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Abstract

We are concerned with Bayesian inference for latent Gaussian models, that is models involving a
Gaussian latent field (in a broad sense), controlled by few parameters. This is perhaps the class of models
most commonly encountered in applications: the latent Gaussian field can represent, for instance, a mix
of smoothing splines or smooth curves, temporal and spatial processes. Hence, popular smoothing-spline
models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian
Cox-processes, and geostatistical models, all fall in this category.

We consider the case where the observational model is non-Gaussian, so that the posterior marginals
are not available in closed form. Prominent examples are Poisson and Binomial count data. Although
Markov chain Monte Carlo methods are available for estimating posterior marginals, they are not without
practical problems such as slow convergence and long computation time.

In this work we demonstrate that using integrated nested Laplace approximation and its simplified
versions, we can, in most cases, directly compute very accurate approximations to the posterior marginals.
It is our experience that these are in practice exact, meaning that a well-designed MCMC algorithm has to
run much longer than usual to detect any error. The main benefit is the dramatic cut in computational costs:
where MCMC algorithms need hours and days to run, our approximations provide more precise estimates
in seconds and minutes. Our hope is that our methodology will greatly facilitate and automate the routine
analysis of data arising in applications of latent Gaussian models.
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1 Introduction

1.1 Latent Gaussian models

Latent Gaussian models are widely used in Bayesian analysis. Such models assume a latent Gaussian field
x = (x1, . . . , xn)T , which is observed pointwise through nd conditional independent data y. In its simplest
form, the covariance matrix of the latent Gaussian field and the likelihood are governed by a few parameters
θ = (θ1, . . . , θm)T , say m ≤ 6. Linear constraints of the form Ax = e, where the matrix A has rank k, may
also be imposed. The posterior then reads

π(x,θ | y) ∝ π(θ) π(x | θ)
∏
i∈I

π(yi | xi,θ).

In this paper, we assume that the main goal of the inference is to compute all, or some of, the n posterior
marginals for xi plus possibly the posterior marginals for θ or some θj . We are concerned with the case
where π(yi|xi,θ) is a well-behaved, albeit non Gaussian, density, so that the posterior marginals π(xi|y) and
π(θj |y) are not available in closed form.

A few examples will demonstrate the wide use of latent Gaussian models. We loosely classify them
with respect to their ‘physical dimension’, like 1D, 2D and 3D. In 1D, the latent process is often a mix of
unstructured Gaussian effects and smooth processes in continuous or discrete ‘time’, such as integrated Wiener
processes or random walk models. These can be used in a temporal context in various applications (Wecker
and Ansley, 1983; Carter and Kohn, 1994; Fahrmeir and Tutz, 2001; Kitagawa and Gersch, 1996; Durbin
and Koopman, 2000), or to model semiparametrically the effect of covariates in a regression setup (Lang and
Brezger, 2004; Biller and Fahrmeir, 1997). In 2D, typical examples are model-based geostatistics (Diggle
et al., 1998; Diggle and Ribeiro, 2006), and more generic smoothing models similar to the well-known BYM
model for disease mapping (Besag et al., 1991; Weir and Pettitt, 2000), see also Banerjee et al. (2004) for
many more examples. Models for spatial log-Gaussian Cox processes (Møller et al., 1998) are also in this
class. Spatial models can also include 1D constructs, like splines which model various covariate effects, see
for example Natario and Knorr-Held (2003) and Fahrmeir and Lang (2001). 3D examples are usually an
extension of a spatial model to a temporal or depth dimension, e.g. Allcroft and Glasbey (2003); Carlin and
Banerjee (2003); Knorr-Held (2000); Knorr-Held and Besag (1998) and Wikle et al. (1998).

1.2 Inference: MCMC approaches

The common approach to inference for latent Gaussian models is Markov chain Monte Carlo (MCMC). How-
ever, since the dimension n of the latent Gaussian field is often large, MCMC techniques come with a series
of potential practical problems. The components of the latent field x are often strongly dependent with each
other, and, in addition, θ and x are also strongly dependent, especially when n is large. To overcome the
first problem, a proposal based on a Gaussian approximation to the full conditional of x can be constructed
(Gamerman, 1997, 1998; Carter and Kohn, 1994; Knorr-Held, 1999; Knorr-Held and Rue, 2002; Rue et al.,
2004). The second problem requires, at least partially, a joint update of both θ and x, based for instance on the
one-block approach of Knorr-Held and Rue (2002): make a proposal for θ to θ′, update x from the Gaussian
approximation conditional on θ′, then accept/reject jointly; see Rue and Held (2005, Ch. 4) for more details
and variations on this approach. Independence samplers can also sometimes be constructed (Rue et al., 2004).
For some (observational) models, auxiliary variables can be introduced to simplify the construction of Gaus-
sian approximations (Shephard, 1994; Albert and Chib, 1993; Holmes and Held, 2006; Frühwirth-Schnatter
et al., 2006; Frühwirth-Schnatter and Frühwirth, 2007; Rue and Held, 2005).

1.3 Inference: Deterministic approximations

The central role of Gaussian approximations in the development of more efficient MCMC algorithms leads
naturally to the following questions:
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• Can we bypass MCMC entirely, and base our inference solely on such closed-form approximations?

• To which extent can we advocate an approach that leads to a (presumably) small approximation error
over another approach entailed with a (presumably) large MCMC error?

As a matter of principle, one should be more comfortable with the latter, as MCMC errors can be made
arbitrarily small, for arbitrarily large computational time. We argue however that, for a given computational
cost, the deterministic approach developed in this paper outperforms MCMC algorithms to such an extent
that, for latent Gaussian models, resorting to MCMC rarely makes sense in practice.

It may be helpful to provide some orders of magnitude. In typical spatial examples where the dimension
n is a few thousands, our approximations for all the posterior marginals can be computed in a minute or a
few minutes. The corresponding MCMC samplers need hours or even days to compute accurate posterior
marginals. The approximation bias is in typical examples much less than the MCMC error and negligible
in practice. More formally, on one hand it is well-known that MCMC is a last resort solution: Monte Carlo
averages are characterised by additive Op(N−1/2) errors, where N is the simulated sample size. Thus, it is
easy to get rough estimates, but nearly impossible to get accurate ones; an additional correct digit requires 100
times more computational power. More importantly, the implicit constant in Op(N−1/2) often hides a curse
of dimensionality with respect to the dimension n of the problem, which explains the practical difficulties
with MCMC mentioned above. On the other hand, Gaussian approximations are intuitively appealing for
latent Gaussian models. For most real problems and datasets, the conditional posterior of x is typically well-
behaved, and looks ‘almost’ Gaussian. This is clearly due to the latent Gaussian prior assigned to x, which
has a non-negligible impact on the posterior, especially in terms of dependence between the components of x.

1.4 Inference: The new approach

Our approach is based on the following approximation π̃(θ|y) for the marginal posterior of θ:

π̃(θ | y) ∝ π(x,θ|y)
π̃G(x|θ,y)

∣∣∣∣∣
x=x?(θ)

(1)

where π̃G(x|θ,y) is the Gaussian approximation to the full conditional of x, and x?(θ) is the mode of the
full conditional for x, for a given θ. The proportionality sign (1) comes from the fact that the normalising
constant for π(x,θ|y) in unknown. This expression is equivalent to Tierney and Kadane (1986)’s Laplace
approximation of a marginal posterior distribution and this suggests that the approximation error is relative
and of order O(n−3/2

d ) after renormalisation. However, since n is not fixed but depends on nd, standard
asymptotic assumptions usually invoked for Laplace expansions, see for example Schervish (1995, p. 453),
are not verified here. We will discuss the error rate for this case in more detail in Section 4.

Note that π̃(θ|y) itself tends to depart significantly from Gaussianity. This suggests that a cruder approxi-
mation based on a Gaussian approximation to π(θ|y) is not accurate enough for our purposes, and similarly
approximations which constructs ‘equivalent Gaussian observations’ around x? evaluated at the mode of (1)
(Breslow and Clayton, 1993; Ainsworth and Dean, 2006). A critical aspect of our approach is to explore and
manipulate π̃(θ|y) and π̃(xi|y) in a ‘nonparametric’ way.

Rue and Martino (2007) used (1) to approximate posterior marginals for θ for various latent Gaussian
models. Their conclusion was that π̃(θ|y) is particularly accurate: even long MCMC runs could not detect
any error in it. For the posterior marginals of the latent field, they proposed to start from π̃G(x|θ,y) and
approximate the density of xi|θ,y with the Gaussian marginal derived from π̃G(x|θ,y), i.e.

