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Abstract

Many commonly used models in statistics can be formulated as Hierarchical Gaussian Markov
random field (GMRF) models. These are characterised by assuming a (often large) GMRF as the
second stage in the hierarchical model and a few hyperparameters at the third stage. Markov
chain Monte Carlo is the common approach to do inference from such models. The variance of
the Monte Carlo estimates is Op(M−1/2) where M is the number of samples in the chain so, in
order to obtain precise estimates of marginal densities, say, we need M to be very large.

Inspired by the fact that often one-block and independence samplers can be constructed for
hierarchical GMRF models, we will in this work investigate whether MCMC is really needed to
estimate marginal densities, which often is the goal of the analysis. By making use of GMRF-
approximations, we show by typical examples that marginal densities can indeed be very precisely
estimated by deterministic schemes. The methodological and practical consequence of these find-
ings are indeed positive; We conjecture that for most hierarchical GMRF-models there is really
no need for MCMC based inference to estimate marginal densities. Further, by making use of
numerical methods for sparse matrices the computational costs of these deterministic schemes are
nearly instant compared to the MCMC alternative.
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1 Introduction

A Gaussian Markov random field (GMRF) x = {xi : i ∈ V} is a n = |V|-dimensional Gaussian random
vector with additional conditional independence or Markov properties. Assume for simplicity that
V = {1, . . . , n}. The conditional independence properties can be represented using an undirected
graph G = (V, E) with vertices V and edges E , so that xi and xj are conditional independent given
the remaining elements in x if and only if {i, j} 6∈ E . We then say that x is a GMRF with respect
to G. The edges in E are in one-to-one correspondence with the non-zero elements of the precision
matrix of x, Q, in the sense that {i, j} ∈ E if and only if Qij 6= 0 for i 6= j. When {i, j} ∈ E we say
that i and j are neighbours, which we denote by i ∼ j.

GMRFs are also known as conditional auto-regressions (CARs) following seminal work of Besag
(1974, 1975). GMRFs (and its intrinsic versions) have a broad use in statistics, with important
applications in structural time-series analysis, analysis of longitudinal and survival data, graphical
models, semiparametric regression and splines, image analysis and spatial statistics. For references
and examples, see Rue and Held (2005, Ch. 1).

One of the areas where GMRF are mostly used is hierarchical models. A hierarchical model is
characterised by several stages of observables and parameters. Typically the first stage consists in
distributional assumptions for the observables dependent on latent parameters. For example if we
observe a time series of counts y, we may assume a Poisson model with unknown mean λi for yi,
i ∈ D: yi ∼ Po(λi). Given the parameters of the observation model, we often assume the observations
to be conditionally independent. In the second stage we define a prior model for the latent parameters
λi or, more often, for a particular function of them, for example in the Poisson case we can choose
an exponential link and model xi = log(λi). Here GMRF provide with a flexible tool to model the
dependence between the latent parameters and thus, implicitly, the dependence between the observed
data. This dependence can be of various kind, such as temporal, spatial, or even spatiotemporal. At
the third stage, we assign prior distributions to the unknown hyperparameters of the GMRF, θ, say,
typically precision parameters. The posterior of interest, is then

π(x,θ | y) ∝ π(x | θ)π(θ)
∏
i∈D

π(yi | xi). (1)

Most hierarchical GMRF-models can be written in this form. The main goal is often to compute
posterior marginals, like

π(xi | y) =
∫

θ

∫
x−i

π(x,θ | y) dx−i dθ (2)

for each i and (sometimes also) posterior marginals for the hyperparameters θj . Since analytical
integration is usually not possible for the posterior π(x,θ|y), it is common to use MCMC-based
inference to estimate the posterior marginals. These marginals can then be used to compute marginal
expectations of various statistics. Although single-site schemes are always possible, they may converge
slowly due to the hierarchical structure, we refer to (Rue and Held, 2005, Ch. 4) for further discussion.
In the case of disease mapping, Knorr-Held and Rue (2002) discuss various blocking strategies for
updating all the unknown variables to improve the convergence, and Rue and Held (2005, Ch. 4)
develop these ideas further.

The main idea in all blocking strategies for (1), is to make use of the fact that the full conditional
for x

π(x | θ,y) ∝ exp

(
−1

2
xT Qx +

∑
i∈D

log π(yi|xi)

)
(3)

can often be well approximated with a Gaussian, by matching the mode and the curvature at the
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mode. The approximation will then be

π̃(x | θ,y) ∝ exp
(
−1

2
(x− µ)T (Q + diag(c))(x− µ)

)
(4)

where µ is the modal value of π(x | θ,y). Note that µ depends on θ but we avoid indicating this
dependence explicitly to simplify the notation. The terms of vector c are due to the second order
terms in the second order Taylor expansion of

∑
log π(yi|xi) at the modal value µ. We denote the

approximation in (4) the GMRF-approximation. Note that (4) depends on θ. One fact that is
important computationally is that since each yi, by assumption, depends only on xi, this Gaussian
approximation will also be a GMRF with respect to the same graph.

Following Knorr-Held and Rue (2002) and Rue and Held (2005, Ch. 4), we can often construct a
one-block sampler for (x,θ), which proposes the new candidate (x′,θ′) as

θ′ ∼ q(θ′ | θ), and x′ ∼ π̃(x | θ′,y) (5)

and then accept/reject (x′,θ′) jointly. This one-block algorithm, is made possible in practise by
the outstanding computational properties of GMRFs through numerical algorithms for sparse ma-
trices (Rue, 2001; Rue and Held, 2005). GMRFs of size up to 105 are indeed tractable.

