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Abstract

This paper deals with the kernel density estimator based on the so-called sinc (or Fourier

integral) kernel K(x) = (πx)−1 sin x. We study in detail both asymptotic and finite sample

properties of this estimator. It is shown that, contrary to widespread opinion, the sinc estimator

is superior to other estimators in many respects: it is more accurate for quite moderate values of

the sample size, has better asymptotics in non-smooth case (the density to be estimated has only

first derivative), is more convenient for the bandwidth selection etc.

Key words: Kernel estimation, Sinc kernel, Fourier integral kernel, Mean integrated squared error,
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1. Introduction

Let X1, ..., Xn be independent and identically distributed random variables with the same proba-

bility density function f(x). We consider the problem of estimation of f(x) nonparametrically. One

of the most popular methods is the kernel estimator

fn(x;h) =
1

n

n
∑

i=1

Kh(x −Xi) (1.1)

where Kh(x) = h−1K(h−1x), K(x) is a kernel function (usually symmetric) and h is the smoothing

parameter (bandwith).

Typically, K(x) is taken to be a probability density with at least a couple of finite moments; this

ensures that fn(x;h) itself becomes a density function, and methods of Taylor expansion and so on

make it possible to analyse its behaviour to a satisfactory degree. Recent monographs dealing with

general aspects of kernel density estimators include Wand and Jones (1995) and Fan and Gijbels

(1996).

However, the present paper deals with a non-standard choice for K(x), namely the so-called sinc

kernel

Ks(x) =
sinx

πx

with the Fourier transform (characteristic function)

ψs(t) =

{

1 for |t| ≤ 1,

0 for |t| > 1.

The sinc kernel is not in L1, that is its absolute value has infinite integral, but it is square integrable,

and in addition it is integrable in the sense of the Cauchy principal value with

v.p.

∫ ∞

−∞
Ks(x)dx = 1,
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in which

v.p.

∫ ∞

−∞
= lim

T→∞
lim
ε→0

[

∫ −ε

−T

+

∫ T

ε

]

.

(In the following we will omit integration limits when the integral is to be taken over the full real

line.) Respectively, we have

ψs(t) = v.p.

∫

eitxKs(x)dx.

Sometimes the sinc kernel is defined as K(x) = sin(πx)/(πx) with the Fourier transform

ψ(t) =

{

1 for |t| ≤ π,

0 for |x| > π.

Both functions sinx/(πx) and sin(πx)/(πx) integrate to one in the sense of the principal value, and

the difference is only in the scale parameter.

The sinc kernel is a “non-conventional” kernel, it takes negative values and is not integrable in the

ordinary sense (we will say that a kernel is conventional if it is a probability density function i.e. it

is non-negative and integrates to one; kernel estimators, based on conventional kernels, will be called

conventional estimators). Respectively, realizations of the kernel estimator, based on the sinc kernel

(we will call it the sinc estimator; in some works, it is called FIE — Fourier integral estimator, see for

example Davis, 1975 and Davis, 1977) are not probability density functions. This defect however can

be easily corrected without loss of the performance (see Glad et al. (2003)).

The sinc estimator has excellent asymptotic properties compared to conventional kernel estimators

when the density to be estimated is smooth i.e. has several derivatives, see Davis (1975) and Davis

(1977). If, for example, the density to be estimated is an analytic function of a certain type, then

the mean integrated squared error of the sinc estimator decreases as n−1 as n → ∞ while no one

conventional estimator can provide the rate of convergence better than n−4/5. It is believed however

that the performance of the sinc estimator is good, roughly speaking, only for very large n, and only

for very smooth f(x). In addition, it is beleaved that even for very large n and very smooth f(x),

the sinc estimator is inferior to kernel estimators based on so-called superkernels — non-conventional

kernels whose Fourier transform is continuous and equals 1 in some neighbourhood of the origin. In

this work, we try to show that these beliefs are unjust.

In Section 3, we present examples demonstrating that the sinc estimator is more accurate than

conventional estimators for quite moderate values of the sample size. In Section 4, we prove that

the sinc estimator is asymptotically supereor to conventional estimators (has a strictly better order

of consistency) even when f(x) has only one derivative. In Section 5, we make comparison of the

sinc estimator with a superkernel estimator and show that the sinc estimator has better properties,

in particular, it is more accurate. In Section 6, we consider the problem of bandwidth selection.