π̃(xi | θ,y) = N
{
xi; µi(θ), σ2

i (θ)
}

. (2)

Here, µ(θ) is the mean of the Gaussian approximation, whereas σ2(θ) is a vector of corresponding marginal
variances. This approximation can be integrated numerically with respect to θ using (1), to obtain approxi-
mations of the marginals of interest for the latent field,

π̃(xi | y) =
∑

k

π̃(xi | θk,y) × π̃(θk | y) × ∆k. (3)
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The sum is over values of θ with area-weights ∆k. Rue and Martino (2007) showed that the approximate
posterior marginals for θ were accurate, while the error in the Gaussian approximation (2) was higher. In
particular, (2) can present a slight error in location and/or a lack of skewness. Another issue in Rue and
Martino (2007) was the difficulty to detect the xi’s whose approximation is less accurate.

In this paper, we solve all the remaining issues in Rue and Martino (2007), and present a fully automatic
approach for approximate inference in latent Gaussian models which we name Integrated Nested Laplace Ap-
proximations (INLA). The main tool is to apply the Laplace approximation once more, this time to π(xi|y,θ).
We also present a faster alternative which corrects the Gaussian approximation (2) for error in the location and
lack of skewness at moderate extra cost. The corrections are obtained by a series expansions of the Laplace
approximation. This faster alternative is a natural first choice in applications due to the low computational
costs and high accuracy. It is our experience that INLA outperforms without comparison any MCMC alter-
native, both in terms of accuracy and computational speed. Tools to assess the approximation error are also
provided.

INLA is not computationally feasible for an arbitrary latent Gaussian model, unless n is small (a few
hundred), because dense matrix calculations are expensive. We therefore assume that x is a Gaussian Markov
random field (GMRF), which means that the latent field admits conditional independence properties. This
makes it possible to use sparse matrix algorithms, which are far more efficient; see Section 2. The GMRF
assumption is not limiting, as most latent Gaussian models in the literature are of this type when n is not
small. An exception is geostatistical models, but fast approximate inference is still possible in this case, using
a different approach (Eidsvik et al., 2006), or combining the INLA approach with GMRF-proxies to Gaussian
fields (Rue and Tjelmeland, 2002).

1.5 Plan of paper

Section 2 contains preliminaries on GMRF’s, sparse matrix computations, and Gaussian approximations. Sec-
tion 3 explains how to approximate π(θ|y) and π(xi|θ,y), using the Integrated nested Laplace approximation
(INLA) approach. For the latter distributions, three approximations are discussed: Gaussian, Laplace and sim-
plified Laplace. Section 4 discusses the error rates of the Laplace approximations used in INLA. Section 5
illustrates the performance of INLA through simulated and real examples, which include multiscale analysis
of non-Gaussian time-series data, stochastic volatility models, spatial semi-parametric ecological regression
and spatial log-Gaussian Cox processes. Section 6 presents an alternative integration scheme for the case
when the number of hyperparameters is not small but moderate. Section 7 is a general discussion.

2 Preliminaries

We present here basic properties of GMRF’s, and explain how to perform related computations using sparse
matrix algorithms. We then discuss how to compute Gaussian approximations for a latent GMRF. See Rue and
Held (2005) for more details on both issues. Denote by x−i the vector x minus its ith element, by N (µ, Σ)
the Gaussian distribution, and by N (x; µ, Σ), the Gaussian density at configuration x.

2.1 Gaussian Markov Random Fields

A GMRF is a Gaussian random variable x = (x1, . . . , xn) with Markov properties: for some i 6= j’s, xi and
xj are independent conditional upon x−ij . These Markov properties are conveniently encoded in the precision
(inverse covariance) matrix Q: Qij = 0 if and only if xi and xj are independent conditional upon x−ij . Let
the undirected graph G denote the conditional independence properties of x, then x is said to be a GMRF with
respect to G. If the mean of x is µ, the density of x is

π(x) = (2π)−n/2|Q|1/2 exp
{
−1

2
(x− µ)T Q(x− µ)

}
. (4)
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In most cases only O(n) of the n2 entries of Q are non-zero, so Q is sparse. This allows for fast factorisation
of Q as LLT , where L is the (lower) Cholesky triangle. The sparseness of Q is inherited into L, thanks to
the global Markov property: for i < j, such that i and j are separated by F (i, j) = {i + 1, . . . , j− 1, . . . , j +
1, . . . , n} in G, Lji = 0. Thus, only non-null terms in L are computed. In addition, nodes can be re-ordered
to decrease the number of non-zero terms in L. The typical cost of factorising Q into LLT is O(n) for 1D,
O(n3/2) for 2D and O(n2) for 3D GMRF’s.

Solving equations which involve Q also makes use of the Cholesky triangle. For example, Qx = b is
solved in two steps. First solve Lv = b, then solve LT x = v. If z ∼ N (0, I) then the solution of LT x = z
has precision matrix Q. This is the general method for producing random samples from a GMRF. The log
density at any x, log π(x), can easily be computed using (4) since log |Q| = 2

∑
i log Lii.

Marginal variances can also be computed efficiently. To see this, we can start with the equation LT x = z
where z ∼ N (0, I). Recall that the solution x has precision matrix Q. Writing this equation out in detail,
we obtain Liixi = zi −

∑n
k=i+1 Lkixk for i = n, . . . , 1. Multiplying each side with xj j ≥ i, and taking

expectation, we obtain

Σij = δij/L2
ii −

1
Lii

n∑
k=i+1

LkiΣkj , j ≥ i, i = n, . . . , 1, (5)

where Σ (= Q−1) is the covariance matrix. Thus Σij can be computed from (5), letting the outer loop i run
from n to 1 and the inner loop j from n to i. If we are only interested in the marginal variances, we only need
to compute Σij’s for which Lji (or Lij) is not known to be zero, see above. This reduce the computational
costs to typically O(n(log n)2) in the spatial case; see Rue and Martino (2007, Sec. 2) for more details.

When the GMRF is defined with additional linear constraints, like Ax = e for a k × n matrix A of rank
k, the following strategy is used: if x is a sample from the unconstrained GMRF, then

xc = x−Q−1AT (AQ−1AT )−1(Ax− e) (6)

is a sample from the constrained GMRF. The expected value of xc can also be computed using (6). This
approach is commonly called ‘conditioning by Kriging’, see Cressie (1993) or Rue (2001). Note that Q−1AT

is computed by solving k linear systems, one for each column of AT . The additional cost of the k linear
constraints is O(nk2). Marginal variances under linear constraints can be computed in a similar way, see Rue
and Martino (2007, Sec. 2).

2.2 Gaussian Approximations

Our approach is based on Gaussian approximations to densities of the form:

π(x) ∝ exp

{
−1

2
xT Qx +

∑
i∈I

gi(xi)

}
. (7)

where gi(xi) is log π(yi|xi,θ) in our settings. The Gaussian approximation is obtained by matching the modal
configuration and the curvature at the mode. The mode is computed iteratively. Let µ(0) be the initial guess,
and expand gi(xi) around µ

(0)
i to the second order,

gi(xi) ≈ gi(µ
(0)
i ) + bixi −

1
2
cix

2
i (8)

where {bi} and {ci} depend on µ(0). A Gaussian approximation is obtained, with precision matrix Q+diag(c)
and mode given by the solution of (Q + diag(c))µ(1) = b. This process is repeated until it converges to
a Gaussian distribution with, say, mean x? and precision matrix Q? = Q + diag(c). If there are linear
constraints, the mean is corrected at each iteration using the expected value of (6).

6



Since the non-quadratic term in (7) is only a function of xi and not a function of xi and xj , say, the pre-
cision matrix of the Gaussian approximation is of the form Q + diag(c). This is computationally convenient,
as the Markov properties of the GMRF are preserved.

Density (7) may seem restrictive: a more complex density is obtained if, say, y1 depends on the sum
x1 + x2. This happens for example when the observations are a blurred version of the latent field. In such a
case, we find it most convenient to alter the latent field: x is augmented with xn+1, where xn+1 is x1 + x2

plus a tiny Gaussian noise; then y1 depends on xn+1 only, and (7) applies.

3 The Integrated Nested Laplace approximation (INLA)

In this section we present the INLA approach for approximating the posterior marginals of the latent Gaussian
field, π(xi|y), i = 1, . . . , n. The approximation is computed in three steps. The first step (Section 3.1)
approximates the posterior marginal of θ using the Laplace approximation (1). The second step (Section 3.2)
computes the Laplace approximation, or the simplified Laplace approximation, of π(xi|y,θ), for selected
values of θ, in order to improve on the Gaussian approximation (2). The third step combines the previous two
using numerical integration (3).