In those cases where the dimension of θ is small (less than three, say) it is then possible to derive an
independence samplers by reusing the GMRF-approximation to approximate the posterior marginal
for θ. The starting point is the identity

π(θ | y) =
π(x,θ | y)
π(x | θ,y)

. (6)

By approximating the denominator with the GMRF-approximation and evaluating the right-hand
side at the modal value for x (for each θ), we obtain an approximation for the posterior marginal,
which we denote by π̃(θ|y). This approximation is in fact the Laplace-approximation suggested by
Tierney and Kadane (1986), which showed that its relative error is O(N−3/2) after renormalisation.
(Here, N is the number of data.) The approximation π̃(θ|y) then replaces q(θ′|θ) in the one-block
algorithm above, hence the independence sampler uses the approximation

π̃(x,θ | y) = π̃(θ | y) π̃(x | θ,y). (7)

A natural question arises here; If we can use π̃(x,θ|y) to construct an independence sampler to
explore π(x,θ|y), why not just compute approximations to the marginals from π̃(x,θ | y) directly?

Since only Gaussians are involved, it is possible to (approximately) compute the marginal for the
xi’s as ̂̃π(xi | y) =

∑
j

π̃(xi | θj ,y) π̃(θj | y) ∆j (8)

by simply summing out θ by some numerical integration rule where ∆j is the weight associated with
θj . This approximation represents ̂̃π(xi | y) as a mixture of Gaussians where the weights, mean and
variances, are computed from (7). The marginals for θi can be computed similarly. However, since
the dimension of x is usually large, it is also possible in practise to compute (8) when these Gaussians
are GMRFs, as then efficient computations are possible.

Although any MCMC algorithm will guarantee the correct answer in the end, the question is what
happens in finite time. The Monte Carlo error is of order Op(M−1/2) where M is the (effective)
number of samples, hence, the strength of the MCMC approach is to provide rough (near) unbiased
estimates rather quickly, on the other side, precise estimates may take unreasonable long time. Any
(deterministic) approximated inference can in fact compete with a MCMC approach, as long as
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the squared bias is comparable with the Monte Carlo error. The most interesting aspect with the
approximation (8), is that it can be computed almost instantly compared to the time any MCMC
algorithm will have to run to obtain any decent accuracy.

The goal of this paper is to investigate how accurate (8) is for some typical examples of hierarchical
GMRF models. In Section 3 we report some experiments using models for disease mapping on
varying scale of difficulty. We compare the marginals of interest as approximated by (8) and as
estimated from a very long MCMC runs. The results are very positive. However, before presenting
the examples, we will in Section 2 discuss how to compute marginal variances efficiently for GMRFs.
These variances are obviously needed to compute (8). This Section also explain (implicit) why
fast computations of GMRFs are possible using numerical methods for sparse matrices. Section 2 is
unavoidably somewhat technical, but it is not necessary for appreciating the results in Section 3. We
end with a discussion in Section 4.

2 Computing marginal variances for a GMRF

GMRFs are nearly always specified by their precision matrix Q meaning that the covariance matrix,
Σ = Q−1 is only implicitly known. Although we can formally invert Q, the dimension n is typically
large (103−105) so inverting Q directly is costly and inconvenient. In this section we discuss a simple
and fast algorithm to compute the marginal variances, applicable for GMRFs with large dimension.
The motivation is the not-well-known matrix identity which appeared in a IEEE conference proceed-
ings (Takahashi et al., 1973), see also Erisman and Tinney (1975). In our setting, the identity is as
follows. Let V DV T be the Cholesky-decomposition of Q where D is a diagonal matrix and V is a
lower triangular matrix with ones on the diagonal, then

Σ = D−1V −1 + (I − V T )Σ. (9)

The upper triangle defines recursions for Σij which provides the basis for fast computations of the
marginal variances of x1 to xn. However, the identity (9) gives little insight in how Σij depends on
the elements of Q and on the graph G. We will therefore, in Section 2.1, derive the recursions defined
in (9) “statistically”, starting from a simulation algorithm for GMRFs and using the relation between
Q and its Cholesky triangle given by the global Markov property. We use the same technique to
prove Theorem 1 which locate a set of indexes for which the recursions are to be solved to obtain the
marginal variances. (A similar result was also given in Takahashi et al. (1973)). We also generalise
the recursions to compute marginal variances for GMRFs defined with additional soft and hard
linear constraints, for example under a sum-to-zero constraint. Practical issues appearing when
implementing the algorithm using the Cholesky triangle of Q computed using sparse matrix libraries,
are also discussed.

The recursions for Σij are applicable to a GMRF with respect to any graph G and generalise the
well known (fixed-interval) Kalman recursions for smoothing applicable for dynamic models. The
computational effort to solve the recursions depends on both the neighbourhood structure in G and
the size n. For typical spatial applications, the costs is O(n log(n)2) when the Cholesky triangle of
Q is available.

2.1 The Recursions

Let L be the Cholesky triangle of Q such that Q = LLT and L is lower triangular. The Cholesky
triangle is the starting point both for producing (unconditional and conditional) samples from a zero
mean GMRF and for evaluating the log-density for any configuration. Refer to Rue and Held (2005,
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Ch. 2) for algorithms and further details. In short, (unconditional) samples are found as the solution
of LT x = z where z ∼ N (0, I). The log-density is computed using that log |Q| = 2

∑
i log Lii.

Since the solution of LT x = z is a sample from a zero mean GMRF with precision matrix Q, we
obtain that

xi | xi+1, . . . , xn ∼ N (− 1
Lii

n∑
k=i+1

Lkixk, 1/L2
ii), i = n, . . . , 1. (10)

Eq. (10) provides a sequential representation of the GMRF backward in “time” i, as

π(x) =
1∏

i=n

π(xi | xi+1, . . . , xn).