This problem is solved easier and more effective for the sinc estimator than for other estimators. The

problem of estimation of the mode is studied in Section 7. Some useful inequalities for the MISE of the

sinc estimator are obtained in Section 8. The inequalities also show that the performance of the sinc

estimator is good not only for large sample sizes but for moderate and even small too. In section 9, we

study the problem of estimating derivatives. Here the sinc estimator is especially effective compared

with other kernel estimators.
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2. The MISE of the estimator

Let f̂n(x) be an estimator of f(x) associated with the sample X1, ..., Xn. The customary perfor-

mance criterion for density estimators is the mean integrated squared error (MISE), which is defined

as

MISE(f̂n(x)) = E

∫

[f̂n(x) − f(x)]2dx.

In practice one seeks methods to minimise the MISE function. The MISE is the sum of the integrated

squared bias (denote it by B(f̂n(x))) and the integrated variance (denote it by V(f̂n(x))) of the

estimator.

Denote the characteristic function of random variables Xj by ϕ(t) and the empirical characteristic

function associated with the sample X1, ..., Xn by ϕn(t):

ϕ(t) = E e
itXj , ϕn(t) =

1

n

n
∑

j=1

eitXj .

Then the sinc estimator (in the rest of the paper, we denote it by fn(x;h)) is

fn(x;h) =
1

πn

n
∑

j=1

sin[(x−Xj)/h]

x−Xj
,

and its characteristic function equals ϕn(t)ψs(ht) = ϕn(t)I[−1/h,1/h](t), where, as usually, IA(t) de-

notes the indicator of the set A.

For a real valued function g(x) we will use the following notation, provided the integrals exist:

µk(g) =

∫

|x|kg(x)dx, k = 0, 1, 2, ..., R(g) =

∫

g2(x)dx.

The following lemma will be frequently used in the work.

Lemma 2.1. For the sinc estimator,

B(fn(x;h)) =
1

2π

∫

|t|>1/h

|ϕ(t)|2dt, (2.1)

V(fn(x;h)) =
1

n
· 1

2π

∫ 1/h

−1/h

(1 − |ϕ(t)|2)dt, (2.2)

and

MISE(fn(x;h)) =
1

2π

∫

|t|>1/h

|ϕ(t)|2dt+ 1

n
· 1

2π

∫ 1/h

−1/h

(1 − |ϕ(t)|2)dt. (2.3)

where ϕ(t) is the characteristic function of the density to be estimated.

Corollary.

MISE(fn(x;h)) =
1

πnh
+R(f) −

(

1 +
1

n

)

1

π

∫ 1/h

0

|ϕ(t)|2dt. (2.4)

Equalities (2.1)–(2.4) can be found for example in Davis (1977).

Using Lemma 2.1, one can make some general remarks concerning the sinc estimator. It is well

known that in case of the kernel estimator with a conventional kernel, the necessary and sufficient
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condition of consistency is h → 0 as n → ∞ and nh → ∞. In case of the sinc estimator, this

condition is also sufficient, but sometimes, not necessary. If the characteristic function of the density

to be estimated vanishes outside some interval containing the origin: ϕ(t) = 0 for |t| > T , then

the necessary condition is milder: the sinc estimator is consistent if lim supn→∞ h < 1/T . This

circumstance was pointed out in a number of works, see for example Davis (1977) or Ibragimov and

Khas’minskii (1982).

The second remark concerns the problem of selection of the smoothing parameter. For a given n,

minimum of the MISE function, as a function of h, can be non-unique. This means that there may

exist several different optimal values of the bandwidth h. This problem is considered more in details

in Section 5.

3. Comparison of the exact MISE of the sinc estimator and conventional estimators

(examples)

In this section, the exact MISE of the sinc estimator is compared with that of estimators based on

some conventional kernels.

3.1. Normal distribution. Consider the standard normal density

f(x) =
1√
2π
e−x2/2.

Let fn(x;h) be (as above) the sinc estimator of f(x), and denote the kernel estimator of f(x), based

on the normal kernel, by f
(norm)
n (x;h). In this subsection, we compare the performance of fn(x;h)

and f
(norm)
n (x;h) for several finite values of the sample size.

The MISE of estimators fn(x;h) and f
(norm)
n (x;h) is found explicitly:

MISE(fn) =
1√
π

[

1 −
(

1 +
1

n

)

Φ

(√
2

h

)

+
1

n

(

1

h
√
π

+
1

2

)

]

and

MISE(f (norm)
n ) =

1

2
√
π

(

1 − 2

√

2

2 + h2
+

1√
1 + h2

+
1

nh
− 1

n
√

1 + h2

)

,

where Φ(x) is the standard normal distribution function. Values of infh>0 MISE(fn) and

infh>0 MISE(f
(norm)
n ) (and their ratio) are given in Table 1 for the sample size n = 40, 45, 50,

100 and 1000

Table 1

n sinc normal sinc/normal

40 0.010141 0.01009 1.005

45 0.009203 0.009327 0.987

50 0.008436 0.00869 0.971

100 0.004699 0.005411 0.868

1000 0.000611 0.00103 0.593
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The Table shows that, under appropriate choice of the smoothing parameter for both estimators,

the sinc estimator is less accurate (but very little, only 0.5%) than the estimator, based on the normal

kernel, when n = 40, but it becomes better already for n = 45. For n = 100, the sinc estimator is

about 15% more accurate than normal. For large sample sizes (> 1000), the sinc estimator becomes

several times better than normal (almost two times for n = 1000).