3.1 Exploring π̃(θ|y)

The first step of the INLA approach is to compute our approximation to the posterior marginal of θ, see (1).
The denominator in (1) is the Gaussian approximation to the full conditional for x, and is computed as de-
scribed in Section 2.2. The main use of π̃(θ|y) is to integrate out the uncertainty with respect to θ when
approximating the posterior marginal of xi, see (3). For this task, we do not need to represent π̃(θ|y) para-
metrically, but rather to explore it sufficiently well to be able to select good evaluation points for the numerical
integration (3). At the end of this section, we discuss how the posterior marginals π(θj |y) can be approxi-
mated.

Assume for simplicity that θ = (θ1, . . . , θm) ∈ Rm, which can always be obtained by reparametrisation;

Step 1 Locate the mode of π̃(θ|y), by optimising log π̃(θ|y) with respect to θ. This can be done using
some quasi-Newton method which builds up an approximation to the second derivatives of log π̃(θ|y)
using the difference between successive gradient vectors. The gradient is approximated using finite
differences. Let θ? be the modal configuration.

Step 2 At the modal configuration θ? compute the negative Hessian matrix H > 0, using finite differences.
Let Σ = H−1, which is the covariance matrix for θ if the density were Gaussian. To aid the exploration,
use standardised variables z instead of θ: let Σ = V ΛV T be the eigen-decomposition of Σ, and define
θ via z, as follows

θ(z) = θ? + V Λ1/2z. (9)

If π̃(θ|y) is a Gaussian density, then z isN (0, I). This reparametrisation corrects for scale and rotation.

Step 3 Explore log π̃(θ|y) using the z-parametrisation. Figure 1 illustrates the procedure when log π̃(θ|y)
is unimodal. Panel (a) shows a contour plot of log π̃(θ|y) for m = 2. Its skewness is exaggerated
compared to typical examples. Panel (a) also displays the location of the mode and the new coordinate
axis for z. We want to explore log π̃(θ|y) in order to locate the bulk of the probability mass. The
result of this procedure is displayed in panel (b). Each dot is a point where log π̃(θ|y) is considered as
significant, and which is used in the numerical integration (3). Details are as follows. We start from the
mode (z = 0), and go in the positive direction of z1 with step-length δz say δz = 1, as long as

log π̃(θ(0)|y)− log π̃(θ(z)|y) < δπ (10)

where, for example δπ = 2.5. Then we switch direction and do similarly. The other coordinates are
treated in the same way. This produces the black dots. We can now fill in all the intermediate values by
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theta1
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z1
z2

theta1

theta
2

z1
z2

(a) (b)

Figure 1: Illustration of the exploration of the posterior marginal for θ. In (a) the mode is located, the Hessian
and the coordinate system for z are computed. In (b) each coordinate direction is explored (black dots) until
the log-density drops below a certain limit. Finally the grey dots are explored.

taking all different combinations of the black dots. These new points (shown as grey dots) are included
if (10) holds.

Since we layout the points θk in a regular grid, we take all the area-weights ∆k in (3) to be equal.
Consider now the case where we want to compute the approximation for the posterior marginals for some

or all the θj’s, π̃(θj |y). The rotation of the axis due to V in (9) is inconvenient when summing out the
remaining variables θ−j . We can then replace the negative Hessian H by its diagonal, in order to suppress
the rotation while retaining the scaling.

3.2 Approximating π(xi|θ, y)

We have now a set of weighted points {θk} to be used in the integration (3). The next step is to provide ac-
curate approximations for the posterior marginal for the xi’s, conditioned on selected values of θ. We discuss
three approximations π̃(xi|y,θk), that is the Gaussian, the Laplace, and a simplified Laplace approximation.
Although the Laplace approximation is preferred in general, the much smaller cost of the simplified Laplace
generally compensates for the slight loss in accuracy.

3.2.1 Using Gaussian Approximations

The simplest (and cheapest) approximation to π(xi|θ,y) is the Gaussian approximation π̃G(xi|θ,y), where
the mean µi(θ) and the marginal variance σ2

i (θ) are derived using the recursions (5), and possibly correcting
for linear constraints. During the exploration of π̃(θ|y), see Section 3.1, we already compute π̃G(x|θ,y), so
only marginal variances need to be additionally computed. The Gaussian approximation gives often reason-
able results, but there can be errors in the location and/or errors due to the lack of skewness (Rue and Martino,
2007).

3.2.2 Using Laplace Approximations

The natural way to improve the Gaussian approximation is to compute the Laplace approximation

π̃LA(xi | θ,y) ∝ π(x,θ|y)
π̃GG(x−i|xi,θ,y)

∣∣∣∣∣
x−i=x?

−i(xi,θ)

. (11)

Here, π̃GG is the Gaussian approximation to x−i|xi,θ,y, and x?
−i(xi,θ) is the modal configuration. Note that

π̃GG is different from the conditional density corresponding to π̃G(x|θ,y).
Unfortunately, (11) implies that π̃GG must be recomputed for each value of xi and θ, since its precision

matrix depends on i and θ. This is far too expensive, as it requires n factorisations of the full precision matrix.
We propose two modifications to (11) which makes it computationally feasible.
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Figure 2: Illustration of the region of interest Ri(θ). The outer circle illustrates the graph of the GMRF,
whereas the black dot indicates the node of interest. The conditional expectation (13) locates the nodes that
are affected by a change in xi, that is all the nodes in the grey region.

Our first modification consists in avoiding the optimisation step in computing π̃GG(x−i|xi,θ,y) by ap-
proximating the modal configuration,

x?
−i(xi,θ) ≈ EeπG(x−i | xi,θ,y). (12)

The right-hand side is evaluated under the conditional density derived from the Gaussian approximation
π̃G(x|θ,y). The computational benefit is immediate. First, the conditional mean can be computed by a
rank one update from the unconditional mean, using (6). In the spatial case the cost is O(n log n), for each i,
which comes from solving Qv = 1i, where 1i equals one at position i, and zero otherwise. This rank one up-
date is computed only once for each i, as it is linear in xi. Although their settings are slightly different, Hsiao
et al. (2004) show that deviating from the conditional mode does not necessarily degrade the approximation
error. Another positive feature of using (12) is that the conditional mode is continuous with respect to xi, a
feature which does not hold in practice when numerical optimisation is used to compute x?

−i(xi,θ).
Our next modification materialises the following intuition: only those xj that are ‘close’ to xi should have

an impact on the marginal of xi. Figure 2 illustrates this idea. The graph of x is represented by the larger
circle. The node i is marked with a black dot. If the dependency between xj and xi decays as the distance
between nodes i and j increases, only those xj’s in the grey region are of interest regarding the marginal of
xi. Denote by Ri(θ) the ‘region of interest’ regarding the marginal of xi. The conditional expectation in (12)
implies that

EeπG(xj |xi,θ,y)− µj(θ)
σj(θ)

= aij(θ)
xi − µi(θ)

σi(θ)
(13)

for some aij(θ) when j 6= i. Hence, a simple rule for constructing the set Ri(θ) is

Ri(θ) = {j : |aij(θ)| > 0.001} . (14)

The most important computational saving using Ri(θ) comes from the calculation of the denominator of (11),
where we now only need to factorise a |Ri(θ)| × |Ri(θ)| sparse matrix.

Expression (11), simplified as explained above, must be computed for different values of xi in order to
find the density. To select these points, we use the mean and variance of the Gaussian approximation (2), and
choose, say, different values for the standardised variable

x
(s)
i =

xi − µi(θ)
σi(θ)

(15)

according to the corresponding choice of abscissas given by the Gauss-Hermite quadrature rule. To represent
the density π̃LA(xi|θ,y), we use

π̃LA (xi | θ,y) ∝ N
{
xi; µi(θ), σ2

i (θ)
}
× exp {cubic spline(xi)} . (16)

The cubic spline is fitted to the difference of the log-density of π̃LA(xi|θ,y) and π̃G(xi|θ,y) at the selected
abscissa points, and then the density is normalised using quadrature integration.

9



3.2.3 Using a Simplified Laplace Approximation

In this section we derive a simplified Laplace approximation π̃SLA(xi|θ,y) by doing a series expansion of
π̃LA(xi|θ,y) around xi = µi(θ). This allows us to correct the Gaussian approximation π̃G(xi|θ,y) for loca-
tion and skewness. For many observational models including the Poisson and the Binomial, these corrections
are sufficient to obtain essentially correct posterior marginals. The benefit is purely computational: as most of
the terms are common for all i, we can compute all the n marginals in only O(n2 log n) time.