Let Li:n be the lower-right (n− i− 1)× (n− i− 1) submatrix of L. It follows directly from (10) that
Li:nLT

i:n is the precision matrix of xi:n = (xi, . . . , xn)T . The non-zero pattern in L is important for
the recursions, see Rue and Held (2005, Ch. 2) for further details about the relation between Q and
L. Zeros in the i’th column of L, Lki relates directly to the conditional independence properties of
π(xi:n). For i < k, we have

−1
2
xT

i:nLi:nLT
i:nxi:n = −xixkLiiLki + remaining terms

hence Lki = 0 is equivalent to: xi and xk are conditional independent given xi+1, . . . , xk−1, xk+1, . . . , xn.
This is similar to the fact that Qij = 0 is equivalent to: xi and xj are conditional independent given
the remaining elements of x. To ease the notation, define the set

F (i, k) = {i + 1, . . . , k − 1, k + 1, . . . , n}, 1 ≤ i ≤ k ≤ n

which is the future of i except k. Then for i < k

xi ⊥ xk | xF (i,k) ⇐⇒ Lki = 0. (11)

Unluckily it is not easy to verify that xi ⊥ xk | xF (i,k) without computing L and checking if Lki = 0
or not. However, the global Markov property provides a sufficient condition for Lki to be zero; If i
and k > i are separated by F (i, k) in G, then xi ⊥ xk | xF (i,k) and Lki = 0. This sufficient criteria
depends only on the graph G. If we use this to conclude that Lki = 0, then this is true for all Q > 0
with fixed graph G. In particular, if k ∼ i then Lki is non-zero in general. This imply that the
Cholesky triangle is in general more dense than the lower triangle of Q.

To obtain the recursions for Σ = Q−1, we note that (10) implies that

Σij = δij/L2
ii −

1
Lii

n∑
k∈I(i)

LkiΣkj , j ≥ i, i = n, . . . , 1, (12)

where I(i) as those k where Lki is non-zero,

I(i) = {k > i : Lki 6= 0} (13)

and δij is one if i = j and zero otherwise. We can compute all covariances directly using (12) but
the order of the indexes are important; The outer loop is i from n to 1 and the inner loop is j from
n to i. The first and last computed covariance is then Σnn and Σ11, respectively.

It is possible to derive a similar set of equations to (12) which relates covariances to elements of Q
instead of elements of L, see Besag (1981). However, these equations does not define recursions.
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Example 1 Let n = 3, I(1) = {2, 3}, I(2) = {3}, then (12) gives

Σ33 =
1

L2
33

Σ23 = − 1
L22

(L32Σ33)

Σ22 =
1

L2
22

− 1
L22

(L32Σ32) Σ13 = − 1
L11

(L21Σ23 + L31Σ33)

Σ12 = − 1
L11

(L21Σ22 + L31Σ32) Σ11 =
1

L2
11

− 1
L11

(L21Σ21 + L31Σ31)

where we also need to use that Σ is symmetric.

Our aim is to compute the marginal variances Σ11, . . . ,Σnn. In order to do so, we need to compute
Σij (or Σji) for all ij in some set S as evident from (12). Let the elements in S be unordered, meaning
that if ij ∈ S then also ji ∈ S. If the recursions can be solved by only computing Σij for all ij ∈ S
we say that the recursions are solvable using S, or simply S is solvable. It is evident from (12) that
S must satisfy

ij ∈ S and k ∈ I(i) =⇒ kj ∈ S (14)

Further, we need that ii ∈ S for i = 1, . . . , n. Of course S = V×V is a such set, but we want |S| to be
minimal to avoid unnecessary computations. Such a minimal set depends however on the numerical
values in L, or Q implicitly. Denote by S(Q) a minimal set. The following result identify a solvable
set S∗ containing the union of S(Q) for all Q > 0 with a fixed graph G.

Theorem 1 The union of S(Q) for all Q > 0 with fixed graph G, is a subset of

S∗ = {ij ∈ V × V : j ≥ i, i and j are not separated by F (i, j)}

and the recursions in (12) are solvable using S∗.

Proof. We first note that ii ∈ S∗, for i = 1, . . . , n, since i and i are not separated by F (i, i).
We will now verify that the recursions are solvable using S∗. The global Markov property ensure
that if ij 6∈ S∗ then Lji = 0 for all Q > 0 with fixed graph G. We use this to replace I(i) with
I∗(i) = {k > i : ik ∈ S∗} in (14), which is legal since I(i) ⊆ I∗(i) and the difference only identify
terms Lki which are zero. It is now sufficient to show that

ij ∈ S∗ and ik ∈ S∗ =⇒ kj ∈ S∗ (15)

which implies (14). Eq. (15) is trivially true for i ≤ k = j. Fix now i < k < j. Then ij ∈ S∗ says
that there exists a path i, i1, . . . , in, j, where i1, . . . , in are all smaller than i, and ik ∈ S∗ says that
exists a path i, i′1, . . . , i

′
n′ , k, where i′1, . . . , i

′
n′ are all smaller than i. Then there is a path from k to i

and from i to j where all nodes are less or equal to i, but then also less than k since i < k. Hence, k
and j are not separated by F (k, j) so kj ∈ S∗. Finally, since S∗ contains 11, . . . , nn and only depend
on G, it must contain the union of all S(Q) since each S(Q) is minimal. �

An alternative interpretation of S∗, is that it identify from the graph G only, all possible non-zero
elements in L. Some of these might turn out to be zero depending on the conditional independence
properties of the marginal density for xi:n for i = n, . . . , 1, see (11). In particular, if j ∼ i and j > i
then ij ∈ S∗. This provides the lower bound for the size of S∗: |S∗| ≥ n + |E|.

Example 2 Let x = (x1, . . . , x6)T be a GMRF with respect to the graph
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1

2

3

4

5

6

then the set of the possible non-zero terms in L, is

S∗ = {11, 22, 33, 41, 42, 43, 44, 54, 55, 64, 65, 66}. (16)

The only element in S∗ where the corresponding element in Q is zero, is 65, this because 5 and 6 are
not separated by F (5, 6) = ∅ in G (due to 4), so |S∗| = n + |E|+ 1.

