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Abstract

Decisions involving selection of sites over a lateral domain with a spatially correlated dis-
tinction of interest are common in several realms. In this paper we use the decision-analytic
notion of value of information on models common to spatial statistics. We formulate meth-
ods to evaluate monetary values associated with experiments performed in the spatial decision
making context, including the prior value, the value of perfect information, and the value of
the experiment. The prior for the spatial distinction of interest is assumed to be a Markov
random field where the value at each spatial site belongs to a finite set of states. The likelihood
distribution can take any form depending on the experiment one decides to acquire. Typical
experiment types are binary registration or a Gaussian measurement at selected spatial sites.
We demonstrate how to efficiently compute the value of an experiment for Markov random
fields of moderate size. The most computationally demanding task is solving an integral over
the result of the experiment under evaluation, which we accomplish using Monte Carlo integra-
tion. We explore and compare some measures for the worth of an experiment in our problem
context. Our methods are illustrated on two examples. One is relevant to conservation biology,
where the downstream decision is the spatial allocation of reserve sites. The other application
is motivated by seismic exploration in the petroleum industry. These simple examples demon-
strate the complex interplay between the likelihood of the experiment, spatial interaction and
the nature of the downstream decision and its associated values. The approach naturally fosters
a multi-disciplinary outlook for valuing information in spatial decision making, and stimulates
ideas for creative alternatives in decisions related to experimentation.

Keywords: value of information, Markov random field, spatial decision making, experimental de-
sign.
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1. Introduction

Gathering the right kind and right amount of information is crucial for any decision making
process. Auxiliary decision opportunities regarding information gathering are often created when
an important decision is to be made in the future. This downstream decision may have a lot at
stake and it may be worthwhile to obtain more information before the decision is actually taken,
i.e. before an irrevocable allocation of resources. A crucial question to answer is - how much
information should one purchase? This is a decision which is related to the well-established con-
cept of value of information, also known as value of clairvoyance, in decision analysis (Howard,
1966; Raiffa, 1968; Matheson, 1990). The value of information (VOI) for a particular information
gathering scheme is the maximum monetary amount that a decision maker should be willing to pay
to acquire it. The VOI depends on several factors, including the prior probabilities, the “quality”
of the test and the decision maker’s utility curve.

In this paper we present models that compute the value of information for experiments per-
formed in the context of spatial decision making. We use the phrase spatial decision making to
refer to decision problems with two important characteristics: 1) the decision generally involves a
choice of alternatives over space, for instance, selecting sites; and 2) the distinction of interest is
typically spatially correlated. There are several applications that are relevant within this context.
Petroleum exploration and production is a natural contender as a possible application: here the
distinction of interest is the presence or absence of oil; the presence of oil is spatially correlated
in a reservoir, and the decision maker must decide where to drill wells to recover oil and max-
imize profits. Another application is conservation biology where decisions are made regarding
the number of reserve sites and their spatial location. Here the distinction of interest is the pres-
ence or absence of a particular species. We illustrate our methods on examples from both these
applications.

We briefly discuss some recent work that can be viewed as spatial decision making, but none
of which include the full generality that we adopt in this paper. Polasky and Solow (2001) present
issues regarding the value of information in conservation biology. They use decision-analytic
concepts to investigate the value of information of surveys in the reserve site selection problem.
Reserve site selection refers to the selection of sites for establishing biological reserves with the
purpose of conserving and nurturing certain species. In their paper, Polasky and Solow show that
inferences about value of information in such a setting can often be counter-intuitive. However,
they assume that the species incidences are independent and use a value criterion that is not as-
sociated with monetary units. Houck and Pavlov (2006) estimate the value of information for
electromagnetic surveys in petroleum exploration using the decision-analytic approach. Although
their case study is illustrative, they work at the global level of the reservoir by using a simple de-
cision tree formulation. Diggle and Lophaven (2006) describe a Bayesian hierarchical model for
geostatistical design of monitoring sites for salinity at sea. Their goal is to minimize spatial pre-
diction variance. With their philosophy it is hard to relate the statistical model to the downstream
decision and its associated values, and therefore to compare the worth of an experiment with its
cost. In fact, downstream decisions are rarely treated directly in geostatistical situations; the focus
is mostly on prediction variance and parameter estimation, see e.g. Müller (2001).

We introduce a decision-analytic formulation to situations that naturally exhibit spatial depen-
dence. We use a categorical Markov random field (MRF) model (Besag, 1974) for the distinction
of interest. Other Bayesian prior models can also be used. An advantage with moderate size
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MRFs is that recursive assessment of such categorical MRFs (Reeves and Pettitt, 2004) allows us
to calculate the marginal probabilities and to sample directly from these models. We are interested
in evaluating experiments that are performed to obtain more information about the distinction of
interest. We use a monetary value measure to ensure that the value of information corresponds
directly to the maximum a decision maker should be willing to spend to purchase an experiment.
Our models can easily be extended to deal with other measures of value. For the sake of clarity,
we assume throughout the paper that the decision maker is risk-neutral (Raiffa, 1968). In other
words, the decision maker is indifferent between a lottery of uncertain monetary prospects and the
expected value of the lottery. Our models can incorporate risk aversion or risk seeking behavior if
required.

Section 2 develops basic notation for the rest of the paper. In Section 3 we present the model
assumptions and equations. This section explains how we integrate spatial statistics with different
approaches to valuing information; it is our main contribution in this work. Our focus is on the
decision-analytic philosophy but we also mention a formulation using entropy as a measure for
valuing information in spatial decision making. In Section 4 we describe an algorithm that couples
Monte Carlo simulation and a recursive method for computing the value of information of an ex-
periment. This computational method is crucial for assessing the value of information in practice.
The algorithm is demonstrated on several examples in Section 5 to develop critical insights. We
begin with a simple hypothetical example from the domain of conservation biology and graduate
to a more realistic example from petroleum exploration, motivated by data collected at a reservoir
in the North Sea. Finally, we discuss our conclusions and directions for further research in Section
6.

2. Basic Notation

In this section we introduce notation and basic terminology. The word field is used to denote
the spatial system under consideration. The field lies on a lateral 2-dimensional grid composed of
n1 × n2 cells, i.e. the grid has n1 rows and n2 columns with a total of N cells, where N = n1n2.
Each cell may have identical length and width but this is not essential; the size of the cell is
determined by the application and the scale of the study. Besag (1974) refers to this kind of setting
as a lattice system. We can index the cells in the grid from top to bottom and left to right as
i = 1, 2, . . . N . This will enable us to refer to a particular cell by using a single index.