Define

d
(3)
j (xi,θ) =

∂3

∂x3
j

log π(yj | xj ,θ)

∣∣∣∣∣
xj=EeπG (xj |xi,θ,y)

which we assume exists. The evaluation point is found from (13). The following trivial Lemma will be useful.

Lemma 1 Let x = (x1, . . . , xn)T ∼ N (0, Σ), then for all x1

−1
2
(x1, E(x−1|x1)T ) Σ−1

(
x1

E(x−1|x1)

)
= −1

2
x2

1/Σ11.

We expand the numerator and denominator of (11) around xi = µi(θ), using (12) and Lemma 1. Up to
third order, we obtain

log π(x,θ | y)

∣∣∣∣∣
x−i=EeπG (x−i|xi,θ,y)

= −1
2
(x(s)

i )2

+
1
6
(x(s)

i )3
∑

j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3 + · · ·

(17)

The first and second order terms give the Gaussian approximation, whereas the third order term provides a
correction for skewness. Further, the denominator of (11) reduces to

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x−i=EeπG (x−i|xi,θ,y)

= constant +
1
2

log |H + diag {c(xi,θ)}| (18)

where H is the prior precision matrix of the GMRF with ith column and row deleted, and c(xi,θ) is the vector
of minus the second derivative of the log likelihood evaluated at xj = EeπG(xj |xi,θ,y), see Section 2.2. Using
that

d log |H + diag(c)| =
∑

j

[
{H + diag (c)}−1

]
jj

dcj

we obtain

log π̃GG(x−i | xi,θ,y)

∣∣∣∣∣
x−i=EeπG (x−i|xi,θ,y)

= constant

− 1
2
x

(s)
i

∑
j∈I\i

VareπG(xj |xi) d
(3)
j (µi(θ),θ) σj(θ) aij(θ) + · · · .

(19)

For Gaussian data (18) is just a constant, so the first order term in (19) is the first correction for non-Gaussian
observations. Note that

VareπG(xj |xi) = σ2
j (θ)

{
1− CorreπG(xi, xj)2

}
but the correlation between xi and xj is only available for some of the i’s and j’s. This is because the marginal
variances are computed using (5). We approach this problem by simply replacing all correlations not computed
by a default value, say 0.05.
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We now collect the expansions (17) and (19). Define

γ
(1)
i (θ) =

1
2

∑
j∈I\i

σ2
j (θ)

{
1− CorreπG(xi, xj)2

}
d

(3)
j (µi(θ),θ) σj(θ) aij(θ)

γ
(3)
i (θ) =

∑
j∈I\i

d
(3)
j (µi(θ),θ) {σj(θ)aij(θ)}3

(20)

then
log π̃SLA(xs

i |θ,y) = constant− 1
2
(x(s)

i )2 + γ
(1)
i (θ)x(s)

i +
1
6
(x(s)

i )3γ(3)
i (θ) + · · · . (21)

Eq. (21) does not define a density as the third order term is unbounded. A common way to introduce skewness
into the Gaussian distribution is to use the Skew-Normal distribution (Azzalini and Capitanio, 1999)

πSN(z) =
2
ω

φ

(
z − ξ

ω

)
Φ
(

a
z − ξ

ω

)
(22)

where φ(·) and Φ(·) are the density and distribution function of the standard normal distribution, and ξ, ω > 0,
and a are respectively the location, scale, and skewness parameters. We fit a Skew-Normal density to (21)
so that the third derivative at the mode is γ

(3)
i , the mean is γ

(1)
i and the variance is 1. In this way, γ

(3)
i only

contributes to the skewness whereas the adjustment in the mean comes from γ
(1)
i ; see Appendix for details.

We have implicitly assumed that the expansion (17) is dominated by the third order term. This is adequate
when the log-likelihood is skewed, but not for symmetric distributions with thick tails like a Student-tν with
a low degree of freedom. For such cases, we expand only the denominator (19) and fit the spline-corrected
Gaussian (16), instead of a skewed Normal. This is slightly more expensive, but is needed.

The simplified Laplace approximation appears to be highly accurate for many observational models. The
computational cost is dominated by the calculation of vector ai·(θ), for each i; thus the ‘region of interest’
strategy (14) is unhelpful here. Most of the other terms in (20) do not depend on i, and thus are computed only
once. The cost for computing (21), for a given i, is of the same order as the number of non-zero elements of
the Cholesky triangle, e.g. O(n log n) in the spatial case. Repeating the procedure n times gives a total cost
of O(n2 log n) for each value of θ. We believe this is close to the lower limit for any general algorithm that
approximates all of the n marginals. Since the graph of x is general, we need to visit all other sites, for each
i, for a potential contribution. This operation alone costs O(n2).

4 Approximation error: Asymptotics and practical issues

4.1 Approximation error of π̃(θ|y)

To simplify the discussion, we assume that the dimension of the observations y, nd, equals the dimension of
the latent field x, n, so that each node xi is observed as yi. Equation (1) can be rewritten as{

π̃u(θ | y)
π(θ | y)

}−1

∝ |Q?(θ)|1/2

∫
exp

[
−1

2
{x− x?(θ)}T Q? {x− x?(θ)}+ r(x;θ,y)

]
dx (23)

∝ EeπG [exp {r(x;θ,y)}]

where π̃u(θ|y) is the unnormalised version of π̃(θ|y), x?(θ) and Q?(θ) are the mean and variance of Gaus-
sian distribution π̃G, r(x;θ,y) =

∑
i hi(xi), and hi(xi) is gi(xi) minus its Taylor expansion up to order two

around x?
i (θ), see (7) and (8). The approximation π̃(θ|y) is based on a Taylor expansion of order 2, but higher

orders can also be computed. Denote by S(θ) = (sij(θ)) the inverse of Q?(θ). Straightforward calculations
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show that

˜̃πu(θ | y) = π̃u(θ | y)

[
1 +

1
8

n∑
i=1

sii(θ)2
∂4gi(x?

i (θ))
∂x4

i

+
5
24

n∑
i=1

{
∂3gi(x?

i (θ))
∂x3

i

}2

sii(θ)3

+
1
24

n∑
i6=j

∂3gi(x?
i (θ))

∂x3
i

∂3gj(x?
j (θ))

∂x3
j

sij(θ)
{
2sij(θ)2 + 3si(θ)sj(θ)

}−1

corresponds to an expansion up to order 7: odd orders produce null coefficients, and order 4 and 6 give the
second term, and the two last terms, respectively. The density above is not necessarily positive, but if both
approximations are close, this seems an indication that both are accurate. We discuss only π̃(θ|y) from now
on.

For sake of exposition, denote p the dimension of integral (23), although p = n in our case. Under
standard assumptions, in particular when p is fixed, this integral is 1 +O(n−1); see e.g. Tierney and Kadane
(1986). Shun and McCullagh (1995) consider the case where p grows with n, but do not establish rigorously
the error rate. It does not seem possible in our settings to prove that the multiplicative error is always o(1) with
respect to n. For instance, if the xi’s are independent, it is possible to exhibit cases where the error isO(1) but
not o(1). (More details are available on request.) This discussion is complicated by the difficulty of defining
asymptotics in spatial models: observations may be generated in a larger and larger domain (increasing domain
asymptotics), in a fixed volume (infill asymptotics), and other asymptotic schemes could be devised. Instead,
we propose heuristic arguments for explaining the good accuracy observed in practical applications.

Remark 1 The ‘actual’ dimensionality of (23) is typically much smaller than n. Because of the dependency
within x, x is well approximated by its q principal components, with q � n. A convenient measure of
the dimensionality of (23) is Spiegelhalter et al. (2002)’s measure for the effective number of parameters,
pD. In the case of approximately Gaussian models, then

pD(θ) ≈ Trace
{

Q(θ) Q?(θ)−1
}

, (24)

the trace of the prior precision matrix times the by posterior covariance matrix of the Gaussian approxi-
mation. The quantity pD(θ) indicates how informative the data is, and to which extent the Gaussianity
and the dependence structure of the prior are preserved in the posterior of x, given θ. The calculation
of pD(θ) is cheap, since the covariances of neighbours are obtained as a by-product of the computation
of the marginal variances in the Gaussian approximation based on (5).

Remark 2 The approximation error is reduced through normalisation, provided (23) is roughly constant with
respect to theta within the support of the true marginal. For the Laplace approximation with stan-
dard assumptions, renormalisation improves the relative error from O(n−1) to O(n−3/2) (Tierney and
Kadane, 1986). Assuming the error is O(1) before normalisation, and that the true marginal admits
n−1/2 asymptotics, normalisation should lead to a O(n−1/2) error.