We can also show that if the graph G is decomposable then there exists a permutation p of the
vertices, such that |S∗| = n + |E| and S∗ is the union of S(Q) for all Q > 0 with fixed graph G. The
typical example is the following.

Example 3 A homogeneous autoregressive model of order p satisfy

xi | x1, . . . , xi−1 ∼ N (
p∑

j=1

φjxi−j , 1), i = 1, . . . , n,

for some parameters {φj} where for simplicity we assume that x−1, . . . , x−p+1 are fixed. Let {yi}
be independent Gaussian observations of xi such that yi ∼ N (xi, 1). Then x conditioned on the
observations is Gaussian where the precision matrix Q is a band-matrix with band-width p and L is
lower triangular with the same bandwidth. When {φj} are such that Qij 6= 0 for all |i− j| ≤ p, then
the graph is decomposable. In this case the recursions correspond to the (fixed-interval) smoothing
recursions derived from the Kalman filter for (Gaussian) linear state-space models.

Although the situation is particularly simple for decomposable graphs, most GMRFs are defined
with respect to graphs that are not decomposable. This is the case for GMRFs used in spatial or
spatio-temporal applications, but also for GMRFs used in temporal models outside the state-space
framework. In addition to be able to identify the set S∗ efficiently, we also need to compute the
Cholesky triangle L. It is important to have efficient algorithms for these tasks as the dimension of
GMRFs is typically large. Fortunately, algorithms that compute L efficiently also minimise (approx-
imately) the size of S∗ and then also the cost of solving the recursions. We return to this and other
practical issues in Section 2.3, after discussing how to compute marginal variances for GMRFs with
additional linear constraints.

2.2 Correcting for hard and soft linear constraints

We will now demonstrate how we can correct the marginal variances computed in (12) to account for
additional linear constraints, for example a simple sum-to-zero constraint. Let A be a k×n matrix of
rank k. The goal is now to compute the marginal variances of the GMRF under the linear constraint
Ax = e. If e is fixed we denote the constraint as hard, and if e is a realisation of N (µe,Σe), Σe > 0,
we denote the constraint as soft.

A constrained GMRF is also a GMRF meaning that recursions (12) are still valid using the Cholesky
triangle for the constrained GMRF. Since linear constraints destroy the sparseness of the precision
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matrix it will not allow fast computation of the marginal variances. However, the covariance matrix
under hard linear constraints, Σ̃, relates to the unconstrained covariance matrix Σ as

Σ̃ = Σ−Q−1AT
(
AQ−1AT

)−1
AQ−1. (17)

There is a similar relation with a soft constraint (Rue and Held, 2005, Ch. 2). Assume a hard
constraint in the following. It is evident from (17) that

Σ̃ii = Σii −
(
Q−1AT

(
AQ−1AT

)−1
AQ−1

)
ii

, i = 1, . . . , n.

Hence, we can compute the diagonal of Σ and then correct it to account for the hard constraints.
Define the n × k matrix W as Q−1AT which is found from solving QW = AT for each of the k
columns of W . As the Cholesky triangle to Q is available, the j’th column of W , W j , is found
by solving Lv = AT

j and then solving LT W j = v. We now see that Σ̃ii = Σii − Cii where
C = W (AW )−1 W T . We only need the diagonal of C. Let V = W (AW )−1, and then C = V W T

and Cii =
∑k

l=1 VilWil. The cost of computing V and W is for large k dominated by factorising
the (dense) k × k matrix AW , which is cubic in k. As long as k is not too large it is nearly free to
correct for linear soft and hard constraints.

A special case of hard constraint is to condition on a subset, B say, of the nodes in G. This is
however equivalent to compute the marginal variances for xA|xB where x = (xA,xB). In most cases
it is more efficient not to use (17), but utilise that xA|xB is a GMRF with precision matrix QAA

and mean µ given by the solution of QAAµ = −QABxB. (Note that solving for µ require only the
Cholesky triangle of QAA which is needed in any case for the recursions.) The marginal variances
are then computed using (12), possibly correcting for additional linear constraints using (17).

2.3 Practical issues

Since the precision matrix Q is a sparse matrix we can take advantage of numerical algorithms for
sparse symmetric positive definite matrices. Such algorithms are very efficient and make it possible
to factorise precision matrices of dimension 103 − 105 without too much effort. A major benefit is
that these algorithms also minimise (approximately) the size of S∗ and so also the cost of solving the
recursions. Rue (2001) and Rue and Held (2005) discuss numerical algorithms for sparse matrices
from a statistical perspective and how to apply them for GMRFs.

An important ingredient in sparse matrix algorithms is to permute the vertices to minimise (approx-
imately) the number of non-zero terms in L. The idea is: if Lji is known to be zero, then Lji is not
computed. It turns out that the set S∗ is exactly the set vertices for which Lji is computed, see Rue
and Held (2005, Sec. 2.4.1). Hence, an efficient permutation to compute L minimise (approximately)
|S∗|, hence is also an efficient permutation for solving the recursions. However, this implies that we
have little control over which Σij ’s are computed in the recursions, apart from the diagonal and those
elements where i ∼ j.

Permutation schemes based on the idea of nested dissection are particularly useful in statistical
applications. The idea is to find a small separating subset that divides the graph into two (roughly)
equal parts, label the nodes in the separating set after the others, and continue recursively. For such
a permutation, the computational complexity to compute L for a GMRF on a square m×m lattice
with a local neighbourhood, is O(n3/2) for n = m2. This gives also the optimal complexity in the
order sense. The number of possible non-zero terms in L is O(n log(n)) which corresponds to the size
of S∗. The complexity of solving the recursions can be estimated from these numbers; We need to
compute O(n log(n)) covariances, each involving on average O(log(n)) terms in I∗(i), which in total
gives a cost of O(n log(n)2) operations. For a local GMRF on a m×m×m cube with n = m3, then
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the size of S∗ is O(n4/3) and the cost of solving the recursions is then O(n5/3) which is dominated
by the cost of factorising Q which is O(n2).