Let x be the random variable over the entire field for the distinction of interest, or in other
words, the latent variable which is of interest to the decision maker. Letters with a subscript i
denote the outcome at cell number i, while letters without any subscript refer to the set of outcomes
over the entire field. Thus x = {xi : i = 1, 2, . . . N}. Furthermore, we assume that xi is a
categorical random variable that equals any one out of d possible colors (or states). When d = 2,
xi is a Bernoulli random variable. For this work, we will choose xi = 1 as the favorable outcome
at cell i. The joint prior probability of an outcome x is denoted by p(x), while the marginal
probability of an outcome xi is denoted by pi(xi). The marginal prior probability of the favorable
outcome xi = 1 is then pi(1).

Let y be the random variable for the result of an experiment, which may be conducted in the
future to obtain more information about x. The experiment is to be performed in cells with indices
in the set J , a subset of {1, 2, . . . N}. Therefore, y = {yj : j ∈ J}. The experiment need not be
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performed at all the cells in the grid. In fact, it may be optimal to perform the experiment only at
a few cells, depending on all the parameters and the cost of the experiment. The likelihood for the
experimental result y given the outcome of the distinction of interest x is p(y|x). For a continuous
random variable y, p(y|x) is a density function; it is a probability function if y is a discrete
random variable. We inspect both cases with the help of examples, but for presenting our methods
we treat y as continuous. The marginal likelihood of the experimental outcome can be obtained
by summing out all possible configurations of x, i.e. p(y) =

∑
x p(y|x)p(x). For d-colored

categorical fields x of size N , this is a summation over dN terms and can be computationally
demanding.

The posterior probability of the outcome of the distinction of interest x given an experimental
result y is p(x|y). The marginal posterior probability of an outcome xi at cell i given an ex-
perimental result y is written as pi(xi|y). As the favorable outcome we use xi = 1, which has
marginal posterior probability pi(1|y). In this paper, we analyze the value of such an experiment
y and present insights using examples motivated by different types of possible experiments.

3. Model Formulation

We now expand on the terminology and specify model assumptions regarding the probability
distributions for x and y. The conceptual equations that determine measures for the value of an
experiment are also explained in this section. The actual computational issues are postponed until
Section 4.

3.1 Prior spatial model for the distinction of interest

Spatial dependence in the distinction of interest x is incorporated through the use of a cate-
gorical first-order MRF formulation (Besag, 1974). This implies that the probability for a certain
outcome in a given cell, given the outcome in the entire field, depends only on the outcome in
the four neighboring cells. The spatial field is thus represented as an Ising model with β as the
interaction parameter:

p(x) =
exp[β

∑
i∼j I(xi = xj) +

∑N
i=1 αi(xi)]

z
. (1)

I(A) is an indicator function taking value 1 if A is true and 0 otherwise. The first summation in
equation (1) is over all pairs xi and xj that are closest neighbors in the grid, and z is a normalizing
constant. The point-wise prior function αi(xi) is a function of the outcome at every cell. It provides
the mechanism for including prior information about the outcome at a particular cell, based on
expert opinion or previous data. On the other hand β controls the spatial dependence of the latent
variable. We assume that β and αi(xi) are known a-priori. The special case when αi(xi) = 0,
∀xi, i is known as the uninformative prior case. In this situation, the marginal probabilities are
such that each color is equally likely at every cell.

3.2 Likelihood model for the experiment

The random variable y is the result of an experiment performed in cells with indices in the set
J . The decision maker will purchase the experiment only if it is worthwhile to do so. Conducting
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the experiment should increase the profitability of the decision by more than its cost. We are
ultimately interested in some measures of the worth of this experiment.

We assume that yj , the result for the experiment at cell j, given the outcome over the entire field
x, depends only on the marginal outcome xj . The experimental result at a particular cell is hence
conditionally independent of the outcome of the latent variable at other cells, given the outcome at
its own cell. This is a reasonable assumption because several experiments and surveys in spatial
decision making satisfy this property in practice by providing only local information about sites.
From conditional independence, we get:

p(y|x) =
∏
j∈J

p(yj|xj). (2)

Each local likelihood distribution p(yj|xj) can be any probability distribution - discrete or contin-
uous, depending on the kind of experiment being performed. We discuss the particular likelihood
function used in the context of examples. We show results from a binary experiment (Section 5.1)
and a Gaussian experiment (Section 5.2).

3.3 A simple decision-analytic framework

In this section we present a simple decision-analytic framework so that we can explain the
concepts easily, and create a framework that is not completely guided by case-specific issues. We
make some critical assumptions about the nature of the downstream decision:
i) We assume that the main decision specifically involves a one-time selection of cells from the
field. Sequential decisions regarding cell-selection are not considered.
ii) The decision maker’s goal is to obtain value from the individual cells. It is thus possible to
alienate each cell and think about costs and revenues for each cell separately. In this way we are
only concerned with the marginal probabilities of the favorable outcome at each cell. This may not
be the case in practice - for instance, value from the main decision may involve joint (global) prop-
erties of the entire field, or it may depend on interactions between cells. Crucially, this assumption
ensures that the value from the field is equal to the sum of the values from the cells.
iii) The decision for selection of cells is an unconstrained decision problem. The decision maker
may choose as many cells as is profitable. The introduction of constraints would entail that the
decision at a particular cell could not be made independently of those at other cells.
We present a more general formulation in Section 3.4, where we relax the second and third as-
sumptions.

Say that the cost of selecting cell i is Ci and the revenue gained from observing the favorable
outcome at that cell is Ri. No revenue is gained if any other outcome is observed. Note that the
outcome for a cell is not ascertained until and unless the cell is selected. As an example, Ci may be
the cost associated with drilling a well at cell i and Ri is the corresponding revenue obtained from
discovering oil at that cell. We are now equipped with all the notation and assumptions necessary
to calculate the value of information and other related measures for an experiment. Firstly, the
decision maker can take his/her decision without purchasing the experiment. In that case the
expected value from the ith cell Vi is given by:

Vi = max{0, [Ri · pi(1)− Ci]}, (3)

where pi(1), as mentioned earlier, denotes the prior marginal probability of the favorable outcome
xi = 1. It is optimal for the risk neutral decision maker to choose the ith cell only if the expected

6



profit is positive. Hence the value is the maximum of 0 (for the case where the cell is not selected)
and the expected profit expression Ripi(1) − Ci (for the case where the cell is selected). The
favorable outcome is seen when xi = 1 and all other outcomes result in zero revenue. With the
assumptions we have described, the prior value (PV) or the total value from the field based on the
prior alone is the sum of the expected value from the cells:

PV =
N∑

i=1

Vi =
N∑

i=1

max{0, [Ri · pi(1)− Ci]}. (4)

What if the decision maker had perfect information about the latent variable? In other words, what
if a clairvoyant would be willing to reveal the outcome of the latent variable? How much should
the decision maker pay for this information? The ith cell has a favorable outcome with probability
pi(1). If it is indeed favorable, the value obtained is the maximum of 0 (cell is not selected) and
Ri −Ci (cell is selected). The decision maker will choose not to select a cell if it is known that the
outcome is not favorable, thereby making zero profit.