Remark 3 The high accuracy of our approximation which we obtain in the experiments in Section 5, seems to
be due both to the Gaussian latent field and the well-behaved observational models usually considered
in applications, e.g. an exponential family distribution for π(yi|xi,θ).

Following these remarks, a more direct way to assess the approximation error is simply to evaluate the order of
magnitude of r(x;θ,y): simulate independent samples {xj} from π̃G(x|θ,y), and compute the 0.025 lower
and upper quantiles of the empirical distribution of the r(x;θ,y)’s. This is a rather quick procedure. The
first term in the exponential defining the integrand in (23) is distributed according to χ2

n/2, so we consider
the remainder r(x;θ,y) to be small if quantiles are in absolute value much less than n. In the same way,
empirical averages of the r(x;θ,y), for different values of θ, can be used to determine the variability of (23)
with respect to θ.
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4.2 Approximation error of π̃LA(xi|θ, y)

The approximation error of π̃LA(xi|θ,y) admits a similar expression to that of π̃(θ|y). To see this, consider
an alternative structure for the model, where the node xi becomes an additional component of the parameter
θ, and the latent field is therefore x−i; then, the same manipulations as for (23) leads eventually to{

π̃LA,u(xi|θ,y)
π(xi|θ,y)

}−1

∝ EeπGG [exp {r(x;θ,y)}]

where π̃LA,u(xi|θ,y) is the unnormalised version of π̃LA(xi|θ,y). Thus, we essentially obtain the same
result as in Section 4.1; before normalisation, the approximation error of π̃LA(xi|θ,y) is comparable to that
of π̃(θ|y), and the assessment criteria proposed in the previous section are also good indicators of the accuracy
of π̃LA(xi|θ,y). Note however that normalisation has a different effect on π̃LA(xi|θ,y). Under increasing
domain asymptotics, new components xi′ are generated further and further from xi, so at some point the
additional terms hi′(xi′) in the expression of the remainder r(x;θ,y) should be a constant with respect to xi,
and therefore should be cancelled by normalisation. Thus, we conjecture that the error is at worst O(1) under
increasing domain asymptotics.

4.3 Assessing the approximation error

Obviously, there is only one way to assess with certainty the approximation error of our approach, which is to
run an MCMC sampler for an infinite time. However, we propose to use the following two strategies to assess
the approximation error, which should be reasonable in most situations.

Our first strategy is to verify the overall approximation π̃G(x|θ,y), for each θk used in the integration. We
do this by computing pD(θ) (24), and the lower and upper α/2 quantiles in the empirical distribution for the
remainder r(x;θ,y). If pD is small compared to n, and the quantiles of r(x;θ,y) are in absolute value much
less than n, this provides strong confidence that the Gaussian approximation is an adequate approximation.

Our second strategy is based on the simple idea of comparing elements of a sequence of more and more ac-
curate approximations. In our case, this sequence consists of the Gaussian approximation (2), followed by the
simplified Laplace approximation (21), then by the Laplace approximation (11). Specifically we compute the
integrated marginal (3) based on both the Gaussian approximation and the simplified Laplace approximation,
and compute their (symmetric) Kullback-Leibler divergence (KLD). If the divergence is small then both ap-
proximations are considered as acceptable. Otherwise, compute (3) using the Laplace approximation (11) and
compute the divergence with the one based on the simplified Laplace approximation. Again, if the divergence
is small, simplified Laplace and Laplace approximations appear to be acceptable; otherwise, the Laplace ap-
proximation is our best estimate but the label ‘problematic’ should be attached to the approximation to warn
the user. (This last option has not yet happened to us.)

5 Examples

This section provides examples of applications of the INLA approach, with comparisons to results obtained
from intensive MCMC runs. Comparisons are expressed in terms of computational time; computations were
performed on a 2.1GHz laptop, and programmed in C. We start with simple examples with fixed θ in Sec-
tion 5.1 and Section 5.2, to verify the (simplified) Laplace approximation for xi|θ,y. We continue with a
stochastic volatility model applied to exchange rate data in Section 5.3 and a spatial semi-parametric ecolog-
ical regression problem in Section 5.4. The dimensions gets really large in Section 5.5, in which we analyse
some data using a spatial log-Gaussian Cox process.
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5.1 Simple simulated examples

We start by illustrating the various approximations of π(xi|θ,y) in two quite challenging examples. The first
model is based on a first order auto-regressive latent field with unknown mean,

ηt − µ | η1, . . . , ηt−1, µ ∼ N
{
φ(ηt−1 − µ), σ2

}
, t = 1, . . . , 50 (25)

where µ ∼ N (0, 10), φ = 0.85 and Var(ηt) = 1. As our observations we take

yt − ηt | (η, µ) ∼ Student-t3 and yt | (η, µ) ∼ Bernoulli
{

logit−1(ηt)
}

for t = 1, . . . , 50, in both experiments. Note that the Student-t3 is symmetric so we use the full numerator in
the simplified Laplace approximations as described in Section 3.2.3.

To create the observations, we sampled first x = (ηT , µT )T from the prior, then simulated the observa-
tions. We computed π̃(ηt|θ,y) for t = 1, . . . , 50 and π̃(µ|θ,y) using the simplified Laplace approximation
and located the node with maximum Kullback-Leibler divergence (KLD) between the Gaussian and the sim-
plified Laplace approximations. This process was repeated 100 times, and the realisation with the largest
maximum KLD was selected. Figure 3 displays the results for the Student-t3 data (first column) and the
Bernoulli data (second column). Panel (a) and (b) display η (solid line) and the observed data (circles). In
(a) the node with the maximum KLD is marked with a vertical line and solid dot. In (b) the node with the
maximum KLD is µ hence not shown. Panel (c) and (d) display the approximated marginals for the node
with maximum KLD in the standardised scale (15). The dotted line is the Gaussian approximation, the dashed
line is the simplified Laplace and the solid line is the Laplace approximation. In both cases, the simplified
Laplace and the Laplace approximation are very close to each other. The KLD between the Gaussian ap-
proximation and the simplified Laplace one is 0.20 and 0.05, respectively. The KLD between the simplified
Laplace approximation and the Laplace one is 0.001 and 0.0004. Panel (e) and (f) show the simplified Laplace
approximation with a histogram based on 10, 000 (near) independent samples from π(η, µ|θ,y). The fit is
excellent.

The great advantage of the Laplace approximations is the high accuracy and low computational cost. In
both examples, we computed all the approximations (for each experiment) in less than 0.08 seconds, whereas
the MCMC samples required about 25 seconds.

The results shown in this example are rather typical and are not limited to simple time-series models
like (25). The Laplace approximation only ‘sees’ the log-likelihood model and then uses some of the other
nodes (see Figure 2) to compute the correction to the Gaussian approximation. Hence, the form of the log-
likelihood is more important than the form of the covariance for the latent field. We expect similar results for
spatial or spatio-temporal latent Gaussian models, with Student-tν or Binomial observations.

5.2 Bayesian multiscale analysis for time series data

This example shows a situation where it is useful to have estimates of the marginals with a relative error, so
that even the tails can be evaluated accurately. We extend the Bayesian multiscale tool for exploratory analysis
of time series data by Øigård et al. (2006) to allow for non-Gaussian observations. The fundamental problem
is to detect significant features and important structures of a signal observed with noise. Although a noisy
signal can be smoothed, often some of the features are visible only on certain scales, and may disappear if the
smoothing is too severe. The multiscale idea consists in considering several levels of smoothing simultane-
ously. Chaudhuri and Marron (1999) introduced such ideas in nonparametric function estimation in the form
of the SIZer methodology (SIgnificant ZERo crossings of derivatives), see also Erästö (2005).

Let η(t) be the unknown continuous underlying signal with derivatives η′(t), and level of smoothing κ.
Let y = (y1, . . . , yn)T be observations of η(·) at time-points t = (t1, . . . , tn)T . The derivative is said to be
‘significant’ positive at time point t, if

Prob(η′(t) > 0 | y, κ) > 1− α/2
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Figure 3: First row shows the true latent Gaussian field (solid line), the observed Student-t3 data and Bernoulli
data (dots). Second row shows the approximate marginal for a selected node using various approximations;
Gaussian (dotted), simplified Laplace (dashed) and Laplace (solid). Last row compares samples from a long
MCMC chain with the marginal computed with the simplified Laplace approximation.
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Figure 4: Results for the multiscale analysis example. Panel (a) displays the raw burst data. Panel (b) displays
the posterior means for varying degree of smoothing. Panel (c) shows the SIZer map for α = 0.05. Panel (d)
displays the ratios between the estimated and the real probability of being below the approximate quantiles,
lower quantiles on the left and upper quantiles on the right.

and similarly significant negative, where α is the level of significance. The SIZer map displays regions of
significant positive and negative gradients for various levels of smoothing κ.