A practical concern arises when numerical libraries return a list with the non-zero elements in L, but
the set S∗ or S(Q) is needed by the recursions. In fact, any easily obtainable solvable set S(Q)+,
where S(Q) ⊆ S(Q)+ ⊆ S∗, is acceptable. A simple approach to obtain a S(Q)+ is the following.
Let S0 = {j ≥ i : Lji 6= 0}. Traverse the set S0 with i from n to 1 as the outer loop, and j from n
to i such that ij ∈ S0. For each ij, check for each k ∈ I(i) if kj ∈ S0. If this is not true, then add
kj to S0. Repeat this procedure until no changes appear in S0. By construction, S0 ⊆ S∗ and S0 is
solvable, hence we may use S(Q)+ = S0. Two iterations are often sufficient to obtain S(Q)+, where
the last verify only that S0 is solvable. Alternatively, S∗ can either computed directly or extracted
from an intermediate result in the sparse matrix library, if this is easily accessible.

Needless to say, solving the recursions efficiently requires very careful implementation in a appropriate
language, but this is the rule, not the exception when working with sparse matrices.

3 Examples

In this section, we will present some results for the approximations for the posterior marginals
computed from (7), and their comparison with estimates obtained from very long MCMC runs. We
will restrict ourself to the well-known BYM-model for disease mapping (Section 3.1). The BYM-
model is a hierarchical GMRF model with Poisson distributions at the first stage. We will use two
different datasets; We describe one of the data sets as “easy” (many counts) and the other one as
“hard” (few counts). The comparison for the posterior marginals for the hyperparameters (in this
case, the precisions) are presented in Section 3.2, while the posterior marginals for the latent GMRF
are presented in Section 3.3. In Section 3.4 we present some results for an extended BYM-model,
where we include a semi-parametric effect of a covariate and where the latent GMRF has to obey a
linear constraint.

Note The computational speed in the following experiments is not optimal due to rather brute-force
approach taken while integrating out the hyperparameters θ. However, this step can be improved
considerably as we discuss in Section 4 while the approximation result itself remains unaffected.

3.1 The BYM-model for disease mapping

We will now introduce the BYM-model for analysing spatial disease data (Besag et al., 1991). This
model is commonly used in epidemiological applications.

In each district i the number of incidents yi of a particular disease is observed over a certain time
period. Let N denote the number of districts. The number of cases does depend on the number of
people in that district and on their age distribution. The expected number of cases is calculated based
on this information and denoted ei. Hence, we will estimate the relative risk for this disease for each
district, and not the absolute risk. It is common to assume the observed counts to be conditionally
independent and Poisson distributed with mean ei exp(ηi), where ηi is the log-relative risk. Further,
ηi is decomposed as ηi = ui + vi where u = {ui} is a spatially structured component and v is an
unstructured component. An intrinsic GMRF (IGMRF) of the following form is often assumed for
the spatially structured component,

π(u | κu) ∝ κ
(n−1)/2
u exp

−κu
1
2

∑
i∼j

(ui − uj)2

 (18)
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(a) (b)

Figure 1: (a) The standardised mortality ratio yi/ei for the oral cavity cancer counts in Germany
(1986–1990). (b) The graph associated with (a) where two districts are neighbours if and only if they
are adjacent.

where κu is the unknown precision. Two districts i and j are defined to be neighbours, i ∼ j, if
they are adjacent. Further, v are independent zero mean normals with unknown precision κv. The
precisions are (most commonly) assigned independent Gamma priors with fixed parameters.

The BYM-model is of course a hierarchical GMRF model, with yi ∼ Po(ei exp(ηi)) at the first stage.
At the second stage the GMRF is x = (ηT ,uT )T , the unknown precisions κ = (κu, κv) constitute
the third stage. Note that we have reparametrised the GMRF using x = (ηT ,uT )T instead of
x = (vT ,uT )T , in this way some of the nodes in the graph, namely the η’s, are indirectly observed
through the data y. The posterior of interest if therefore

π(x,κ | y) ∝ κ
N/2
v κ

(N−1)/2
u exp

(
−1

2
xT Qx

)
exp

(
N∑

i=1

yixi − ei exp(xi)

)
π(κ) (19)

The 2N × 2N precision matrix for the GMRF, Q is

Q =
(

κvI −κvI
−κvI κuR + κvI

)
(20)

where R is the so-called structure matrix for the spatial term; Rii is the number of neighbours to
district i, and Rij = −1 if i ∼ j (district i and j are adjacent) and zero otherwise. We set the priors
of the unknown precisions to be independent and Gamma(a, b) distributed with a/b as the expected
value. The values of a and b are specified later.

The two datasets we will consider in Section 3.2 and Section 3.3 are classified as the Easy-case and
the Hard-case.

Easy-case The observed oral cavity cancer mortality for males in Germany (1986–1990) is previously
analysed by Knorr-Held and Raßer (2000). The data has an average observed count of 28.4,
median of 19 and first and third quantile is 9 and 33. For such high counts the Poisson
distribution is not too far away from a Gaussian. The observed standardised mortality ratio
for the different districts of Germany are shown in Figure 1a. The corresponding graph is
displayed in Figure 1b. It has n = 544 nodes with average 5.2, minimum 1 and maximum 11
neighbours. The parameters in the prior for the precisions are a = 1 and b = 0.01 following
Rue and Held (2005, Ch. 4).
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Hard-case The observed Insulin dependent Diabetes Mellitus in Sardinia. These data were previ-
ously analysed by Bernardinelli et al. (1997) and also used by Knorr-Held and Rue (2002) as
a challenging case. The graph is similar to the one in Figure 1b, and has n = 366 nodes with
average 5.4, minimum 1 and maximum 13 neighbours. This is a sparse dataset with a total of
619 cases and median of 1. For such low counts the Poisson distribution is quite different from
a Gaussian. The parameters in the prior for the precisions are a = 1 and b = 0.0005 for κu,
and a = 1 and b = 0.00025 for κv following Knorr-Held and Rue (2002).