The value with free clairvoyance (VFC) (see e.g. Howard and Abbas, 2006) on the distinction
of interest over the whole field is the sum of the expected value (with free clairvoyance on the
distinction of interest) obtained at the individual cells. Hence,

VFC =
N∑

i=1

pi(1) ·max[0, (Ri − Ci)]. (5)

In most situations, presumably the revenues outweigh the costs throughout the field. Therefore
Ri > Ci ∀ i. This implies that equation (5) can be reduced to V FC =

∑N
i=1 pi(1) · (Ri − Ci).

The value of perfect information (VOPI) on the distinction of interest, which is the most that the
decision maker should pay for perfect information on the distinction of interest, is the increase in
profitability from the prior situation to the one where clairvoyance is obtained without cost. Note
that this is only true for people who follow the delta property (Howard and Abbas, 2006). The delta
property is a popular assumption in the decision analysis literature since it enables an analytically
tractable method for calculating value of information. The property is satisfied by people who
have an exponential or straight-line utility-curve, and since a risk-neutral decision maker has a
straight-line utility-curve, s/he satisfies the delta property. Therefore,

VOPI = VFC − PV. (6)

In both PV and VOPI calculations, the value depends only on the marginal probabilities of observ-
ing the favorable outcome since the value from a particular cell does not depend directly on other
cells. We call the set created by these marginal probabilities over the grid, the prior probability
map. The prior probability map is {pi(1) : i = 1, 2, . . . N}. If the experiment is performed, a result
y is observed before the main decision is made. The marginal posterior probability of a favorable
outcome xi = 1 in the ith cell is pi(1|y). The computation for the conditional value of the ith cell
is along the same lines as in equation (3), replacing the prior with the posterior. The expected value
V ′

i is evaluated with the expectation over the experimental result y:

V ′
i =

∫
y

max[0, Ri · pi(1|y)− Ci]p(y)dy. (7)
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With the assumptions we have described, the value with the free experiment (VFE) is the sum of
the expected value V ′

i over all cells:

VFE =
N∑

i=1

V ′
i =

N∑
i=1

∫
y

max[0, Ri · pi(1|y)− Ci]p(y)dy. (8)

As in the case of clairvoyance on the distinction of interest for a delta person, the value of infor-
mation for the experiment (or for short, the value of the experiment (VOE)) can be computed as the
difference between value with the free experiment and value from the prior.

VOE = VFE − PV. (9)

This is the gain in profitability from performing the experiment and hence this is the maximum
that should be spent on purchasing the experiment. In our opinion the VOE is the best measure for
the worth of an experiment because, by definition, it indicates how valuable the experiment is to
the decision maker in monetary units. However poor the experiment is, one can always choose to
ignore the results and end up being as well off as before. For a worthless experiment V OE = 0.
Also, no matter how good the experiment is, it cannot be better than directly obtaining information
about the latent variable since this is the variable that is of ultimate interest to the decision maker.
In this way, the VOPI acts as an upper bound on the VOE.

This naturally leads to another measure of the experiment: the chance of knowing (COK)
(Howard and Abbas, 2006). It can be shown that for a risk-neutral decision maker,

COK = VOE/VOPI, 0 ≤ COK ≤ 1. (10)

The chance of knowing can be explained as follows: Consider a lottery where with a probability
p, a clairvoyant will provide perfect information on the distinction of interest for no charge and
with probability 1 − p will provide no information. The probability p that makes the decision
maker indifferent between obtaining the experiment for free and playing this lottery is the chance
of knowing for that experiment. A good experiment would require a higher probability for a person
to be indifferent, whereas for a poor experiment a smaller value of p would suffice. To summarize,
the COK is a number between 0 and 1 that rates the worth of an experiment in a certain context.

VOE provides an actual monetary value on information, and COK presents a quick and intuitive
way to compare different experiments with each other and also with information on the distinction
of interest. In Section 4 we describe how the equations presented in this section can be solved.

3.4 A general decision-analytic framework

We will now show a more general framework where we relax two of the assumptions presented
in Section 3.3. Rather than treating cells separately, the joint distribution of the distinction of
interest is considered. Furthermore, the constrained case needs special attention since the action
(where to select sites) depends on the outcome of the distinction of interest.

Let f(a, x) be the value derived from a realization of the field x when action a is taken. a is
one of the actions in the set of alternatives A, or a ∈ A. The prior value, before any information
is revealed, is the value derived from the optimal course of action based on the prior on x. It is
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optimal for the risk-neutral decision maker to choose the action that maximizes the expected value.
Thus,

PV = max
a∈A

[ ∑
x

f(a, x) · p(x)
]
. (11)

For the case of perfect information on the distinction of interest, the realization x is known to the
decision maker before the optimal action is chosen. The value of perfect information is given by
the difference between the expected value with free clairvoyance on the distinction of interest and
the prior value:

VOPI =
∑
x

max
a∈A

[f(a, x)] · p(x)− PV. (12)

Note that the order of summation and maximization is reversed for the VOPI equation. As before,
the value of the experiment is the difference between the expected value given result y and the
prior value:

VOE =
∫
y

max
a∈A

[ ∑
x

f(a, x) · p(x|y)
]
p(y)dy − PV. (13)

The COK can be obtained from equation (10).
To motivate how this general formulation might be preferred to our simplified version presented

in Section 3.3, consider the petroleum example again. For a comprehensive study at a suitable
scale, the area of each cell would not be large. Deviated wells could drain oil from adjacent cells
and therefore the cost for an adjacent cell would be less if its neighbor is already selected. Value
from the field would also depend on interaction factors such as permeability and the flow of oil in
the reservoir. Another issue is that of constraints in selecting sites; the budget for a field puts a
limit on the number of wells that can be drilled. All these aspects must be modeled intelligently in
the spatial decision making context, because the price we pay for generality is a severe increase in
computational intensity. For the simple framework presented in Section 3.3, the VOE calculation
of equation (7) involves an integral over the experiment which is approximated and summed over
all N cells. In addition to this calculation, the general framework also requires a summation over
x, as seen in equations (11) and (13). It is hard to provide general guidelines for the value function
and the actions as they would remain case-specific.

