nodes 1 and 4, then L41 = 0.
However, F (2, 3) = {4} is not a separating subset for nodes 2 and 3, hence L32 is a possibly non-zero
element. The corresponding Cholesky triangle is then given by

L =


×
× ×
× × ×

× × ×

 .

The relationship between L and the conditional dependency in x is easily seen if we express the joint
pdf in terms of L as

π(x1, x2, x3, x4) ∝ exp

−1
2

4∑
k=1

L2
kk

xk +
1

Lkk

4∑
j=k+1

Ljkxj

2 . (6)

The density function of x1 and x4 given x2 and x3 is given by

π(x1, x4|x2, x3) ∝ π(x1, x2, x3, x4) ∝ exp {f1(x1) + f4(x4) − L11L41x1x4} , (7)

1

3

2

4

Figure 1: The graph G .
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where f1(x1) and f4(x4) are functions of x1 and x4, respectively, and do not contain cross-terms x1x4.
Since Q(4, 1) = 0, i.e., x1 ⊥ x4 | x2, x3, then from (7) we must have L41 = 0, as concluded above.

The density function of x2 and x3 given x1 and x4 is given by

π(x2, x3|x1, x4) ∝ π(x1, x2, x3, x4) ∝ exp {f2(x2) + f3(x3) − (L22L32 + L21L31)x2x3} , (8)

where f2(x2) and f3(x3) are functions of x2 and x3, respectively, and do not contain cross-terms
x2x3. Since Q(3, 2) = 0, then from (8) we must have L22L32 + L21L31 = 0. This means that L32 is
zero if and only if at least one of L21 and L31 is zero.

The density function of x2 and x3 given x4 is given by

π(x2, x3|x4) ∝ π(x2, x3, x4) ∝ exp {f2(x2) + f3(x3) − L22L32x2x3} . (9)

If L32 6= 0, then x2 and x3 are not conditionally independent in the marginal distribution.

We will continue with this example later on.

3 GMRFs specified by an extremely sparse Cholesky triangle

3.1 Construction of extremely sparse Cholesky triangle

The sparsity pattern of the Cholesky triangle can be determined from the graph G . We do not
calculate the elements in L that we know is zero. Thus, if we could decrease the number of fill-ins
we could save computations. Here we will present an idea using incomplete, instead of complete,
Cholesky factorisation, which results in an extremely sparse Cholesky triangle.

A number of iterative solution algorithms are used to solve large sets of sparse linear equations. The
incomplete Cholesky factorisation, or LU factorisation for rectangular matrices, has been shown to
be a good preconditioner, significantly reducing the number of iterations needed for convergence. An
incomplete Cholesky triangle of Q is a lower triangular matrix L̃ such that

Q = L̃L̃T + R (10)

where the number of possible non-zero elements in L̃ is smaller than nL.

There are two main strategies to obtain the incomplete Cholesky triangle: fixed-fill strategies and
drop-tolerance strategies. It is also possible to use a combination of these two strategies.

Fixed-fill strategies fix the non-zero pattern of the incomplete Cholesky triangle prior the fac-
torisation. One of the first methods was the ICCG (Incomplete Cholesky and Conjugate Gradient)
method proposed by Meijerink and van der Vorst (1977). They considered two choices of non-zero
patterns: let the sparsity pattern of L̃ be equal to the sparsity pattern of the lower triangular of Q,
or allow fill-ins. A modification of this method was given by Gustavson (1978). This has later been
denoted the ILU(p) factorisation, where p is the level of fill. ILU(0) is to use the non-zero pattern
of Q. For p = 1 the sparsity pattern of L̃1 is equal to the sparsity pattern of the lower triangular of
L̃0L̃0

T obtained from ILU(0). See also Saad (1996) for a discussion of level of fill. A disadvantage of
the fixed-fill strategies is that the dropped elements in L̃ do not depend on the value of the elements
in Q, only the structure of Q.
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Drop-tolerance strategies includes only elements in L̃ if they are larger than a given threshold
parameter. A possible choice of the threshold parameter is given by Munksgaard (1980): if the size
of the element relative to the diagonal elements of its row and column is smaller than a given drop
tolerance, it is not included in L̃. A disadvantage of the drop tolerance strategies is that the non-zero
pattern of L̃ is determined dynamically. Thus, all the elements in L̃ must be calculated to see if they
can be neglected.

