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Abstract

Michael, Schucany & Haas (1976) presented a method for the simulation of random variates
using transformations with multiple roots. A generalization of this method to include vector-
valued transformations is given here.

A short introduction to the inverse Gaussian distribution is given. The joint distribution
of the sufficient statistic is well known, but the proof given here based on the Basu theorem
is possibly new.

The multiple roots simulation algorithm is related to the method for doing Monte Carlo
simulations conditioned on a sufficient statistic presented by Lindqvist & Taraldsen (2005).
The method is explained here by application on the inverse Gaussian distribution. The result
is in this case an academic alternative to the much simpler and preferable method discovered
by Cheng (1984) for doing Monte Carlo simulations from the inverse Gaussian distribution
conditioned on the sufficient statistic. This means that the inverse Gaussian can be used as
a non-trivial test case for a general numerical implementation of the sufficient conditional
Monte Carlo method.

Keywords: Inverse Gaussian distribution; conditional distribution; Monte Carlo simulation;
nuisance parameters; point estimation; sufficiency

1 Introduction

Schrödinger (1915) and Smoluchowsky (1915) proved independently that the inverse Gaussian
IG(d/v, d2/β) distribution is the distribution of the travel time over a distance d for a linear
Brownian motion which tends to move with speed v with a diffusion constant β. The corresponding
random distance D has a Gaussian distribution Normal(vt, βt) in an experiment with a fixed time
t. In recent years the inverse Gaussian distribution has played versatile roles in models of stochastic
processes including the theory of generalized linear models, reliability and lifetime data analysis,
accelerated life testing, and repair time distributions (Johnsen et al. 1994, vol.1, p.291).

A summary of the properties of the inverse Gaussian distribution is given by Johnsen et al.
(1994, vol.1, p.259-298). For further information the reader is referred to the three books by
Chhikara & Folks (1989), Seshadri (1993), and Seshadri (1999). A brief self-contained introduction
to some of the most important properties of the inverse Gaussian distribution is given below, but
in the next section a result of independent interest is presented.
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2 Generating Random Variates Using Transformations with

Multiple Roots

It is well known that an arbitrary real random variableX can be generated from a U ∼ Uniform(0, 1)
due to X ∼ F−1(U), where F is the cumulative distribution of X. This holds also when F is not
invertible, with a suitable interpretation of F−1. More generally, a random variable X can be gen-
erated from a random variable Z if there is a function g such that X ∼ g(Z). A classical example
is given by Box & Muller (1958) who demonstrated how two independent uniform variables can
be transformed in a simple way to give two independent Gaussian variables.

Consider the problem of generation of a random vector X where

g(X) = Z (1)

and where the random vector Z is easy to generate. Michael et al. (1976) demonstrated how this
can be used to generate X for the case of real variables, and applied the method to equation (8)
given below in order to generate samples from the inverse Gaussian distribution. A generalization
of the main result of Michael et al. (1976) to the multidimensional case will be presented now.
The proof can be considered to be simpler than the proof given by Michael et al. (1976).

It will be assumed that there is a countable number of roots of equation (1) for each Z, and the
number of roots may depend on Z. Intuitively it could at first sight seem impossible to generate
X from generation of Z, but the solution turns out to be obvious:

1. Generate Z. Let z denote the result.

2. Generate Xz from the conditional distribution of X given Z = z. Let x denote
the result.

ALGORITHM 1

The resulting x is clearly a sample from the distribution of X even without assuming any
relation (1) between the variables X and Z. It is here, as always, assumed that the random
variables are all defined on a common underlying probability space.

The second observation is that equation (1) can be used to simplify the simulation from the
conditional distribution. The conditional distribution is concentrated at {x | g(x) = z}, and is
hence discrete when there is a countable number of roots xr. Sufficient smoothness of g gives

pr0 = P (X = xr0 | g(X) = z) =
f(xr0)/ |g′(xr0)|∑
r f(xr)/ |g′(xr)|

(2)

The smoothness of g relatively to the probability density f of X must in particular be such that
the absolute value |g′(xr)| of the Jacobi determinant is different from zero. A sufficient condition
is that the domain of g can be partitioned into a null set and a countable union of open sets
for which the change-of-variables theorem (Rudin 1987, p.153) can be applied. Equation (2) is a
generalization of equation 3 given by Michael et al. (1976).

Let v0 = 0, vr =
∑

r′≤r pr′ , and V ∼ Uniform(0, 1). The conditional simulation required in
Algorithm 1 can then be done by:

1. Generate V . Let v denote the result.

2. Return x = xr, where xr is the unique root such that vr−1 < v ≤ vr.

ALGORITHM 2

3



The major difficulty in the combined algorithm is the determination of the roots, and the
calculation of the corresponding weights. In favorable cases this can be done analytically. Both
possibilities will be exemplified in the following.