3.5 Another criterion: Entropy

In this section we discuss entropy as another criterion for evaluating experiments. We do
not provide numerical examples, but merely define the concept and compare it with our decision-
analytic approach. The notion of entropy, introduced from information theory, see e.g. Ash (1965),
has been used to measure the reduction in uncertainty of x on observing the outcome y of an
experiment. The entropy is defined by

H(x) = −
∑
x

p(x) log p(x), (14)

which can be constructed sequentially as

H(x) = H(xN) + H(xN−1|xN) + . . . + H(x1|x2, . . . , xN). (15)
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This sequential formulation is used when computing entropy, see Appendix A. The expected re-
duction in entropy from the experiment y is

EMI = H(x)−
∫
y

H(x|y)p(y)dy, (16)

where EMI is the expected mutual information between x and y.
Both VOE and EMI can be used as measures for valuing information. However, there is a

wide gulf between the philosophies of the two measures. For instance, EMI provides a sense of
how much uncertainty can be reduced by performing an experiment, but it cannot directly imply
how much the decision maker should pay for it. It is hardly surprising that the decision-analytic
notion of VOE is tied inexorably with decisions and the preferences of the decision maker. VOE
is a more complete measure for valuing information and also more difficult to obtain. According
to Howard and Abbas (2006), an experiment should be conducted when it is: (i) relevant to the
distinction of interest, (ii) material to the decision that brings value and (iii) economic for the deci-
sion maker. A material experiment is one that can affect the decision, i.e. the action chosen by the
decision maker is not identical for different outcomes of the experiment. By the decision-analytic
philosophy, information from experimentation may reduce uncertainty but is not valuable until it
can change the decision. An economic experiment in our context is one that costs less than the
VOE. Entropy based parameters such as EMI only address aspects of relevancy of the experiment,
without addressing the other two requirements. An experiment with zero mutual information will
be irrelevant for the distinction of interest. Mutual information measures may be used as a guide
in designing the most relevant experiment (e.g. Mukerji et al, 2001). The three requirements of
an experiment being relevant, material and economic are intertwined - for example, an immaterial
experiment will not be economic because its value is 0. Ascertaining the value from a decision
to be made in the future is often a difficult task; yet it is crucial if measures like VOE are to be
estimated.

4. Computational Issues

The joint distributions for the distinction of interest and for the experimental result are over the
entire field with N cells and are likely to be high dimensional. Solving equation (7) analytically
may not be possible in general, so we use Monte Carlo simulation by generating realizations of the
experimental result. The same holds for several of the expressions in Section 3. The Monte Carlo
simulation is shortly described as follows: We generate M independent and identically distributed
(i.i.d.) random samples y1, y2, . . . ,yM from p(y). For the mth sample, let w(ym) = max[0, Ri ·
pi(1|ym)− Ci]. Now we can approximate equation (7) as

V ′
i ≈

1

M

M∑
m=1

w(ym). (17)

An exposition on Monte Carlo methods can be found in Liu (2001). In general, a high dimensional
integral of a function w(y) over a region D, can be approximated as follows:

∫
D

w(y)p(y) dy ≈ 1

M

M∑
m=1

w(ym), ym ∼ p(y), m = 1, . . . ,M, i.i.d. (18)
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The Monte Carlo error is not large if a sufficient number of realizations are generated.
In our simple framework from Section 3.3 we first generate i.i.d. realizations x1, x2, . . . ,xM

of MRFs in equation (1). We next draw realizations of the experiment y1, y2, . . . ,yM . These are
marginally from the distribution p(y). For each of these conceptual datasets ym we compute the
marginal posterior for the favorable outcome denoted by pi(1|ym). We use the recursive forward
and backward techniques to 1) draw realizations xm, and 2) compute the marginal pi(1|ym). We
will refer to the two methods as RecGenerate and RecCompute respectively, to specify where ex-
actly they are used in the main algorithm. The recursive method itself is based on Reeves and
Pettitt (2004) and outlined in Appendix A.
The algorithm for computing the value of an experiment is as follows:

1. Find the marginal prior probability for x using RecCompute.

2. Solve equations (3) through (6) to find the PV and the VOPI.

3. Generate a realization x from the prior with RecGenerate. .

4. Generate a conditional realization y of the experimental result from the likelihood of the ex-
periment, given the realization x. The general form of the likelihood is depicted in equation
(2).

5. With the current realization of the experiment y, use RecCompute to evaluate the marginal
posterior probability of the favorable outcome xi = 1, denoted as pi(1|y), and compute the
associated value. This is done for all cells i = 1, . . . , N .

6. Repeat steps 3. - 5. a total of M times, and approximate the integral for V ′
i , i = 1, . . . , N , in

equation (7) with the average value from the simulations, shown in equation (17).

7. Solve equations (8) through (10) to get VOE and COK.

Crucial tasks in steps 1. - 7. of the algorithm are RecGenerate and RecCompute, using recursive
computing on the field of size n1n2 = N . The recursive method presented in Appendix A is of
order O(N), but for each step of the recursion we need to evaluate and store terms of size dn1; this
is the computer memory intensive part of the algorithm. Therefore the smallest grid dimension n1

should not be too large (say not more than n1 = 10 for d = 3). In our case, with only one favorable
outcome, the most efficient way is to use d = 2 and marginalize over all non-favorable categories.
However, such a marginalization would not be natural from a modeling perspective. For example,
in the petroleum exploration case, it is easier for experts to consider three categories: oil sand,
brine sand and shale, and assign prior probabilities and likelihoods for each class. Also, more than
one outcome can be favorable in general.