3.2 Approximating π(θ|y)

Our first task is to approximate the posterior marginals for the hyperparameters log κu and log κv,
for the Easy-case and the Hard-case.

The joint posterior marginal for θ = (log κu, log κv) was estimated using the approximation to (6),
which consists of using the GMRF-approximation (depending on θ) for the full conditional for the
GMRF x in the denominator, and evaluate the ratio at the modal value for x for each θ. We do this
for values of θ on a fine grid centred (approximately) the modal value. This unnormalised density
restricted to the grid is then renormalised so it integrates to one. The results are shown in column
(a) in Figure 2, displaying the contour-plot of the estimated posterior marginal for θ.

The posterior marginal for the Easy-case is more symmetric than the one for the Hard-case. This
is natural when we take into account the high Poisson counts which makes the likelihood more alike
a Gaussian. As mentioned in Section 1, this is the Laplace-approximation as derived (differently)
by Tierney and Kadane (1986). The relative error in the renormalised density is O(N−3/2) where N
is the number of data, hence it is quite accurate. Note that the quality of this approximations does
not change if we consider the posterior marginal for (κu, κv) instead of (log κu, log κv). The reason
is that the hyperparameters are fixed in the right hand side of (6).

By summing out log κv and log κu, respectively, we obtain the posterior marginals for log κu and
log κv. These are displayed using solid lines in Figure 2 column (b) and (c). To verify these approxi-
mations, we ran MCMC algorithms based on (5) for a long time to obtain at least 106 near iid samples.
The density estimates based on these samples are shown as dotted lines in column (b) and (c). The
estimates based on the MCMC algorithms confirm the accuracy of the Laplace-approximation.

3.3 Approximating π(xi|y)

Our next task is to approximate the posterior marginal for each xi making use of (8). Note that
π̃(xi|θj ,y) is a GMRF, hence we need to compute the marginal variances for xn, . . . , x1. To do this,
we make use of the recursions in (12) and the practical advises in Section 2.3.

The results in Section 3.2 indicate that the quality of (8), depends on how well π̃(xi|θj ,y) approximate
π(xi|θj ,y) for those θj where the probability mass is significant. For this reason, we have compared
this approximation for various fixed θj with the estimates for π(xi|θj ,y) computed from long runs
with a MCMC algorithm. The results are displayed in Figure 3 for the Easy-case and Figure 4 for
the Hard-case.

3.3.1 Posterior marginals for the spatially structured component for fixed θ

Easy-case Column (d) in Figure 3 shows the value of (the fixed) θj relative to the posterior
marginal shown in Figure 2. The previous three columns show marginals of the GMRF-approximation
for the spatial component u (solid lines) and the estimate obtained from very long MCMC runs

12



(a) (b) (c)

Figure 2: The results for the Easy-case on the top row and the Hard-case on the bottom row. (a) The
approximated posterior marginal density of (log κu, log κv), (b) The approximated posterior marginal
density of log κu, and (c) The approximated posterior marginal density of log κu. In (b) and (c), the
approximated marginals are shown using solid lines, while the estimated posterior marginals from a
longer MCMC run, are shown with dotted lines.
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(dotted lines). Only three districts are shown. They are selected such that the posterior expected
value of ui for θj located at the modal value, is high (a), intermediate (b) and low (c). The results
in Figure 3 indicate that the GMRF-approximation is indeed quite accurate in this case, and only
small deviations from the (estimated) truth can be detected.

Hard-case Figure 4 displays the same as Figure 3 but now for the Hard-case. The results for
the three first rows are quite good, although the (estimated) true posterior marginals show some
skewness not captured by the Gaussian approximation. The modal value indicated by the Gaussian
approximation seems for all cases a little too high, although this is most clear for the last row. In
the last row, the precisions for both the spatial structured and unstructured term are (relatively)
low and outside the region with significant contribution to the probability mass for θ. With these
(relatively) low precisions, we obtain a (relatively) high variance for the non-quadratic term exp(xi)
in (19), which has the effect that the marginal gets more skewed. It might appear, at a first glance,
that the (estimated) true marginal and the Gaussian approximation are only shifted, but this is not
the case. There is a skewness factor that is missing in the Gaussian approximation, which in this
case has nearly the same effect as a shift. The results from this Hard-case are quite encouraging, as
the approximations in the central part of π(θ|y) are all relatively accurate.

3.3.2 Posterior marginals for the spatially structured component

Figure 5 shows the results using (8) (solid line) to approximate the marginals for the spatial term
u in the same three districts that appear in Figure 3 and Figure 4. The (estimated) truth is drawn
with dotted lines. The top row shows the Easy-case while the bottom row shows the Hard-case.
The columns (a) to (c) relate to the columns of Figure 3 and Figure 4 for the top and bottom row,
respectively. Since the accuracy of the Gaussian approximations was verified in Figure 3 and Figure 4
to be quite satisfactory, there is no reason that integrating out θ will result in inferior results. The
approximation (8) is quite accurate for both cases but the marginals are slightly less skewed than the
truth. However, the error is quite small. The bottom row, demonstrates that (8), which is a mixture
of Gaussian, can indeed represent also highly skewed densities.