One more advantage of the sinc estimator is that MISE(fn(x;h)) ≤ infh>0 MISE(f
(norm)
n (x;h)) for

a wide interval of values of the smoothing parameter h (0.4 < h < 0.53 for n = 100 and 0.25 < h < 0.46

for n = 1000). This means that, even if for the sinc estimator, h is chosen quite far from its optimal

value, the estimator is still better than the normal estimator under the optimal choice of h.

3.2. Cauchy distribution. Now consider the density

f(x) =
1

π(1 + x2)

(Cauchy distribution) with the characteristic function

ϕ(t) = e−|t|.

Then the MISE of the sinc estimator is

MISE(fn) =
1

π

[

1

2

(

1 +
1

n

)

e−2/h +
1

n

(

1

h
− 1

2

)]

.

For the sake of simplicity we consider the conventional estimator with the Cauchy kernel

K(x) =
1

π(1 + x2)
.

Denote this estimator by f
(Cauchy)
n (x;h). Its MISE is found explicitly

MISE(f (Cauchy)
n ) =

1

π

[

1

2
− 2

2 + h
+

1

2(1 + h)
+

1

2nh
− 1

2n(1 + h)

]

.

Results are presented in Table 2. They are very similar to those in the previous subsection. Like in

the normal case, the sinc estimator is superior to the conventional estimator for n ≥ 45 and becomes

several times more accurate for n > 1000.

Table 2

n sinc Cauchy sinc/Cauchy

40 0.014776 0.014553 1.015

45 0.013542 0.01363 0.993

50 0.012516 0.012845 0.974

100 0.007346 0.00863 0.851

1000 0.0011 0.002126 0.517

4. Asymptotic superiority of the sinc estimator to conventional kernel estimators

In this section, we find conditions under which the sinc estimator fn(x;h) has a strictly better

order of consistency than conventional kernel estimators. Let K(x) be a square integrable conventional
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kernel (a square integrable probability density) and f̂n(x;h) — the corresponding estimator. It is

known that if the density to be estimated f(x) is at least three times differentiable, then

MISE(fn(x;h))

MISE(f̂n(x;h))
→ 0 as h→ 0, nh→ ∞. (4.1)

It turns out that (4.1) holds under much broader conditions and can take place even when f(x) has

only the first derivative.

Since MISE(fn(x;h)) = MISE(f̂n(x;h)) = ∞ if f(x) is not square integrable, we, in the remainder

of this section, suppose that it is square integrable. In addition, without loss of generality, we suppose

that all conventional kernels under consideration are symmetric.

Denote the characteristic function of K(x) by ψ(t). For the integrated squared bias and integrated

variance of f̂n(x;h), the following representations hold (see for example Watson and Leadbetter, 1963)

B(f̂n(x;h)) =
1

2π

∫

|ϕ(t)|2(1 − ψ(ht))2dt, (4.2)

V(f̂n(x;h)) =
1

n
· 1

2π

∫

(1 − |ϕ(t)|2)(ψ(ht))2dt. (4.3)

Lemma 4.1. If

|ϕ(t)| = o

(

1

t5/2

)

as t→ ∞, (4.4)

then, under appropriate rescaling of the conventional kernel K(x),

B(fn(x;h)) = o(B(f̂n(x;h))) as h→ 0. (4.5)

Proof. There exist two positive numbers ε and c such that

ψ(t) ≤ 1 − εt2 for |t| ≤ c, (4.6)

see Loeve (1977). Without loss of generality one can suppose that c = 1 (otherwise a rescaling of

K(x) can be used). Rewrite (4.6) in the form

(1 − ψ(ht))2 ≥ ε2h4t4, |t| ≤ 1/h. (4.7)

Put λ = 1/h,

R1(λ) =
1

λ4

∫ λ

0

t4|ϕ(t)|2dt,

and

R2(λ) =
1

λ4

∫ ∞

λ

|ϕ(t)|2dt.