Note that the algorithm above only applies to the simple framework of Section 3.3. The compu-
tational advantage of this model is that the marginal posterior probability pi(1|y) of the favorable
outcome is easily calculated by the recursive algorithm. For the more general setting of Section
3.4, one may require a function of the joint distribution over the entire field p(x|y), and this is not
easy to obtain in general. A more complicated and time consuming Monte Carlo method would be
necessary for the general case. The algorithm of choice would typically depend on the particular
situation.
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5. Examples

5.1 Example from conservation biology

Consider a region of land under scrutiny in a conservation biology project, modeled as a 3 by 3
grid. The decision maker is interested in selecting sites from the grid to set up natural wildlife re-
serves with the goal of conserving an endangered species. However, there is uncertainty regarding
the presence of the species. If the decision maker selects a cell, she must pay the cost C (assumed
to be the same across cells) for construction of the natural reserve. If the species is present at a cell
that she chooses, she obtains revenue R (again assumed to be the same across cells). The decision
maker will not know for sure whether the species is present or not until the cell has been selected.
Let x be a random variable for the presence or absence (d = 2) of the species at all cells in the
grid. The categorical outcome xi is 1 if the species is present at cell i and 0 if the species is absent.
The decision maker is interested in the value of information for different kinds of surveys.

In this example we analyze experiments that have binary results. We also assume for now that
if the experiment is purchased, it will be performed at all cells in the grid. One can imagine a
survey where a team explores every cell and indicates whether they believe the species is present
or not, for each cell. The survey result yi = 1 implies that the team believes the species is present
at cell i and yi = 0 suggests otherwise. The experimental results need not be accurate. Say that the
accuracy of the test at every cell is the same and is denoted by γ. This accuracy is defined by the
following likelihood equation:

p(yi = k|xi = k) = γ; k = 0, 1;∀i. (19)

The likelihood may be different conditioned on whether the latent variable xi is 1 or 0. Sensitivity
and specificity have been the terms used in the literature to denote these likelihoods. For simplicity
we will combine these such that there is only one parameter. A value of γ close to 1 indicates
a good test, i.e. a test with high accuracy. We choose to model the field’s spatial prior as an
uninformative prior, i.e. we have no prior point-wise information on the field, and believe that there
is an equal chance of species presence or absence in every cell. There is some spatial correlation
for x, determined by the interaction parameter β. Furthermore, C = 1 monetary unit (so that
revenue can now be written in units of C).

First we assume that the cell-selection is unconstrained, i.e. the decision maker can select as
many cells as is profitable. Sensitivity analysis on the parameters β and γ can provide insights into
general trends. Figure 1 shows VOE as a function of these parameters in three plots, for revenue
R = 2, 5 and 10 monetary units from left to right respectively. Let us analyze trends within each
plot to begin with. Firstly, the accuracy is a critical parameter. The curve for γ = 0.9 shows the
highest VOE. In all three graphs, γ = 0.5 has V OE = 0 as the experiment provides no information
about the distinction of interest. The VOPI is a horizontal line and has the same value (4.5 units
in this case) for all β and for all R ≥ 2. It only depends on the marginal probability of success in
each cell, which is 0.5 in the case of the uninformative prior, and does not depend on β. Note that
the VOE increases as β increases. This is because the chance that the entire grid will either contain
the species at all cells or in no cells becomes higher as β increases. The experiment becomes
more valuable as β increases because it can tell you about a possible jackpot (all cells favorable)
or prevent a huge loss (all cells unfavorable). As there are no constraints on the number of cells
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Figure 1: Sensitivity analysis in the unconstrained case. There are 3 plots of VOE and VOPI vs. β: (left) revenue
= 2 units; (middle) revenue = 5 units; and (right) revenue = 10 units. Each plot shows VOPI (dashed line)
and VOE for tests with accuracy γ = 0.5, 0.7 and 0.9 (solid, colored lines).

that can be selected, the decision maker is free to choose all the cells or none; for large values of
β, this all-or-nothing policy is optimal. Therefore in the unconstrained case for the uninformative
prior, the experiment can really make a difference for large β. The spikes in the curves are due to
Monte Carlo error, and are most notable for the plot of R = 10. We use M = 25000 Monte Carlo
simulations in this example. VOE is not very sensitive to β for lower values, which is useful to
know if one is unsure about the interaction parameter or cannot spare much time for estimating it.

Now observe the differences between each of the plots in Figure 1. Consider the case of γ =
0.7 and β = 0 in the graphs for R = 2 and R = 5, and compare them. For this choice of γ and β,
V OE = 0 for R = 5 whereas for R = 2 VOE is almost 2 units. Experiments do not automatically
become more valuable when the decision situation is more lucrative. When R = 2, there is a
chance for the experimental result to change the main decision, and in this way the experiment
is valuable as it is able to affect the decision. On the other hand if R = 5 (and β = 0), it is
worthwhile to select all cells no matter what the experiment has to say. This is a fundamental issue
in the decision-analytic approach to valuing information.

What if there are constraints on the number of reserve sites that can be selected? We use ideas
from both Section 3.3 and Section 3.4 to solve the equations for the situation of constraints in cell-
selection. We retain the assumption that the cells act as separate units, while introducing another
parameter: k, or the maximum number of cells that can be selected (based on a budget). Once we
have a particular probability map (prior or posterior), we can maximize profits from the field by
choosing the best k prospects, if profitable. Even in a simple example with only 9 cells, trends in
VOE when the problem involves both spatial dependence and constraints in cell-selection can be
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Figure 2: Sensitivity analysis in the constrained case. The accuracy of the experiment is γ = 0.9. Two plots of
VOE vs. β: (left) revenue = 2 units; and (right) revenue = 5 units. Each plot shows VOE for 3 values of k
(the maximum number of cells that can be selected): k = 1 (dotted line), k = 5 (solid line) and k = 9 (dashed
line).

counter-intuitive. Figure 2 demonstrates results from sensitivity analysis on β for a test with an
accuracy of γ = 0.9. We compare the VOE for k = 1, 5 and 9 for R = 2 (left) and R = 5 (right)
in Figure 2.