3.3.3 Posterior marginals for the log-relative risk

We will now present the results for the posterior marginals for the log-relative risk ηi for the Hard-
case. It is not clear how the accuracy for these approximations should relate to those for the spatial
component in Figure 5; It is ηi that is indirectly observed through yi, but on the other hand, the
difference between ηi and the spatial component ui is only an additional unstructured component.
The results are shown in Figure 6 for the same three districts shown in Figure 4 and in the last row
of Figure 5. Again, the approximation (8) does not capture the right amount of skewness, for the
same reason already discussed for Figure 3 and Figure 4. However, when θ is integrated out, also
the posterior marginal for η is quite well approximated.

3.4 Semi-parametric ecological regression

We will now consider an extension of the BYM-model (19) given by Natario and Knorr-Held (2003),
which allows for adjusting the log-relative risk by a semi-parametric function of a covariate which
is believed to influence the risk. The purpose of this example is to illustrate the ability of (8) to
account for linear constraints, which we discuss in more details shortly. Similarly to Natario and
Knorr-Held (2003), we will use data on mortality from larynx cancer among males in the 544 districts
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(a) (b) (c) (d)

Figure 3: The results for the Easy-case. Each row shows in (d) the location of the fixed θ, and
then the (estimated) true marginal density (dotted lines) for the spatial component at three different
districts. The solid line displays the Gaussian approximation. The three districts in column (a) to
(c), represent districts with (a) a high, (b) an intermediate, and (c) a low value of the posterior
expectation of ui.
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(a) (b) (c) (d)

Figure 4: The results for the Hard-case. Each row shows in (d) the location of the fixed θ, and
then the (estimated) true marginal density (dotted lines) for the spatial component at three different
districts. The solid line displays the Gaussian approximation. The three districts in column (a) to
(c), represent districts with (a) a high, (b) an intermediate, and (c) a low value of the posterior
expectation of ui.
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(a) (b) (c)

Figure 5: The posterior marginals for the spatial component in three districts, for the the Easy-case
on the top row and the Hard-case on the bottom row. Columns (a) to (c) corresponds to the same
columns in Figure 3 and Figure 4 for the top and bottom row, respectively. The approximations (8)
are drawn with solid line and the (estimated) truth with dotted lines.

(a) (b) (c)

Figure 6: The posterior marginals for the log-relative risk ηi in three districts for the the Hard-case.
Columns (a) to (c) corresponds to the same columns in Figure 4 and the bottom row in Figure 5.
The approximations (8) are drawn with solid line and the (estimated) truth with dotted lines.

17



of Germany over the period 1986 − 1990, with estimates for lung cancer mortality as a proxy for
smoking consumption as a covariate; Refer to their report for further details and background for this
application.

The extension of the BYM-model is as follows. At the first stage we still assume yi ∼ Po(ei exp(ηi))
for each i, but now

ηi = ui + vi + f(ci). (21)

The two first terms are the spatially structured and unstructured term as in the BYM-model, whereas
f(ci) is the effect of a covariate which has value ci in district i. The covariate function f(·) is a
random smooth function with small squared second order differences. The function f(·) is defined to
be piecewise linear between the function values {fj} at m = 100 equally distant values of ci, chosen
to reflect the range of the covariate. We have scaled the covariates to the interval [1, 100]. The
density of f = (f1, . . . , fm)T , is also a GMRF

π(f | κf ) ∝ κ
(m−2)/2
f exp

−κf

2

m∑
j=2

(fj − 2fj−1 + fj−2)2

 (22)

and a so called second order random walk (RW2) model with (unknown) precision κf , see for exam-
ple Rue and Held (2005, Ch. 3). The density (22) can be interpreted as an approximated Galerkin
solution to the stochastic differential equation, f ′′(t) = dW (t)/dt, where W (t) is the Wiener pro-
cess (Lindgren and Rue, 2005). We further impose the constraint

∑
i ui = 0 to separate out the effect

of the covariate. Note that the extended BYM-model is still a hierarchical GMRF-model but now
x = (η,u,f)T . It is straight forward to derive the corresponding precision matrix and posterior, but
we avoid it here.

Adding a semi-parametric effect of a covariate extends directly the BYM-model and the two datasets
presented in Section 3.1. However, the fundamental change is not the addition of the extra hyper-
parameter κf , but the introduction of the linear constraint imposed to separate out the effect of the
covariate. We need to make use of the correction in Section 2.2 to adjust marginal variances for the
constraint, moreover, we need to do constrained optimisation to locate the mode in order to compute
the GMRF-approximations. Both tasks are easily done with GMRFs and a few constraints do not
slow down the computations.

We will now present the results focusing on the effect of the covariate, as the other posterior marginals
are similar to those presented in Section 3.2 and Section 3.3. The unknown precisions were all assigned
Gamma-priors with parameters a = 1 and b = 0.00005 following Natario and Knorr-Held (2003).
Figure 7 shows the approximated posterior marginal for f , represented by the mean, the 0.025 and
0.975 quantile. The approximations (8) are drawn with solid line and the (estimated) truth with
dotted lines. The middle lines are the posterior mean, the lower curves are the 0.025 quantile and
the upper curves are the 0.975 quantiles. The results show that the approximation is quite accurate.
However, the approximation (8) does not capture the correct skewness similarly to the last column
in Figure 4. This claim is also verified by comparing the posterior marginals for each fj (not shown).

4 Discussion

In this report we have investigated how posterior marginal densities can be approximated using
the GMRF-approximation. We apply the GMRF-approximation to the full conditional for the la-
tent GMRF component in hierarchical GMRF models. We use this to approximate both posterior
marginals for the hyperparameters and posterior marginals for the components of the latent GMRF
itself. We have also discussed how to compute marginal variances for GMRFs with and without linear
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Figure 7: The posterior marginals for the covariate effect, here represented by the mean, the 0.025
and 0.095 quantile. The approximation (8) are drawn with solid line and the (estimated) truth with
dotted lines. The middle lines are the posterior mean, the lower curves are the 0.025 quantile and
the upper curves are the 0.975 quantiles.

constraints, and derived the recursion from a statistical point of view. The main motivation for using
approximations to estimate posterior marginals, is only computational efficiency. Computations with
GMRFs are very efficient using numerical methods for sparse matrices, and make it possible to ap-
proximate posterior marginals nearly instant compared to time required by MCMC algorithms. This
makes the class of hierarchical GMRF-models a natural candidate for nearly instant approximated
inference. The approximations were verified against very long runs of a one-block MCMC algorithm,
with the following conclusions.