The difficult part of the proof of equation (2) is to prove that the denominator
∑

r f(xr)/ |g′(xr)|
is the density of Z = g(X). In some cases this density is explicitly given, but more generally it can
be found by simulation of Z. This information is useful in cases where the roots must be found
numerically and the number of roots is unknown. It will typically not be necessary to determine
all the roots.

3 The Inverse Gaussian Distribution

The one-parameter Wald probability density f with shape parameter φ > 0 is given by

f(x) =

√
φ

2π
eφx−3/2 exp

[
−φ
2
(x+ x−1)

]
, x > 0 (3)

The notation X ∼ Wald(φ) means that the above f is the density of the random variable X.
If X ∼ Wald(φ), then the corresponding scale family given by the variables Y = µX gives the
inverse Gaussian family. The notation Y ∼ IG(µ, λ) is used, where in this case λ = φµ. One may
also write

IG(µ, µφ) = µ IG(1, φ) = µWald(φ) (4)

Together with the Gaussian and gamma distributions, the inverse Gaussian completes the trio of
families that are both an exponential and a group family of distributions (Lehmann & Casella 1998,
p.68).

Equation (4) gives the properties of the IG(µ, λ) distribution from the properties of the
Wald(φ) = IG(1, φ) distribution. For most purposes it is hence sufficient to discuss the prop-
erties of the variable X ∼ IG(1, φ). A short calculation gives the characteristic function

EeitX = exp
[
(1−

√
1− 2iφ−1t)φ

]
(5)

where
√· denotes the principal value of the complex square root. From equation (5) the expectation

and the variance are respectively

EX = 1, VarX = φ−1 (6)

The density of X is unimodal with the mode at

xmode =
√

1 + (3φ−1/2)2 − 3φ−1/2 (7)

For small φ the distribution is localized close to 0, and for large φ the distribution is localized
close to 1 and the shape is close to the Gaussian distribution. The log-normal distribution gives
an even better approximation.

Shuster (1968) discovered the following fundamental property

g(X) :=φ
(X − 1)2

X
= Z ∼ χ2

1 (8)

The proof follows from calculus and equation (3). This property will be used more than once in
the following.
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4 Sufficient Statistics

Let X1, X2, . . . , Xn be a random independent sample from IG(µ, λ). The Halmos-Savage factor-
ization theorem (Halmos & Savage 1949) together with equation (3) and (4) give that the sample

meanX = (X1+· · ·+Xn)/n and the sample harmonic mean X̃ = 1/(1/X) = n/(1/X1+· · ·+1/Xn)
together is a sufficient statistic. An alternative sufficient statistic is given by (X,V ), where

V = 1/X − 1/X (9)

and V ∼ (nλ)−1χ2
n−1 is independent of X ∼ IG(µ, nλ). A short and possibly new proof of this

based on equation (8) and the Basu theorem will be given next. The characteristic function in (5)
gives X ∼ IG(µ, nλ), and the rest of the proof follows from the key identity

λ

µ2

∑

i

(Xi − µ)2
Xi

= λnV +
λn

µ2

(X − µ)2
X

(10)

Equation (8) gives that left-hand side is a χ2
n variable, and that the last term is a χ2

1 variable.
A first consequence of this is that the distribution of V only depends on the parameter λ, and is
hence a pivotal statistic with respect to the parameter µ. Since, for a fixed λ, X is a complete
and sufficient statistic for µ the Basu theorem gives the stated independence of V and X. Finally,
this independence gives the uniqueness result required for the conclusion λnV ∼ χ2

n−1.

The independence of X and V for fixed n ≥ 2 for positive non-constant i.i.d. variables Xi de-
termines the distribution of Xi to be in the class IG(µ, λ), where the case µ =∞ is included. This
characterization was proven by Letac & Seshadri (1985) and a proof is also found in the monograph
by Seshadri (1993, p.97-100). This impressive result corresponds to the similar characterization of
the Gaussian distribution in terms of independence of the sample mean and the sample variance
and existence of the first moment. There is also a corresponding result for gamma variables: If X1

and X2 are independent nondegenerate random variables, then X1 +X2 is independent of X1/X2

if and only if there exist a constant c such that cX1 and cX2 have standard gamma distributions
(Johnsen et al. 1994, vol.1, p.350).

5 Simulation from the Inverse Gaussian Distribution

Simulation from IG(µ, λ) is reduced to simulation from IG(1, φ) due to IG(µ, µφ) = µ IG(1, φ).

It seems possible to use rejection sampling (Ripley 1987, p.60) based on approximation by the
log-normal distribution to sample from the Wald distribution. Other possibilities are given by
adaptive rejection methods or Markov chain methods (Evans & Swartz 2000). Inversion based on
the cumulative distribution (Johnsen et al. 1994, vol.1, p.262)

F (x) = Φ
[
(x− 1)

√
φ/x

]
+ e2φΦ

[
−(x+ 1)

√
φ/x

]
(11)

where Φ is the standard Gaussian cumulative distribution, is also possible. Neither of these
possibilities will be used in the following.