3.2 Defining GMRF models using extremely sparse Cholesky triangles

Incomplete sparse Cholesky triangles have mostly been used as preconditioners as mentioned above.
Here the idea is to use incomplete Cholesky factorisation to construct a sparse L̃-matrix for x. The
new model is then defined by the precision matrix

Q̃ = L̃L̃T (11)

One should note that this will only be an approximate model. However, if we can construct very fast
models that reduce the CPU time required for sampling from the model, then it can be preferable
to have an approximate model.

Using a different precision matrix means that the graph of the original model have changed. We will
come back to the difference between the original and the new precision matrix and see what influence
this has on the graph of the model. But first we will demonstrate how we can construct a very sparse
L̃ representation of x in an approximate model of a stationary Gaussian field.

Stationary Gaussian fields are commonly used in spatial modelling, e.g., in geostatistical applications.
However, a Gaussian field with long correlation length will be computationally demanding. Rue and
Tjelmeland (2002) approximates stationary Gaussian fields by GMRFs with small neighbourhoods.
This results in a quite sparse L matrix, and we will show that we can make this even sparser.

Consider a Gaussian field on a 40× 40 torus. We use an exponential correlation function with range
= 16, and precision = 1.0. Using the approximative technique as described in Rue and Tjelmeland
(2002) and Rue and Held (2005) a GMRF with a 5 × 5 neighbourhood is fitted to the Gaussian
field. Figure 2 (a) shows the precision matrix Q. Note that the precision matrix is cyclic due to the
boundary conditions on a torus. The corresponding Cholesky triangle L is shown in Fig 2 (b). We
see that the band structure is preserved in the factorisation, but due to the cyclic precision matrix
L has non-zero elements in the last rows. The properties of band matrices and matrices where only
a part of the matrix has a band structure will be discussed later.

In general, we would use a permutation matrix to reorder the elements in Q to obtain a low number
of fill-ins. We will not do this here, since the difference between complete and incomplete Cholesky
factorisation in this case will be most visible with the original Q matrix.

Using incomplete Cholesky factorisation we can reduce the number of non-zero elements in L. The
incomplete Cholesky triangle is calculated column-wise, and for each column j, the elements that are
smaller in magnitude than the local drop tolerance (droptol× (

∑n
i=1 |Qij |2)1/2) are removed from L̃.

Then the rows are scaled by the square root of the diagonal entries in that column. Setting droptol = 0
produces the complete Cholesky factorisation. Figures 3 (a) and (b) show the incomplete Cholesky
triangle for droptol = 0.0005 and 0.005, respectively. It is clear that nL̃ decreases with increasing
value of droptol.

The original covariance matrix Σ = Q−1 is shown in Fig. 4 (a). The resulting covariance matrices
Σ̃ = Q̃−1 using droptol = 0.0005 and 0.005 are shown in Figs. 4 (b) and (c), respectively. It is
possible to reduce the number of non-zero elements in L to less than one third and still have almost
the same covariance matrix when using droptol = 0.0005. However, if we use too high value of
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(a) (b)

Figure 2: (a) Q with nQ = 20 800. (b) L with nL = 247 600.

droptol, e.g. 0.005, then the resulting covariance matrix will be quite different from the original.
One should also note that the covariance matrices in (b) and (c) are not stationary, due to some of
the elements in the Cholesky triangle have been removed. The non-stationarity is most significant
in (c).

The spatial covariance function for the node in the center of the graph is shown in Fig. 5 for the
different cases. The incomplete Cholesky factorisation with droptol = 0.0005 produces a very similar
covariance function compared with the original model. If we use droptol = 0.005, then the peak is
much lower. Thus, this is too large value of droptol.

400 800 1200 1600

400

800

1200

1600

(a)

400 800 1200 1600

400

800

1200

1600

(b)

Figure 3: (a) L̃ with droptol = 0.0005 and nL̃ = 69 811. (b) L̃ with droptol = 0.005 and nL̃ = 33 839.
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(a) (b) (c)

Figure 4: Covariance matrices. (a) Σ = Q−1. (b) Σ̃ = Q̃−1, droptol = 0.0005. (c) Σ̃ = Q̃−1, droptol = 0.005.
Σ̃ is not stationary.