Note that (4.4) implies

|ϕ(λ)|2 = o

(

1

λ5

∫ λ

0

t4|ϕ(t)|2dt
)

as λ→ ∞. (4.8)

Making use of (4.7), (4.8) and representations (2.1), (2.2), (4.2), and (4.3), we obtain

∞ = lim
λ→∞

ε2

[

4
λ5

∫ λ

0 t4|ϕ(t)|2dt
|ϕ(λ)|2 − 1

]

= lim
λ→∞

ε2
R′

1(λ)

R′
2(λ)

= lim
λ→∞

ε2
R1(λ)

R2(λ)
=
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= lim
h→0

ε2
h4
∫ 1/h

0
t4|ϕ(t)|2dt

∫∞
1/h

|ϕ(t)|2dt ≤ lim
h→0

∫ 1/h

0
|ϕ(t)|2(1 − ψ(ht))2dt
∫∞
1/h

|ϕ(t)|2dt ≤

≤ lim
h→0

∫∞
0

|ϕ(t)|2(1 − ψ(ht))2dt
∫∞
1/h

|ϕ(t)|2dt = lim
h→0

B(f̂n(x;h))

B(fn(x;h))

that implies (4.5).

Theorem 4.1. Let

|ϕ(t)| = o

(

1

t5/2

)

as t→ ∞.

Then

inf
h>0

MISE(fn(x;h)) = o( inf
h>0

MISE(f̂n(x;h))) as n→ ∞. (4.9)

Proof. The main asymptotic term of the integrated variance of the both estimators, conventional

and sinc, has form c/(nh), therefore, due to Lemma 4.1 (K(x) is scaled so that (4.5) holds)

MISE(f̂n(x;h)) ∼ g(h) +
c1
nh

(4.10)

and

MISE(fn(x;h)) ∼ g(h)ε(h) +
c2
nh

(4.11)

where g(h) → 0 as h→ 0, ε(h) → 0 as h→ 0. (4.10) and (4.11) evidently imply (4.9).

Thus, under condition (4.4), the sinc estimator has strictly better order of consistency than any

conventional kernel. Condition (4.4) can be satisfied even when f(x) has only the first derivative. For

example, the density corresponding to the characteristic function (sin t/t)3, that is the convolution of

three standard uniform densities, does not have the second detivative for x = ±3.

5. Comparison of the sinc estimator with superkernel estimators

A superkernel is defined as a nonconventional kernel K(x) whose Fourier transform has form

ψ(t) =







1 for |t| ≤ ∆,

g(t) for ∆ ≤ |t| ≤ c∆,

0 for |x| > c∆,

where g(t) is a real-valued , even function, satisfying the inequality |g(t)| ≤ 1 and chosen in such a way

that ψ(t) is continuous. Superkernels were studied by Devroye (1992) in one-dimensional case and by

Politis and Romano (1999) in multidimensional case. The sinc kernel can be considered as a limit case

of superkernels as c→ 1. Estimators, based on superkernels, have the same order of consistency as the

sinc estimator — both are kernels of “infinite order”. Superkernels have one advantage compared to the

sinc kernel: corresponding estimates are integrable, although this advantage is rather technical then

essential. Advantages of the sinc kernel compared to superkernels are simplicity (both for theoretical

analysis and practical use) and better solution of the problem of the bandwidth selection.

Politis and Romano (1999) state that “c = 1 is a bad choice”, that is the sinc estimator is worse

than superkernel estimators. In this section we compare accuracy of the sinc estimator with that of
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the most recommended by Politis and Romano (1999) superkernel estimator, namely, that for which

c = 2 and g(t) is linear on the interval ∆ < t < 2∆. Thus

ψ(t) =







1 for |t| ≤ ∆,

2 − |t|
∆ for ∆ ≤ |t| ≤ 2∆,

0 for |t| > 2∆.

The estimator based on this superkernel is denoted in this section by f̂n(x;h). The sinc estimator is

denoted, as earlier, by fn(x;h). The ∆ does not play any role, therefore, for convenience, we suppose

that ∆ < 1.

Now we make a comparison of the MISE of the sinc estimator and the superkernel estimator under

consideration for a broad class of underlying distributions. We consider densities whose characteristic

function ϕ(t) satisfies condition

|ϕ(t)|2 =
a

|t|m for |t| > c

where a, c and m are real positive constants, m > 3. Without loss of generality suppose that a = 1.