We now illustrate how to use the simplified Laplace approximation to compute the SIZer map. We use
gamma ray burst intensity data previously analysed by Besbeas et al. (2004); the observations are Poisson:

y(ti) ∼ Poisson {exp(η(ti)} , ti = i for i = 1, . . . , n = 512

where η(t) is the latent Gaussian process. The data are displayed in Figure 4(a). We follow Øigård et al.
(2006), and model the continuous process η(t) as an integrated Wiener process with precision κ. Wecker and
Ansley (1983) show that the integrated Wiener process is Markov if augmented with the derivatives η′(t),(

η(ti+1)
η′(ti+1)

)∣∣∣∣ {(η(s)
η′(s)

)
, s ≤ ti

}
, κ ∼ N

{(
1 δi

0 1

)(
η(ti)
η′(ti)

)
,

1
κ

(
δ3
i /3 δ2

i /2
δ2
i /2 δi

)}
where δi = ti+1 − ti. Hence, the discretely observed integrated Wiener process x = ({η(ti)}, {η′(ti)})T

is a GMRF of dimension 2n, see Rue and Held (2005, Sec. 3.5). Note that the derivatives at ti are a part
of the GMRF, hence we can approximate their marginal densities (for a fixed κ) and check whether they are
significant negative or positive.
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We use the simplified Laplace approximation and compute all the 2n marginals for log κ = 1, . . . , 15.
This takes about 0.35 seconds for each value of log κ. The posterior means of {η(ti)} and the SIZer map
for α = 0.05 are displayed in Figure 4(b) and (c), respectively. In the SIZer map, white indicates significant
positive derivative, black indicates significant negative derivative whereas grey indicates none. The vertical
scale in the SIZer map goes from log κ = 1 to log κ = 15.

To verify the results we ran a MCMC sampler for nine hours and estimated the probability for the chain to
be below the α/2 (where α = 0.05) quantiles as computed from our approximation π̃(η′(ti)|κ, y). Panel (d)
displays the ratios of these estimated probabilities and the true value α/2 for all the 1024 nodes is the Markov
field. Lower (resp. upper) quantiles are displayed on the left (resp. right). In both cases the error is largest
at the two ends. The average ratio is 1.01 for the lower quantiles and 0.99 for the upper quantiles, so the
average absolute approximation bias is 0.00025. This is indeed impressive; recall that the simplified Laplace
approximation fits the skew-Normal parametric density.

Hannig and Marron (2006) develop some theory for computing more accurately (asymptotically) the SIZer
map for nonparametric regression. The Bayesian approach taken here does not resort to asymptotic theory,
can deal with non-Gaussian observations, can take into account covariates and unstructured effects and so on.
The calculations can be done exactly for Gaussian observation models, and, as illustrated here, practically
exactly for common non-Gaussian observation models.

5.3 Stochastic volatility models

Stochastic volatility models are frequently used to analyse financial time series. Figure 5(a) displays the log
of the daily difference of the pound-dollar exchange rate from October 1st, 1981, to June 28th, 1985. This
dataset has been analysed by Durbin and Koopman (2000), among others. There has been much interest in
developing efficient MCMC methods for such models, e.g. Shephard and Pitt (1997) and Chib et al. (2002).

Following Durbin and Koopman (2000), we consider a first order auto-regressive latent Gaussian process

xt | x1, . . . , xt−1, τ, φ ∼ N (φxt−1, 1/τ) ,

where |φ| < 1 to ensure stationarity. The observations are taken to be

yt | x1, . . . , xt, κ ∼ N {0, exp(xt)/κ} (26)

where κ is an unknown precision. The log-likelihood (with respect to κ) is quite far from being Gaussian
and is non-symmetric. There is some evidence that financial data have heavier tails than the Gaussian, so a
Student-tν distribution with unknown degrees of freedom can be substituted to the Gaussian in (26); see Chib
et al. (2002). We consider this modified model at the end of this example.

We display the results for the simplified Laplace approximation of the posterior marginals of the three
unknown hyperparameters (properly transformed so that θ ∈ R3):

θ1 = logit
(

φ + 1
2

)
, θ2 = log τ, and θ3 = log κ.

We use vague priors for θ, as strong priors make the approximation problem easier. For the same reason, we
display the results based on only the first n = 50 observations in Figure 5(a). The results for the full dataset
are similar, but the posterior marginals for the θj’s are closer to Gaussians.

Figure 5(b)-(d) displays the approximate posterior marginals for θ1, θ2 and θ3. The histograms are con-
structed from the output of a MCMC algorithm running for one day. The approximations computed are quite
precise and no serious deviance can be detected. Figure 5(e) displays the approximate posterior marginal
for xt|y based on the simplified Laplace approximation, for the component of x which maximises the KLD
between the posterior marginal based on the Gaussian approximation and based on the simplified Laplace
approximation. The KLD for all the xt’s are quite small and roughly equal to 3 × 10−4, so there is no par-
ticular gain in using the simplified Laplace approximation compared to the Gaussian one. The fit is quite
good, although we slightly underestimate the right hand side tail. The approximation error diminishes as the
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number of observations increases, but is still visible for the full dataset. A closer inspection reveals that the
underestimation is due to the (default) quite rough numerical integration (3). Improving the accuracy of the
numerical integration removes the underestimation.

We validated the approximations using all the n = 945 observations at the modal value θ?. The effective
number of parameters (24) was about 53, which is small compared to n. A 95% interval for the remainder
r(x;θ?,y)/n is [−0.002, 0.004] using 1, 000 independent samples. The computational cost for obtaining all
the posterior marginals was about 0.32 seconds for each value of θ, and 32 seconds in total.

We also applied the stochastic volatility model to the full dataset, see Figure 5(a), using a Student-tν
instead of a Gaussian for the observational model in (26), and a uniform prior for log ν. The number of
hyperparameters is then 4. Figure 5(f) shows predictions for future xt’s using the full dataset.

5.4 Semi-parametric ecological regression

In this example we consider an ecological regression problem and analyse the spatial variation of disease risk
in relation to a proxy exposure variable available on the same units. This is taken from Natario and Knorr-Held
(2003), which is refereed to for a more throughout background.

The data are male larynx cancer mortality counts in the n = 544 districts of Germany from 1986 to 1990:

yi | ηi ∼ Poisson {Ei exp(ηi)} , i = 1, . . . , n. (27)

The (fixed) ’district effect’ Ei accounts for the number of people in district i, its age distribution, etc., and
η is the log-relative risk. The maximum likelihood estimator for ηi using (27) is yi/Ei and is displayed
in Figure 6(a). The model for ηi takes the following form,

ηi = ui + vi + f(ci) (28)

where u is a spatially structured term, v is a unstructured term (‘random’ effects) and f(ci) is an unknown
effect of the exposure covariate with value ci at district i. For the exposure covariate we use the lung cancer
rate as a proxy for smoking consumption, see Figure 6(b). The spatially structured term is modelled as an
intrinsic GMRF (Rue and Held, 2005, Ch. 3)

ui | u−i, κu ∼ N

 1
ni

∑
j∼i

uj ,
1

niκu


where ni are the number of neighbour districts of i and κu is the unknown precision. The unstructured term
v is taken as a vector of independent N (0, κv). The effect of the covariate c is modelled as a smooth function
f(·), parametrised as unknown values f = (f1, . . . , f100)T for arguments 1, . . . , nc = 100. The values of the
covariate are scaled to the interval [1, nc]. The vector f is assumed to follow a second-order random walk,

π(f | κf ) ∝ κ
(nc−1)/2
f exp

{
−1

2
κf

nc∑
i=3

(fi − 2fi−1 + fi−2)2
}

(29)

with unknown precision κf . To separate the spatial effect and the effect of covariate, we impose
∑

i ui = 0.
Following Natario and Knorr-Held (2003), we assign independent vague Gamma priors to θ = (κu, κv, κf ).