The graph on the left is more in accordance with our initial reaction; VOE is highest when k = 9
and lowest when k = 1. The case with k = 9 corresponds to the unconstrained case as there are
N = 9 cells in the field. As we observed in Figure 1, VOE appears to increase in the unconstrained
situation. However, for k = 5 and to some extent also for k = 1, VOE seems to decrease as β
increases. This is even more prominent in the graph on the right. We explain this tendency as
follows. The experiment conducted over the entire field has a certain facet that can be relatively
more valuable when there is both low spatial dependence and a limit on the number of cells that can
be selected. It tells you which cells are likely to be favorable, thereby guiding the decision maker
about the choice of site location. There is a little more leeway for the decision maker regarding
selection of an appropriate location when there is high spatial dependence. Thus VOE can be
relatively smaller when β is high. There are other seemingly unusual trends in the plot for R = 5.
The VOE for curve k = 5 appears to be much higher than the other two curves for smaller β. It is
indeed possible for the experiment to be more valuable in the situation when there are constraints,
as opposed to when there are none. In the realistic situation of an informative prior on a large grid,
the interaction between the parameters can become even trickier to understand. Simple examples
can highlight some of the ideas that should be kept in mind while gathering information. High
likelihood experiments are useful, but they should be able to affect the downstream decision.
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5.2 Example from petroleum exploration

We next use an example from the petroleum industry to demonstrate how our formulation can
be employed for real-world applications. It is not a detailed case study by itself, but can give a
sense of how an actual case study would be performed. The case we are considering is a lateral
two dimensional reservoir domain that is a candidate for oil exploration. Decisions have to be
made regarding which data attributes to analyze and over which spatial area. More specifically
we evaluate the value of different attributes obtained from seismic reflection data (Avseth et al,
2005). We are interested in analyzing the value of information for two attributes of amplitude ver-
sus offset (AVO) seismic data. If these attributes are purchased, the decision maker will have to
pay to conduct AVO processing and analyses. The example is motivated by previous work on AVO
seismic data from the Glitne field in the North Sea, for example Eidsvik et al. (2004) and Avseth
et al. (2005). These studies predicted the spatial distribution of oil sands based on AVO seismic
attributes. The results obtained using just one of the AVO attributes (called R0, normal-incidence
reflectivity) were quite different from using both (called (R0, G), normal-incidence reflectivity and
gradient with offset), and it is hence of interest to study the value of different seismic attributes
following the decision-analytic framework outlined earlier. Furthermore, we compare the value
of partial tests to that of acquiring AVO attributes along the entire field. We have chosen to post-
pone details regarding the model and implementation of this rather complex seismic example to
Appendix B.

The focus of attention is a n1 = 5 by n2 = 20 grid (N = 100); a part of a reservoir that may be
the lobe of a turbidite system and hence of main interest for exploration. The distinction of interest
is the rock and fluid composition which takes on any one of d = 3 colors: oil sand (xi = 1), brine
sand (xi = 2) or shale (xi = 3). The only profitable outcome is that of oil sand. For the MRF
prior model in equation (1) we use αi(xi) 6= 0, representing an informed prior based on previous
knowledge and expert geologic opinion. The experimental result yj , j ∈ J is a continuously
distributed random variable. With an experiment that measures only one AVO attribute, R0, the
measurement at site j is yj = R0,j ∈ R, whereas a situation where both AVO attributes are
acquired is indicated by yj = (R0,j, Gj)

′ ∈ R2. The experimental results are assumed to be
Gaussian distributed with likelihoods given in Appendix B.

Figure 3 shows the AVO seismic data from a 5 × 20 grid from the North Sea (Eidsvik et
al, 2004). This data is somewhat upscaled from the original dataset and each gridcell is of size
1002 m2. The domain in Figure 3 is hence of size 500m × 2000m. For parameter estimation of
interaction parameter β we assume that this field is similar to the one under consideration and use
the data for this purpose. We estimate β in equation (1) based on these AVO seismic data and fixed
values of αi(xi). The maximum likelihood estimate of β is computed by evaluating the marginal
likelihood p(y) for a set of β values, see Appendix A. In Figure 4 we display p(y) as a function
of β, and see that the maximum likelihood estimate is about 0.9. In the following calculations we
treat this parameter as fixed.

Now recall that we do not have the extracted AVO attributes for the reservoir. We will compute
the value of information for some experimental configurations to identify which attribute(s) to
extract. We do, however, suppose that geologic knowledge is present. We assess a realization
of the field from a hypothetical geologist, along with the confidence in the assessment using a
likelihood function at all cells. We obtain the point-wise function αi(xi) from geologic expert
opinion. This knowledge assigns high αi(1) for central cells and the South-East flank, larger αi(2)
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Figure 3: Seismic data from the Glitne reservoir in the North Sea. The display shows two seismic attributes R0
(top) and G (below). Each grid cell is 100m × 100m and the domain covers an area of 500m × 2000m.
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Figure 4: Maximum likelihood estimation of β. The graph is obtained by evaluating the marginal likelihood p(y)
using the Glitne dataset for several β values between 0 and 1.5. The maximum is near 0.9.

and αi(3) in other areas. In Figure 5 we show the marginal prior probabilities of the favorable oil
sand.

We demonstrate the value of information for the full test, i.e. extracting seismic attributes at
every grid cell i = 1, . . . , N , and for two partial tests covering only parts of the domain. The
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Prior Probability Map

0.1 0.2 0.3 0.4 0.5 0.6

Figure 5: Prior probability of oil sand. The image shows pi(1), i = 1, . . . , 100. Note that oil sand is more likely in
the central parts and in the South-East where the pointwise prior terms αi(1) are larger.

Partial Testing

PARTIAL TEST # 1
PARTIAL TEST # 2

Figure 6: Cell locations for two kinds of partial tests. Partial test 1 covers 12 cells in the central part (shaded blue),
while partial test 2 covers 15 cells in the South-East (shaded red). In comparison the full test covers all 100
cells.

two partial tests are shown in Figure 6. Partial test 1 covers the central parts of the domain, while
partial test 2 mostly covers the south-eastern parts. These two spatial domains are believed to be
the most likely candidate areas for oil, as specified by the informative prior. For each of the tests
we consider using only the R0 seismic attribute, or both (R0, G) seismic attributes. Altogether this
entails six testing configurations.