Figure 6 (a) shows a sample from the GMRF model using complete Cholesky factorisation. A sample
using incomplete Cholesky factorisation with droptol = 0.0005 is shown in Fig. 6 (b), where we have
used the same random vector z as in (a).

4 Effect on precision matrix when using incomplete Cholesky fac-
torisation

4.1 Difference between the original and new precision matrix

Replacing the Cholesky triangle L with a sparser matrix L̃ will reduce the computational cost. In
the example we could see that it was possible to reduce the number of non-zero elements to less than
one third without getting any significant change in the covariance matrix. However, even though
the covariance matrix is still almost the same, the new precision matrix Q̃ will be different from the
original precision matrix Q. Thus, the graph in the new model will also be different from the original
graph.

20
4020

40

0.5

1

(a)

20
4020

40

0.5

1

(b)

20
4020

40

0.5

1

(c)

Figure 5: Spatial covariance function for node 820 (in the centre of the graph). (a) Original values, (b)
droptol = 0.0005, (c) droptol = 0.005.
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Figure 6: Samples from the GMRF model with zero mean and precision = 1.0 using (a) complete Cholesky
factorisation and (b) incomplete Cholesky factorisation with droptol = 0.0005. The random vector z is the
same.

In order to see the difference between the new model with the extremely sparse precision matrix and
the original model we have to examine the difference between Q and Q̃. Then we will discuss if the
new model can be useful in GMRFs. Consider replacing only one non-zero element in L with 0.

Theorem 1 Let Q > 0 and L its lower triangular Cholesky triangle so that Q = LLT . Fix i∗ > j∗

such that Li∗j∗ 6= 0 and let

L̃ij =

{
Lij if ij 6= i∗j∗

0 if ij = i∗j∗
,

where Q̃ = L̃L̃
T

> 0. Then

Qij 6= Q̃ij ⇐⇒ i = i∗, j ≥ j∗ and Ljj∗ 6= 0. (12)

Proof. From Q = LLT we obtain for i ≥ j that Qij =
∑j

k=1 LikLjk and similarly Q̃ij =∑j
k=1 L̃ikL̃jk. Since L differ from L̃ only in the i∗j∗th term, only those Q̃ij ’s which include L̃i∗j∗ in

the sum will differ from Qij , i.e. for j ≥ j∗,

Q̃i∗j − Qi∗j = L̃i∗j∗Lj∗j − Li∗j∗Ljj∗

= −Li∗j∗Ljj∗ . (13)

Hence, Q̃i∗j 6= Qi∗j iff Ljj∗ 6= 0 since Li∗j∗ 6= 0 by assumption. ¥
The difference between Q and Q̃ in the general case can then be found by recursion.

Choosing j = j∗ in (13) the following Corollary follows, since Lj∗j∗ > 0.

Corollary 1 If Qi∗j∗ = 0 then Q̃i∗j∗ 6= 0.

So, incomplete Cholesky factorisation of a sparse matrix Q will generally lead to a less sparse matrix
Q̃. Including more elements in Q̃ corresponds to including more edges in G , i.e., including conditional
dependency.
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One should note that if originally Lij 6= 0, it means that the nodes j and i are either neighbours, or
F (j, i) is not a separating subset for j and i. Including more edges in G will not change this fact.
Hence, we can not use (4) and (5) to check that L̃ij = 0. This means that for other Q̃ > 0 with the
same graph, L̃ij is not necessarily zero. We will come back to this problem later.

To illustrate Theorem 1 consider the given Q matrix and its lower Cholesky triangle L in Figs. 7 (a)
and (b), respectively. The non-zero elements are black, while the zero elements are white. Select a
non-zero element in L, e.g., element (8,3) and let

L̃ij =

{
Lij if i, j 6= 8, 3
0 if i, j = 8, 3

.

Q̃ and L̃ are shown in Figs. 7 (c) and (d). Using Theorem 1 we can predict which elements Q̃ij that

10 20 30 40

10

20

30

40
10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40
10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

(a) (b)

(c) (d)

(e)

Figure 7: (a) Precision matrix Q, (b) Cholesky triangle L, (c) new precision matrix Q̃ = L̃L̃T , (d) modified
Cholesky triangle L̃ with L̃8,3 = 0, (e) predicted Q − Q̃.
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1

3

2

4

Figure 8: The graph when Q̃3,2 6= Q3,2.

will differ from Qij . The result is shown in Fig. 7 (e), where the black elements indicate Q̃ij 6= Qij .
The predicted result is equal to the difference Q − Q̃.