We use the simplified Laplace approximation for the marginals of x = (ηT ,uT ,fT )T with length 1, 188. The
computation took about 52 seconds using 53 evaluation points for the numerical integration. The posterior
mean of the spatial term u is displayed in Figure 6(c) whereas the posterior mean of the unstructured effect
v is displayed in (d). The posterior mean of the covariate effect f is displayed in (e) with lower and upper
0.025 percentile, computed with the simplified Laplace approximation (solid) and the Gaussian approxima-
tion (2) (dotted). The two approximations nearly agree, which is also confirmed by relatively small values of
the KLD between the two approximations shown in (f). The maximum KLD for all variables appears for f50

and equals 0.032. This indicates that the Gaussian approximation had been sufficient for this example, so the
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Figure 5: Panel (a) displays the log of the daily difference of the pound-dollar exchange rate from October
1st, 1981, to June 28th, 1985. Panels (b)-(d) display the approximated posterior marginals for θ1 to θ3 using
only the first n = 50 observations in (a). Overlaid are the histograms obtained from a very long MCMC
run. The fit is perfect. Panel (e) displays the approximated posterior marginal for the location of the latent
field with maximum KLD, compared with the histograms from a very long MCMC run. Our approximation
underestimate slightly the behaviour on the right hand side, but this turn out to be an effect of the default (quite
rough) integration method. Panel (f) displays the predicted posterior marginals for future xt’s conditioned on
the full dataset, assuming in this case that observations are Student-tν distributed.
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Figure 6: Semi-parametric ecological regression example: panel (a) displays the maximum likelihood estima-
tor for the log relative risk. Panel (b) shows covariate values. Panels (c) and (d) give the posterior mean of the
structured (u) and unstructured (v) effects, respectively. Panel (e) displays the posterior mean of the covariate
effect with lower and upper 0.0025 percentiles. The solid line is the simplified Laplace approximation and the
dotted line is the Gaussian one. Panel (f) shows the KLD for the covariate effect.
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Figure 7: Data and covariates for the log-Gaussian Cox process example: (a) locations of the 3, 605 trees, (b)
altitude, and (c) norm of the gradient.

computational cost could had been reduced to 18 seconds (approximating all the marginals). Long MCMC
runs conform that the marginals computed using the simplified Laplace approximation are essentially correct.

We validated the approximations by computing pD(θ?) ≈ 91 and estimated a 95% interval for the remain-
der r(x;θ?,y)/n as [−0.001, 0.001] using 1, 000 independent samples.

5.5 Log-Gaussian Cox process

Log-Gaussian Cox processes (LGCP) are a flexible class of models that have been successfully used for
modelling spatial or spatio-temporal point processes, see for example Møller et al. (1998), Brix and Møller
(2001), Brix and Diggle (2001) and Møller and Waagepetersen (2003). In this section we will illustrate how
LGCP models can be analysed using our approach for approximate inference.

A LGCP is a hierarchical Poisson process: Y in W ⊂ Rd is a Poisson point process with a random
intensity function λ(ξ) = exp(Z(ξ)), where Z(ξ) is a Gaussian field at ξ ∈ Rd. In this way, the depen-
dency in the point-pattern is modelled through a common latent Gaussian variable Z(·). In the analysis of
LGCP, it is common to discretise the observation window W . Divide W into N disjoint cells {wi} located
at ξi each with area |wi|. Let yi be the number of occurrences of the realised point pattern within wi and let
y = (y1, . . . , yN )T . Let ηi be the random variable Z(ξi). Clearly π(y|η) =

∏
i π(yi|ηi) and yi|ηi is Pois-

son distributed with mean |wi| exp(ηi); the same likelihood as for the semi-parametric ecological regression
example (27). A straightforward generalisation is to allow for covariates: ηi can be decomposed in the same
way as (28), say

ηi = β0 + β1c1i + β2c2i + ui + vi, (30)

where u represent the spatial component, and v is an unstructured term.An alternative would be to use a
semi-parametric model for the effect of the covariates similar to (29).

We apply model (30) to the tropical rain forest data studied by Waagepetersen (2007). These data come
from a 50-hectare permanent tree plot which was established in 1980 in the tropical moist forest of Barro
Colorado Island in central Panama. Censuses have been carried out every 5th year from 1980 to 2005, where
all free-standing woody stems at least 10 mm diameter at breast height were identified, tagged, and mapped.
In total, over 350, 000 individual trees species have been censured over 25 years. We will be looking at
the tree species Beilschmiedia pendula Lauraceae using data collected from the first four census periods.
The positions of the 3605 trees are displayed in Figure 7(a). Sources of variation explaining the locations
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Figure 8: LGCP example: (a) posterior mean of the spatial component u, (b) Nodes where the KLD between
simplified Laplace and Gaussian approximations exceeds 0.2, (c)-(e) posterior marginals of β0, β1 and β2

using simplified Laplace (solid) and Gaussian approximations (dotted).

include the elevation and the norm of the gradient. There may be clustering or aggregation due to unobserved
covariates or seed dispersal. The unobserved covariates can be either spatially structured or unstructured.

We start by dividing the area of interest into a 200 × 100 regular lattice, where each square pixel of the
lattice represent 25 square metres. Denote elevation and norm of the gradient by c1 and c2, respectively. The
scaled versions of these covariates are shown in panel (b) and (c), for c1 and c2, respectively. For the spatial
structured term, we use a second order polynomial intrinsic GMRF (see Rue and Held (2005, Sec. 3.4.2)),
with following full conditionals in the interior (with obvious notation)

E(xi | x−i) =
1
20

(
8

◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

− 2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

− 1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
, Prec(xi | x−i) = 20κu. (31)

The precision κu is unknown. The full conditionals are constructed to mimic the thin-plate spline. There
are some corrections to (31) near the boundary, which can be found using the stencils in Terzopoulos (1988).
We impose a sum-to-zero constraint on the spatial term due to β0. The unstructured terms v are independent
N (0, κv), vague Gamma (resp. Gaussian) priors are assigned to κu and κv (resp. to β0, β1 and β2). The
GMRF is x = (ηT ,uT , β0, β1, β2)T with dimension 40, 003, and θ = (log κu, log κv).

We computed the approximation for 20, 003 posterior marginals using the simplified Laplace approxima-
tion, thus ignoring the unstructured components. This task required about 4 hours of computing or about 24
minutes for each value of θ. The high computational cost is due to the large number of computed posterior
marginals. The total cost can be reduced to only 10 minutes if using the Gaussian approximation (2). The
results are displayed in Figure 8. Panel (a) displays the estimated posterior mean of the spatial component.
In (b) we have marked areas where the KLD between the marginal computed with the Gaussian approximation
and the one computed with the simplified Laplace approximation exceeds 0.2. These nodes are candidates
for further investigation, so we computed their posteriors using also the Laplace approximation; the results
agreed well with those obtained from the simplified Laplace approximation. Panel (c) to (e) display the poste-
rior marginals computed with the Gaussian approximation (dotted) and the one computed with the simplified
Laplace approximation (solid) for β0, β1 and β2. The difference is mostly due to a horizontal shift, a charac-
teristic valid for all the other nodes as well.
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To validate the approximations, we computed pD(θ∗) ≈ 1714 and estimated a 95% interval for the remain-
der r(x;θ?,y)/n as [0.002, 0.005] using 1, 000 independent samples. Varying θ gave similar results. There
are no indications that the approximations does not works well in this case. Due to the size of the GMRF, the
comparison with results from long MCMC runs were performed on a cruder grid, with excellent results. We
also compared the conditional marginals in the spatial field for fixed values of θ, and again obtained excellent
results.

6 Moderate number of hyperparameters

Integrating out the hyperparameters as described in Section 3.1 can be quite expensive if the number of hy-
perparameters, m, is not small but moderate, say, in the range of 6 to 12. Using, for example, δz = 1 and
δπ = 2.5, the integration scheme proposed in Section 3.1 will require, if θ|y is Gaussian, O(5m) evaluation
points. Even if we restrict ourselves to three evaluation points in each dimension, the costO(3m) is still expo-
nential in m. In this section we will discuss an alternative approach which will reduce the computational cost
dramatically for high m, but, at the same time, it will also reduce the accuracy of the numerical integration
over π̃(θ|y). The aim is to be able to provide useful results even when the number of hyperparameters is so
large that the more direct approach in Section 3.1 is unfeasible.

Although many hyperparameters make the integration harder, it is often the case that increasing the number
of hyperparameters increases also variability and the regularity, so that the integrand simplifies. Meaningful
results can sometimes be obtained even using an extreme choice, that is using only the modal configuration to
integrate over π(θ|y). This ‘plug-in’ approach will obviously underestimate variability.