For evaluating the decision-analytic expressions we use the algorithm at the end of Section 4.
We briefly illustrate how we compute the VFE for this example. First we generate M = 10000
realizations of the MRF x, two of these realizations are illustrated in Figure 7 (top). Next, test
results are generated for each realization of the MRF. For each of the six configurations the test
result will be generated from different likelihood functions depending on the particular spatial
design and on the seismic attributes. In Figure 7 (middle) we illustrate the test results of R0 for a
full test conditional on the MRF realizations in Figure 7 (top). Finally, based on the test results,
we compute the marginal posterior probability of the favorable state oil at each gridcell. These
marginals are used when computing the VFE in equation (17). In Figure 7 (bottom) we show the
marginal probabilities of oil for each of the two test results in Figure 7 (middle). Note that the
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1st realization of x
Oil−sand: Blue; Brine−Sand: Green; 

Shale: Brown

1st realization of y
(R0 attribute)
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Marginal posterior probabilities 
(given the 1st realization of R0)

0.2 0.4 0.6 0.8

2nd realization of x
Oil−sand: Blue; Brine−Sand: Green; 

Shale: Brown
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Figure 7: Realizations. Top: Two realizations of the field x from the prior p(x). Middle: Two associated realiza-
tions of data y which in this case is the zero-offset attribute R0. Below: The marginal posterior probabilities
pi(1|y), i = 1, . . . , 100, of oil sand corresponding to each dataset y. For computing value of information we
generate M = 10000 realizations of data and compute the marginals for each.

marginal probability of oil sand in Figure 7 (left, bottom) is small in the North-West, even though
the realization Figure 7 (left, top) shows oil sand in that part. This occurs since oil sand and shales
are almost indistinguishable based on R0 data alone (see Appendix B), and because the shale in
this region of the field is more likely a priori.

We assume a cost of C = $2 million for drilling a well at a cell, and a revenue of R = $5
million if a well discovers oil sand at a cell. Note that these are costs and revenues per cell and are
obtained from back-of-the-envelope calculations. They would be obtained from management and
petroleum engineers in a real-world case study. We use the volume of a cell, the assumed porosity
and fraction of recoverable oil and the price of oil to estimate the revenue.

Results of the tests and attribute selection schemes are displayed in Table 1. The specific
course of action regarding experimentation depends on the cost of each configuration, which would
depend on factors such as whether the reservoir is offshore or not, etc. It seems likely that in this
case, purchasing both attributes over the entire field may be most beneficial. The VOE and COK
values are high in our example, particularly when both the attributes (R0, G) are acquired over the
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Table 1: Value of experiment (VOE) and chance of knowing (COK) for seismic AVO attributes R0 and (R0, G)
and for different experimental configurations; complete test, partial tests 1 and 2.

Complete test Partial test 1 Partial test 2
VOE (million $) COK VOE (million $) COK VOE (million $) COK

Ro 4.91 0.07 0.48 0.007 2.11 0.03
(R0, G) 35.94 0.51 1.93 0.03 10.61 0.15

entire field. This is because decisions regarding several cells in the field can be strongly affected
by the experimental result. The field itself seems to be very lucrative, and has a prior value of
around $12 million. We would expect COK values to be much lower in practice because the
magnitude of revenues and costs typically result in a very high VOPI in the petroleum industry.
In our example, VOPI is around $70 million. Depending on the costs involved, partial test 2 may
be preferred over partial test 1 - the numbers indicate that intelligent experimental positioning can
be extremely valuable. Also, again depending on the costs, a partial test with both attributes can
be better than a complete test with only one attribute. The decision-analytic approach naturally
encourages creative alternatives for decisions related to experimentation. There are often several
alternatives regarding the kind and specific location of the experiment, and these can be discussed
at length by the stakeholders.

6. Conclusions and Future Research

In this paper, we propose a decision-analytic approach to valuing experiments performed in
situations that naturally exhibit spatial dependence. We incorporate dependence by modeling the
system as a two dimensional grid, and by treating the joint prior distribution of the distinction
of interest as a Markov random field. The experimental decision is based on the value of infor-
mation in our framework. We illustrate our methodology with the help of two examples. Our
example from conservation biology indicates that spatial dependence can play a significant role in
determining the value of an experiment. The petroleum exploration example is a demonstration
of how our framework can be applied in real-world case studies. The results suggest that intelli-
gent experimental design can add substantial value to the decision situation. Moreover, decisions
regarding the choice and location of experiments should be analyzed by a multi-disciplinary task-
force. Our methodology inspires a collaborative effort by aggregating the experimental likelihood,
prior spatial model and downstream decisions and associated values into a single meta-model.

Decision trees and similar tools have previously been used to compute the monetary value of
information in spatial decision making. These techniques aggregate distinctions to a global level
and therefore excessively simplify several important aspects of the decision problem, including
the alternatives, experimental likelihood and value assessments. Employing a formulation with a
grid incorporates spatial dependence, maneouvres the spatial decision making problem to a more
realistic front, and encourages creative alternatives for experimental design.

There are several possible directions for further research. One direction involves statistical
issues. For instance, other prior models like Gaussian models can be investigated. Hierarchical
Bayesian models could also be captured within our framework, such as a prior on β, but we have
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not pursued this idea here. From the computational point of view, algorithms for larger grid sizes
should be explored. In our framework the recursive method works best for moderate size grids, say
n1 < 10. Block updating using Gibbs sampling is a possible way to estimate value of information
for larger grids. Other simulation techniques could also be considered; specific techniques may
possibly be suitable for specific models. Finally, the decision-analytic assumptions can be relaxed
or modified in future work. We currently focus on the marginal probabilities in our simple frame-
work. In general, the value from the field can depend on the joint distribution of the distinction
of interest. Sequential decisions and even sequential experimentation are other avenues that can
be examined. Decisions regarding experimentation should be subjected to intensive analysis in all
domains, particularly in realms where there is the additional complexity of spatial dependence.
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Appendix A: Recursive computations for Markov random fields (MRFs).

Let x = (x1, . . . , xN) be a categorical MRF on the two dimensional regular grid. Here, N =
n1n2 is the total number of grid nodes, n1 is the shorter direction (say North) and n2 is the longer
direction (say East). Assume that each xi ∈ {1, . . . , d}, i = 1, . . . , N , i.e. the categorical values
can take d possible colors. Suppose the grid nodes are numbered sequentially from North-West
so that x1 is the categorical value in the North-West, xn1 in the South-West, xn1(n2−1)+1 in the
North-East, and xN in the South-East. See Figure 8 for an example of a grid and the indexing of
cells.
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Figure 8: Illustration of a 3× 3 grid and the indexing of cells. For an Ising model the full conditional probabilities
at cell 5 depend only on the outcomes at the four nearest neighbors (shaded colors).