• The results were indeed positive in general and we obtained quite accurate approximations
for all marginals investigated. Even for a quite hard dataset with few Poisson counts, the
approximations were quite accurate.

• All results failed to capture the correct amount of (small) skewness, whereas the mode and the
width of the density were more accurately approximated. However, the lack of skewness is a
consequence of using symmetric approximations.

The range of application of these findings are, to our point of view, not only restricted to the
class of BYM-models considered here but can be extended to many hierarchical GMRF-models. In
particular, we want to mention hierarchical model based on log-Gaussian Cox processes (Møller et al.,
1998) and model-based Geostatistics (Diggle et al., 1998). Both these popular model-classes can be
considered as hierarchical GMRF-models, where Gaussian fields can be replaced by GMRFs using
the results of Rue and Tjelmeland (2002), or perhaps better, using intrinsic GMRFs. The typical
feature of these models, is that the number of observations is quite small hence the approximations
used in this report will give (and does give) more accurate results than those presented here. Another
feature of these models is that,working with Gaussian fields directly, MCMC based inference is indeed
challenging to implement and computationally heavy. For these reasons, the ability to use GMRFs
and nearly instant approximated inference is indeed a huge step forward. These results will be
reported elsewhere.
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Our approach to compute posterior marginals is based on GMRF-approximations and the accuracy
depends on the accuracy of the GMRF-approximation. Although this approximation is sufficiently
accurate for many and often typical examples, is not difficult to find cases where such an approxima-
tion is not accurate enough; See for example Figure 4 last row. An important task for future work,
is to construct methods that can go beyond the GMRF-approximation allowing for non-Gaussian
approximations to the full conditional. One such class of approximation was introduced by Rue et al.
(2004). This approximation can be applied to compute marginals as well. Preliminary results along
these lines are indeed encouraging, and we are (almost surely) confident that improved approximation
methods can be constructed without too much extra effort. These improved approximations will also
serve as a validation procedure for the class of approximations considered here. They may, in fact,
be used to detect if the approximations based on the GMRF-approximation are sufficiently accurate.

It is quite fast to compute our approximations even with our brute-force approach for integrating
out the hyperparameters. This step can and need to be improved. This will increase the speed
significantly while keeping the results nearly unchanged. There is a natural limit to the number of
hyperparameters θ our approach can deal with. Since we integrate out these numerically, we would
like dim(θ) ≤ 3. However, approximated schemes are indeed possible for higher dimensions as well,
although we admit that we do not have large experience in this direction. Automatic construction of
numerical quadrature rules based on the behaviour near the mode, is also a possibility which we will
investigate. The benefit here, is that the numerical integration is adaptive which is also a requirement
for constructing black-box algorithms for approximating posterior marginals for hierarchical GMRF-
models.

The consequences of the results presented here, imply that for many hierarchical GMRF-models,
at least, MCMC algorithms are not needed to achieve accurate estimations of posterior marginals.
Moreover, approximated inference can be computed nearly instant compared to MCMC algorithms.
This does not imply that MCMC algorithms are not needed, only that they are not needed in all
cases.
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Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration with two applications in spatial statistics
(with discussion). Annals of the Institute of Statistical Mathematics, 43(1):1–59.

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatistics (with discussion). Journal of
the Royal Statistical Society, Series C, 47(3):299–350.

Erisman, A. M. and Tinney, W. F. (1975). On computing certain elements of the inverse of a sparse matrix.
Communications of the ACM, 18(3):177–179.

Knorr-Held, L. and Raßer, G. (2000). Bayesian detection of clusters and discontinuities in disease maps.
Biometrics, 56:13–21.

Knorr-Held, L. and Rue, H. (2002). On block updating in Markov random field models for disease mapping.
Scandinavian Journal of Statistics, 29(4):597–614.

Lindgren, F. and Rue, H. (2005). A note on the second order random walk model for irregular locations. Statis-
tics Report No. 6, Department of Mathematical Sciences, Norwegian University of Science and Technology,
Trondheim, Norway.

Møller, J., Syversveen, A. R., and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scandinavian
Journal of Statistics, 25:451–482.

Natario, I. and Knorr-Held, L. (2003). Non-parametric ecological regression and spatial variation. Biometrical
Journal, 45:670–688.

Rue, H. (2001). Fast sampling of Gaussian Markov random fields. Journal of the Royal Statistical Society,
Series B, 63(2):325–338.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications, volume 104 of
Monographs on Statistics and Applied Probability. Chapman & Hall, London.

Rue, H., Steinsland, I., and Erland, S. (2004). Approximating hidden Gaussian Markov random fields. Journal
of the Royal Statistical Society, Series B, 66(4):877–892.

Rue, H. and Tjelmeland, H. (2002). Fitting Gaussian Markov random fields to Gaussian fields. Scandinavian
Journal of Statistics, 29(1):31–50.

Takahashi, K., Fagan, J., and Chen, M. S. (1973). Formation of a sparse bus impedance matrix and its appli-
cation to short circuit study. In 8th PICA Conference proceedings, pages 63–69. IEEE Power Engineering
Society. Papers presented at the 1973 Power Industry Computer Application Conference in Minneapolis,
Minnesota.

Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities.
Journal of the American Statistical Association, 81(393):82–86.

21