We can consider the integration problem as a design problem where we layout some ‘points’ in a m-
dimensional space. Based on the measured response, we estimate the response surface at each point. As a first
approximation, we can consider only response surfaces of second order, and use a classical quadratic design
like the central-composite design (CCD) (Box and Wilson, 1951). A CCD contains an embedded factorial or
fractional factorial design with centre points augmented with a group of 2m + 1 ‘star points’ which allow for
estimating the curvature. For m = 5, the design points are chosen (up to an arbitrary scaling) as

(1, 1, 1, 1, 1, 1), (−1, 1, 1, 1,−1), (1,−1, 1, 1,−1), (−1,−1, 1, 1, 1),
(1, 1,−1, 1,−1), (−1, 1,−1, 1, 1), (1,−1,−1, 1, 1), (−1,−1,−1, 1,−1),
(1, 1, 1,−1,−1), (−1, 1, 1,−1, 1), (1,−1, 1,−1, 1), (−1,−1, 1,−1,−1),
(1, 1,−1,−1, 1), (−1, 1,−1,−1,−1), (1,−1,−1,−1,−1) and (−1,−1,−1,−1, 1).

They are all on the surface of the m dimensional sphere with radius
√

m. The star points consist of 2m points
located along each axis at distance ±

√
m and the central point in the origin. For m = 5 this makes np = 27

points in total, which is small compared to 55 = 3, 125 or 35 = 243. The number of design-points is 8 for
m = 3, 16 for m = 4 and 5, 32 for m = 6, 64 for m = 7 and 8, 128 for m = 9, 10 and 11, and 256 from
m = 12 to 17; see Sanchez and Sanchez (2005) for how to compute such designs. For all designs, there are
additional 2m + 1 star-points.

To determine the integration weights ∆k in (3) and the scaling of the points, assume for simplicity that
θ|y is standard Gaussian. We require that the integral of 1 equals 1, and that the integral of θT θ equals m.
This gives the integration weight for the points on the sphere with radius f0

√
m

∆ =
[
(np − 1)

(
f2
0 − 1

){
1.0 + exp

(
−mf2

0

2

)}]−1

where f0 > 1 is any constant. The integration weight for the central point is 1− (np − 1)∆.
To validate the CCD integration, we recomputed the posterior marginal for the stochastic volatility model

in Section 5.3 using Student-tν distributed observations, and for the semi-parametric ecological regression
example in Section 5.4 using this integration method instead of the grid search in Section 3.1. The results
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were indeed positive. The predictions in Figure 5(f) for future xt’s using the full dataset were nearly indistin-
guishable from those obtained using the CCD integration using only 1/15 of the computational cost. Same
remarks apply for the results shown in Figure 6. The number of hyperparameters in these two cases is 4 and
3 respectively. Although this is not a large number, we should still be able to detect if the CCD integration is
too rough, and this does not seem to be the case. Although the CDD integration is not as thoroughly verified
as the INLA itself, the results obtained can be viewed as a ‘proof of concept’ at this stage. We hope to pro-
vide further empirical evidence that the CCD integration is adequate when the number of hyperparameters is
moderate.

7 Discussion

We have presented a new approach to approximate posterior marginals in latent Gaussian models, based on
integrated nested Laplace approximations (INLA). The results obtained are very encouraging: we obtain
practically exact results over a wide range of commonly used latent Gaussian models. We also provide tools
for assessing the approximation error, which are able to detect cases where the approximation bias is non-
negligible; we note however that this seems to happen only in pathological cases.

We are aware that our work goes against a general trend of favouring ‘exact’ Monte Carlo methods over
non-random approximations, as advocated for instance by Papaspiliopoulos et al. (2006) in the context of
diffusions. Our point however is that, in the specific case of latent Gaussian models, the orders of magnitude
involved in the computational cost of both approaches are such that this idealistic point of view is simply un-
tenable for these models. As we said already, our approach provides precise estimates in seconds and minutes,
even for models involving thousands of variables, in situations where any MCMC computation typically takes
hours or even days.

The advantages of our approach are not only computational. It also allows for greater automation and
parallel implementation. The core of the computational machinery is based on sparse matrix algorithms,
which automatically adapt to any kind of latent field, e.g. 1D, 2D, 3D and so on. All the examples considered
in this paper were computed using the same general code, with essentially no tuning. In practice, INLA can
be used almost as a black box. The code is now part of GMRFLib-library (Rue and Held, 2005, Appendix)
and available from the first author’s web page. With respect to parallel implementation, the INLA approach
computes the approximation of xi|θ,y independently for all i for fixed θ. Hence, parallel computing is trivial
to implement. This is particularly important for spatial or spatio-temporal latent Gaussian models.

The main disadvantage of the INLA approach is that the computational cost is exponential in the number
of hyperparameters m. In most applications m is small, but applications where m goes up to 10 do exist.
This problem may be less severe that it appears at first glance: the central composite design approach seems
promising, and provides reasonable results when m is not small, but this track needs more research. In fact,
we doubt that any MCMC algorithm which would explore the m-dimensional space of θ in a random fashion
would provide more accurate results for the same cost.

It is our view that the prospects of this work are more important than this work itself. Near instant inference
will make latent Gaussian models more applicable, useful and appealing for the end user, which has no time
or patience to wait for the results of an MCMC algorithm, or has to analyse many different dataset with the
same model, or both. Further, near instant inference makes it much easier to challenge the model itself: Bayes
factors can be computed through the normalising constant for π̃(θ|y), the model can be assessed through
cross-validation, residual analysis, etc., in a reasonable time.
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A Fitting the skew-Normal distribution

We explain here how to fit the skew-Normal distribution (22) to an expansion of the form

log π(x) = constant− 1
2
x2 + γ(1)x +

1
6
γ(3)x3 + · · · . (32)

To second order, (32) is Gaussian with mean γ(1) and variance 1. The mean and the variance of the skew-
Normal distribution are ξ + ωδ

√
2/π and ω2(1 − 2δ2/π), respectively, where δ = a/

√
1 + a2. We keep

these fixed to γ(1) and 1, respectively, but adjust a so the third derivative at the mode in (22) equals γ(3). This
gives three equations to determine (ξ, ω, a). The modal configuration is not available analytically, but a series
expansion of the log skew-Normal density around x = ξ gives:

x? =
( a

ω

) √2π + 2ξ( a
ω )

π + 2( a
ω )2

+ higher order terms.

We now compute the third derivative of the log-density of the skew-Normal at x?. In order to obtain an
analytical (and computationally fast) fit, we expand this third order derivative with respect to a/ω:

√
2(4− π)
π3/2

( a

ω

)3
+ higher order terms. (33)

and imposes that (33) equals γ(3). This gives explicit formulae for the three parameters of the skewed-normal.
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Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration with two applications in spatial statistics (with
discussion). Annals of the Institute of Statistical Mathematics, 43(1):1–59.

Besbeas, P., Feis, I. D., and Sapatinas, T. (2004). A comparative simulation study of wavelet shrinkage estimators for
poisson counts. International Statistical Review, 72(2):209–237.

Biller, C. and Fahrmeir, L. (1997). Bayesian spline-type smoothing in generalized regression models. Computational
Statistics, 12:135–151.

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of optimum conditions (with discussion).
Journal of the Royal Statistical Society, Series B, 13(1):1–45.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. Journal of the
American Statistical Association, 88(1):9–25.

Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. Journal of the Royal
Statistical Society, Series B, 63(4):823–841.

25



Brix, A. and Møller, J. (2001). Space-time multi type log Gaussian Cox processes with a view to modelling weeds.
Scandinavian Journal of Statistics, 28:471–488.

Carlin, B. P. and Banerjee, S. (2003). Hierarchical multivariate CAR models for spatio-temporally correlated survival
data (with discussion). In Bayesian Statistics, 7, pages 45–63. Oxford Univ. Press, New York.

Carter, C. K. and Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3):541–543.

Chaudhuri, P. and Marron, J. S. (1999). SiZer for exploration of structures in curves. Journal of the American Statistical
Association, 94:807–823.

Chib, S., Nardari, F., and Shepard, N. (2002). Markov chain Monte Carlo methods for stochastic volatility models.
Journal of Econometrics, 108:281–316.

Cressie, N. A. C. (1993). Statistics for spatial data. Wiley Series in Probability and Mathematical Statistics: Ap-
plied Probability and Statistics. John Wiley & Sons Inc., New York. Revised reprint of the 1991 edition, A Wiley-
Interscience Publication.

Diggle, P. J. and Ribeiro, P. J. (2006). Model-based Geostatistics. Springer Series in Statistics. Springer.

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatistics (with discussion). Journal of the Royal
Statistical Society, Series C, 47(3):299–350.

Durbin, J. and Koopman, S. J. (2000). Time series analysis of non-Gaussian observations based on state space models
from both classical and Bayesian perspectives (with discussion). Journal of the Royal Statistical Society, Series B,
62(1):3–56.

Eidsvik, J., Martino, S., and Rue, H. (2006). Approximate bayesian inference in spatial generalized linear mixed models.
Technical Report no 2, Department of mathematical sciences, Norwegian University of Science and Technology.
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