Michael et al. (1976) demonstrated that Algorithm 1 gives a simple algorithm. The roots of
g(x) = z in equation (8) are

x1 = 1− 1

2φ
(
√
z2 + 4φz − z), x2 = 1/x1 (12)

and it can be observed that x1 < 1 < x2. The conditional probability of X = x1 from equation (2)
is

p1 = P (X = x1 |Z = z) = 1/(1 + x1) (13)
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Note that p1 > 1/2 since x1 < 1. The resulting algorithm for sampling from IG(1, φ) is:

1. Generate independent (U,Z) with U ∼ Uniform(0, 1) and Z ∼ χ2
1. Let (u, z)

denote the result.

2. Let x = x1(z;φ) = 1− 1

2φ (
√
z2 + 4φz − z).

3. If (1 + x)u > 1, let x = 1/x1.

ALGORITHM 3

The algorithm can also be summarized by the single transformation

x = ψ(u, z;φ) = [(1 + x1)u ≤ 1] · x1 + [(1 + x1)u > 1] · 1/x1 (14)

defined by indicator functions. A similar transformation results also in the more general case with
an arbitrary number of roots.

6 Sufficient Conditional Simulation from the Inverse Gaus-

sian Distribution

The concept of sufficiency is due to Fisher (1920) according to Savage (1976, p.453), Rao (1992,
p.42), and Lehmann & Casella (1998, p.143). It is a part of the foundations of statistics through the
sufficiency principle, and it is practically important with applications for example in construction
of optimal estimators and nuisance parameter elimination (Halmos & Savage 1949, Welsh 1996,
Lehmann 1997, Lehmann & Casella 1998). The required conditioning may however be difficult to
implement in practical problems. Lindqvist & Taraldsen (2005) present the sufficient conditional
Monte Carlo method as one alternative approach. This will be applied here to give an algorithm
for the simulation of samples from the inverse Gaussian distribution conditioned on the sample
mean and the sample harmonic mean.

Let U be a n × 2 matrix of independent random variables where the first column consist of
Uniform(0, 1) variables and the second column consist of χ2

1 variables. Let θ = (µ, φ) and define
the column valued function χ(u, θ) by

χi(u, θ) = µψ(ui1, ui2;φ) (15)

where ψ is defined in equation (14). Define also

τ(u, θ) = (χ(u, θ), χ̃(u, θ)), (16)

where χ is the arithmetic mean and χ̃ is the harmonic mean. It follows that χ(U, θ) is an inde-
pendent sample from IG(µ, µφ) and τ(U, θ) is a sufficient statistic.

Choose a possibly improper density π on the first quadrant {(µ, φ) |µ > 0, φ > 0}, and let Θ
have this density and be independent of U . Let t 7→ wt(u) be the density of τ(u,Θ). An algorithm
for conditional simulation from X |T = t is then (Lindqvist & Taraldsen 2005):
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1. Generate V from a density proportional to wt times the density of U . Let v be
the result.

2. Generate Θt from the conditional distribution of Θ given τ(v,Θ) = t.

3. Return Xt = χ(V,Θt).

ALGORITHM 4

Generally speaking Step 2 is comparable with the initial conditional problem, but this switch
from U to Θ leads to simplifications in the present case since there is a finite number of solutions,
and simulation from the conditional distribution can be done as described in Algorithm 2.

The roots can be found by first determining φ’s from the equation τ1(u, µ, φ)t2 = τ2(u, µ, φ)t1,

which reduces to ψ(ui1, ui2;φ)t2 = ψ̃(ui1, ui2;φ)t1. Calculus gives that the function φ 7→ x1(z;φ)
is strictly increasing, x1(z; 0+) = 0, and x1(z;∞) = 1. The equation for φ has therefore at most n
discontinuities, and these can be found explicitly. The roots φ can afterwards be found numerically
in each of the m + 1 intervals given by the m ≤ n discontinuities. Substitution gives then the
roots θr(u, t).

The weight is computed from wt(u) =
∑

r π(θr)/J(u, θr), and this is also needed for the
determination of pr. The density π should be chosen such that the sampling of V is simplified.
The choice π(µ, φ) = µ removes the dependence on µr. This follows since the required Jacobi
determinant J = |∂θτ(u, θ)| can be calculated analytically, and is given by

J = J(u, θ) = µt2

∣∣∣∣∣t2t1
(
ψφ
ψ2

)
− ψφ

∣∣∣∣∣ (17)

This describes the sufficient conditional Monte Carlo applied to the case of the inverse Gaussian
distribution. Further details, implementation, and testing of the algorithm is not given since there
exist a much simpler method for conditional simulation in this case. This simple method was
discovered by Cheng (1984). It can be mentioned that in Science Citation Index there are only
three references to this important discovery. The conditional density of X1 is also explicitly
known (Seshadri 1999, p.19)(Chhikara & Folks 1989), and this means in particular that most
UMVU estimators can be computed easily numerically. In conclusion this means that the inverse
Gaussian can be used as a non-trivial test case for a general numerical implementation of the
sufficient conditional Monte Carlo method.
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