4.2 Example

We now go back to the example in Fig. 1, and use this simple graph to demonstrate the results in
Theorem 1. Let

L̃ij =

{
Lij if i, j 6= 3, 2
0 if i, j = 3, 2

.

From (12) we have that Q̃ij 6= Qij ; i = 3, j = 2, 3, 4. Since Q32 = 0, then Q̃32 6= 0. The result is

L̃ =


×
× ×
× ×

× × ×

 Q̃ =


× × ×
× × √ ×
× √ √ √

× √ ×

 ,

where
√

denotes Q̃ij 6= Qij . This graph is shown in Fig. 8. Since Q̃32 6= 0, then x2 and x3 are no
longer conditionally independent in the joint distribution. This can also be seen from (8), where now
L̃3,2 = 0 while L̃21 and L̃31 are possibly non-zero elements.

However, since L̃3,2 = 0, then x2 and x3 are conditionally independent in the marginal distribution
(from (9)). Also note that F (2, 3) = {4} is not a separating subset for 2 and 3. If we add small
elements on the diagonal, or just change Q̃(1, 1), then the corresponding L̃ matrix will not have
L̃32 = 0.

In order to obtain L̃ij = 0 for all Q̃ > 0 with the same graph, we can assure F (j, i) to be a separating
subset for j and i by removing edges in G , i.e., remove conditional dependency. Then (4) and (5)
are satisfied.

If we want L32 = 0 for all Q̃ > 0 for the same graph, we must assure that F (2, 3) = {4} is a separating
subset for 2 and 3. This is obtained by removing the edge between node 1 and 2 or between node 1
and 3. These graphs are shown in Figs. 9 (a) and (b), respectively. Consider the graph in Fig. 9 (a)
with precision matrix Q̃ and Cholesky triangle L̃

L̃ =


×

×
× ×

× × ×

 Q̃ =


× ×

× ×
× × ×

× × ×

 .
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Figure 9: The graph when putting (a) Q̃1,2 = Q̃2,1 = 0 and (b) Q̃1,3 = Q̃3,1 = 0.

From (8) we can see that x2 and x3 are conditionally independent in the joint distribution, Here
F (2, 3) = {4} will be a separating subset for 2 and 3. Thus, L̃32 = 0 for all Q̃ > 0. The result from
the graph in Fig. 9 (b) will be similar. However, this approach is not advisable, since we don’t want
to remove some of the original edges and thereby getting a significantly different covariance matrix.

4.3 Results for band matrices

The ordering of the nodes is important for the sparsity pattern of L. If Q is a band matrix, then
the computational cost in the Cholesky factorisation can be reduced (see Rue and Held (2005)) due
to the following well known result. If Q > 0 is a band matrix with bandwidth bw, i.e., Qi+k,i = 0 for
k > bw, then F (i, i + k) separates i and i + k when k > bw. Hence, Li+k,i = 0 for k > bw, and L has
bandwidth bw.

This result can be generalised to the case where Q is not a complete band matrix, as in Fig. 2. If Q
has a band structure in parts of the matrix, this will be preserved in L.

Theorem 2 Let Q > 0 and L its lower triangular Cholesky triangle so that Q = LLT . Then

Qi,1:j = 0 ⇐⇒ Li,1:j = 0. (14)

Proof. If Qi,1:j = 0, then F (k, i) is a separating subset for node k and i, k = 1, .., j. From (4) and
(5) it follows that Li,1:j = 0. If Li,1:j = 0, then Qi,1:j = 0 since Qij =

∑j
k=1 LikLjk. ¥

If Q is a band matrix, then the corresponding Q̃ resulted from incomplete Cholesky factorisation
will have the same bandwidth.

Theorem 3 Let Q > 0 be a band matrix with bandwidth bw > 0, and L its lower triangular Cholesky
triangle so that Q = LLT and L has bandwidth bw. Fix i∗ > j∗ such that Li∗j∗ 6= 0 and let

L̃ij =

{
Lij if ij 6= i∗j∗

0 if ij = i∗j∗
.