The MRF probability function is written as

p(x) =
exp[β

∑
i∼j I(xi = xj) +

∑
i αi(xi)]

z
=

h(x)

z
, (20)

where i ∼ j means all neighboring pairs, β and αi(l), i = 1, . . . , N , l = 1, . . . , d are model
parameters. This is the simplest MRF and is known as the Ising model, where the neighbors of an
interior node i are defined by i + 1, i− 1, i− n1, and i + n1, see Figure 8. If node i is on the edge
or is a corner node, some of these neighbors vanish. The normalizing constant z is given by

z =
d∑

x1=1

. . .
d∑

xn=1

h(x). (21)

Note that this normalizing constant is a function of the model parameters. Location specific pa-
rameters αi(l) can be functions of data yi via the likelihood term, i.e. αi(xi) = log p(yi|xi),
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xi ∈ {1, . . . , d}. The density in equation (20) is then a posterior p(x|y), and the normalizing
constant depends both on parameters and the data. The marginal likelihood of data is given by

p(y) =
p(y|x)p(x)

p(x|y)
=

∏
j p(yj|xj)h

1(x)/z1

h2(x)/z2
=

z2

z1
, (22)

where h1(x) and z1 are defined by αi(xi) terms including only prior information, while h2(x) and
z2 are defined by both prior information and the log p(yi|xi) likelihood terms. Hence, the functional
expressions depending on x cancel and the marginal likelihood equals the ratio of the normalizing
constants in posterior and prior. For parameter estimation of β we evaluate the marginal likelihood
for a set of parameter values and find the maximum likelihood over this set.

The probability function for x in equation (20) can be written sequentially as:

p(x) = p(x1|x2, . . . , xn)p(x2|x3, . . . , xN) . . . p(xN−1|xN)p(xN) (23)
= p(x1|x2, . . . , x1+n1)p(x2|x3, . . . , x2+n1) . . . p(xN−1|xN)p(xN)

=
h(x1|x2, . . . , x1+n1)h(x2|x3, . . . , x2+n1) . . . h(xN−1|xN)h(xN)

z
,

where we use the Markov property, but choose to condition on all buffer variables in the sequential
line up. The buffer is of length n1 in this case. It gets shorter in the last (easternmost) column.
The terms in expression (23) are defined by h(x1|x2, . . . , x1+n1) = exp{β[I(x1 = x2) + I(x1 =
x1+n1)] + α1(x1)} for the first location, then goes on for x2, x3 and so on, until h(xN−1|xN) =
exp{βI(xN−1 = xN) + αN−1(xN−1)} and h(xN) = exp{αN(xN)}.

We first illustrate a method for recursive forward computation of the normalizing constant z in
equation (21). This method follows Reeves and Pettitt (2004), and z is computed by summing out
one variable at a time. The recursion starts by

z1(x2, . . . , xn1+1) =
d∑

x1=1

h(x1|x2, . . . , x1+n1), (24)

since x1 is only involved in the first term of the sequential formulation in equation (23). The
recursive calculation continues by using the equation that for general i ≤ N − n1

zi(xi+1, . . . , xi+n1) =
d∑

xi=1

h(xi|xi+1, . . . , xi+n1)zi−1(xi, . . . , xi+n1−1). (25)

The terms in (xi+1, . . . , xi+n1) takes one value for every buffer configuration, and with d colors we
have dn1 possible configurations. As the buffer length gradually decreases in the last column, the
number of possible configurations gets smaller, and at the final step N we calculate

z = zN =
d∑

xN=1

h(xN)zN−1(xN), (26)

which is the normalizing constant in equation (21).
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We next demonstrate a recursive backward sampling algorithm for drawing x from the proba-
bility function in equation (20). The value of xN is sampled from probability vector

pN(xN) =
1

z

d∑
x1=1

. . .
d∑

xN−1=1

h(x) (27)

=
1

z
h(xN)zN−1(xN), xN ∈ {1, . . . , d}.

where the sequential normalizing constants evaluated in equation (25) and (26) are used. We
continue in this manner; generating xN−1 conditional on the sample of xN from probability vector

p(xN−1|xN) =

∑d
x1=1 . . .

∑d
xN−2=1 h(x)

zp(xN)
(28)

=
h(xN−1|xN)zN−2(xN , xN−1)

zN−1(xN)
, xN−1 ∈ {1, . . . , d},

and so on for all i = N − 2, . . . , 1.
We finally present a backward evaluation scheme for the marginal probabilities pi(xi), i =

N, . . . , 1. The marginal for xN is given directly in equation (27). For N − 1 we first arrange the
joint density p(xN−1, xN) and then sum out xN :

pN−1(xN−1) =

∑d
x1=1 . . .

∑d
xN−2=1

∑d
xN=1 h(x)

z
(29)

=

∑d
xN=1 h(xN)h(xN−1|xN)zN−2(xN , xN−1)

z
, xN−1 ∈ {1, . . . , d}.

For general node i this evaluation consists of a backward construction of the joint probability for
the buffer of length n1. The marginal for node i is then evaluated by summing over all buffer
configurations xi+1, . . . , xi+n1 for each possible value of xi ∈ {1, . . . , d}. A similar backward
formula is used when computing the entropy defined by the sequential formula in equation (15).

Appendix B: Implementation issues for the petroleum exploration example

The two amplitude versus offset (AVO) seismic attributes that are used here are denoted as R0

and G. The first attribute relates to the reflectivity of a seismic wave at zero angle, while the latter
is associated with the reflectivity of a seismic wave as a function of angle (offset angle between
emitted and received signal). If one acquires only R0, there is no information about the variation
of the reflected response as a function of angle. The seismic reflectivity is connected to the rock
and fluid composition of the subsurface. These relationships are quite well known in rock physics,
see e.g. Avseth et al. (2005), and are typically modeled as a hierarchy of physical attributes such
as pressure and shear wave velocity and density.

In Eidsvik et al. (2004) statistical relationships for each level of the hierarchy of physical at-
tributes was specified. We use these statistical relationships in a Monte Carlo setting to fit a Gaus-
sian likelihood model to the AVO seismic data, conditional on oil sand, brine sand and shale. For
the case with only R0 the likelihood equals

p(yj|xj) = Normal[µ1(xj), 0.062], yj = R0,j, j ∈ J, (30)
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where µ1 = (0.03, 0.08, 0.02). For the case with both attributes R0 and G, the likelihood equals

p(yj|xj) = Normal
{

[µ1(xj), µ2(xj)]
′,

[
0.062 −0.007
−0.007 0.172

]}
yj = (R0,j, Gj)

′, j ∈ J, (31)

where µ2 = (−0.21,−0.15, 0). The off-diagonal entry in the covariance matrix in equation (31)
corresponds to a correlation between R0 and G of about −0.7. In these equations we use xj ∈
{1, 2, 3}; 1 corresponds to oil sand, 2 is brine sand, and 3 is shale.
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