Then Q̃ = L̃L̃T has bandwidth bw.
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(a) (b)

Figure 10: Q̃ matrices corresponding to the L̃ matrices in Fig. 3. (a) Q̃ with droptol = 0.0005 and
nQ̃ = 129 563. (b) Q̃ with droptol = 0.005 and nQ̃ = 62 260.

Proof.

Q̃i+k,i =
i∑

j=1

L̃i+k,jL̃ij = 0 for k > bw,

since L̃i+k,j = 0 for k > bw and j ≤ i. ¥
If Q is not a band matrix, but only part of the matrix has a band structure, then the band structure
is preserved during the incomplete Cholesky factorisation. When Li,1:j = 0, then L̃i,1:j = 0, which
results in Q̃i,1:j = 0 since Q̃ij =

∑j
k=1 L̃ikL̃jk. An example of a matrix where only part of the matrix

has a band structure is in Fig. 2 (a), where the cyclic boundary conditions prevents this from being
a band matrix. The corresponding precision matrices Q̃ are shown in Fig. 10. We see that the
matrices keep their band structure apart from the rows with the cyclic boundary conditions. They
are also more dense than the original Q with nQ = 20 800.

Another example where only part of the precision matrix has a band structure is the following case.
Let µ ∼ N (0, 1) and

x | µ ∼ N (µ1, Q), (15)

where x has dimension n and Qij = 0 for |i− j| > p and non-zero otherwise. This corresponds to an
AR(p) model for x | µ. The joint distribution for (x, µ) is given by

π(x, µ) = π(µ)π(x|µ) ∝ exp
{
−1

2
[xT Qx − 2µxT Q1T + µ2(1 + 1T Q1)]

}
. (16)

Thus, the full precision matrix will be Q
... Q1

. . . . . .

1T Q
... 1 + 1T Q1

 , (17)

where the upper left part of the matrix has bandwidth p.
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Figure 11: (a) Sample from (18). (b) Q̃ + I with nQ = 129 563. (c) L with nL = 247 600.

4.4 Use of new model in applications

Recall that when we use incomplete Cholesky factorisation, the model is only valid for the corre-
sponding precision matrix Q̃. If we condition on some of the nodes or on data, then the values in
the precision matrix will change, and the corresponding Cholesky triangle will be different from L̃.
The elements L̃ij 6= Lij are zero only for the given Q̃, and they will be different from zero when we
change the values in Q̃. Thus, the Cholesky triangle will again have the same number of fill-ins as
the original L, and we will not save any computation time.

To illustrate this problem consider the Gaussian field model presented earlier, and use the Q̃ and
L̃ with droptol = 0.0005 as the new model. Let y be the observed data, where y | x ∼ N (x, I).
Then, the density of x conditioned on the data is

π(x|y) ∝ π(x)π(y|x)

∝ exp
{
−1

2
xT (Q̃ + I)x + yT x

}
.

(18)

Figure 11 (a) shows a sample from the density in (18), where we have used the sample from the full
model in Fig. 6 (a) as the data y. The new precision matrix (Q̃ + I) is shown in Fig. 11 (b) and
the corresponding Cholesky triangle is shown in Fig. 11 (c). We see that the sparsity pattern of this
matrix is equal to the original L in Fig. 2 (b).

The same problem will occur in MCMC algorithms. The Cholesky triangle will depend on the values
of the variables in the current state and the proposed state, and thus it will change for each iteration.
Hence, we have to compute each L̃ij to check if it can be neglected, and there will be no gain in
computation time.

5 Discussion

In this note we have investigated the option of specifying a GMRF by an extremely sparse Cholesky
triangle L̃ obtained from incomplete Cholesky factorisation of the precision matrix of the original
model. We include only those elements that are larger than a given threshold parameter, and we
are able to reduce the number of non-zero elements in L considerably. The resulting model has
propoerties close to the original one. Computing with this model is extremely efficient, and the
results are quite good compared with the original model. However, if we select too high threshold
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parameter, then the resulting covariance matrix will be quite different from the original, and the
results are not good.

The problem with incomplete Cholesky factorisation, is that the resulting Cholesky triangle is only
valid for a specific precision matrix. In the case where we condition on some of the nodes or on data,
the values in the precision matrix will change, and the elements in L̃ that were removed because
they were smaller than a threshold parameter are no longer zero. Thus, for applications of interest
we have to compute each L̃ij to check if it can be neglected, and we will not save any computation
time.
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