Then, for sufficiently small h, namely, for h < ∆/c, the integrated squared bias of the both estimators

is calculated explicitly. Some elementary algebra shows that

B(fn(x;h)) =
hm−1

π(m− 1)
(5.1)

and

B(f̂n(x;h)) =
hm−1

π∆m−1

[

1

m− 1
− 2(2m−2 − 1)

(m− 2)2m−2
+

2m−3 − 1

(m− 3)2m−3

]

. (5.2)

For the integrated variance of the estimators the following equalities hold when h < ∆/c (also

after some elementary algebra)

πnV(fn(x;h)) =
1

h
−
∫ ∆/h

0

|ϕ(t)|2dt− hm−1

∆m−1

(

1 − ∆m−1

m− 1

)

(5.3)

and

πnV(f̂n(x;h)) =
4∆

3h
−
∫ ∆/h

0

|ϕ(t)|2dt−

− hm−1

∆m−1

[

4(2m−1 − 1)

(m− 1)2m−1
− 4(2m−2 − 1)

(m− 2)2m−2
+

2m−3 − 1

(m− 3)2m−3

]

(5.4)

Once again, ∆ does not play any role, so let us take it to be equal 3/4 (then the main asymptotic

term of the integrated variance of the superkernel estimator coincides with that of the sinc estimator,

and the comparison becomes easier). For each m ≥ 4,

4(2m−1 − 1)

(m− 1)2m−1
− 4(2m−2 − 1)

(m− 2)2m−2
+

2m−3 − 1

(m− 3)2m−3
<

1 − (3/4)m−1

m− 1

and therefore the right hand side of (5.4) is greater than the right hand side of (5.3) that is the

integrated variance of the sinc estimator is less than that of the superkernel estimator uniformly in h.

Consider right hand sides of (5.1) and (5.2). For m ≤ 17

B(fn(x;h)) > B(f̂n(x;h)),
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while for m ≥ 18

B(fn(x;h)) < B(f̂n(x;h))

uniformly in h, and the ratio B(fn(x;h))/B(f̂n(x;h)) decreases with m and tends to zero very fast

as m tends to infinity (if, for example, m > 30, then B(fn(x;h)) is more than ten times smaller than

B(f̂n(x;h))).

Thus, for more or less smooth underlying densities (m = 17 approximately corresponds to the case

when f(x) has five derivatives), the sinc estimator is more accurate than the superkernel estimator

under consideration. For really smooth (many times differentiable) densities it is much more accurate.

Moreover, both the integrated variance and the integrated squared bias of the sinc estimator are smaller

than those of the superkernel estimator uniformly in h. In non-smooth case (the fifth derivative of

f(x) does not exist), the accuracy of the two estimators is approximately the same: the integrated

variance of the sinc is smaller for each h, while the integrated squared bias is greater for each h. Now

the estimators can be compared only under condition that the bandwidth is chosen to be optimal for

each of them.

Suming up and taking into account other advantages of the sinc estimator, like simplicity, better

solution of the bandwidth selection etc., we must make conclusion that the sinc estimator is preferable

to the considered superkernel estimator.

6. Bandwidth selection

Representation of the MISE, given by Lemma 1, suggests relatively simple rules of selection of the

smoothing parameter h. Due to Corollary of Lemma 2.1,

MISE(fn(x;h)) =
1

πnh
+R(f) −

(

1 +
1

n

)

1

π

∫ 1/h

0

|ϕ(t)|2dt.

Put δ = 1/h. Then
∂

∂δ
MISE(fn(x;h)) =

1

πn
−
(

1 +
1

n

)

1

π
|ϕ(δ)|2

and
∂2

∂δ2
MISE(fn(x;h)) = −

(

1 +
1

n

)

1

π

∂

∂δ
|ϕ(δ)|2.

Therefore the optimal δ (δ minimizing the MISE) must be a root of the equation

|ϕ(δ)| =
1√
n+ 1

,

and the optimal bandwidth hopt is a solution of

|ϕ(1/h)| =
1√
n+ 1

. (6.1)

6.1 Normal rule

According to the normal scale rule, the bandwidth is selected so that it minimizes the MISE if

the underlying distribution is normal with the variance σ2, where unknown σ2 is replaced by some its
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estimator. For the sinc estimator this rule is as follows. For a normal underlying distribution formula

(6.1) becomes

e−
σ2

2h2 =
1√
n+ 1

,

therefore the optimal value of h (if σ is known) is

hopt =
σ

ln(n+ 1)
,

and the normal rule bandwidth is

hnorm =
σ̂

ln(n+ 1)

where σ̂ is some estimator of σ, for example, the empirical standard deviation:

σ̂ =





1

n

n
∑

j=1

(Xj − X̄)2





1/2

6.2 Method based on the empirical characteristic function

Note that equation (6.1) always has solution (since |ϕ(t)| → 0 as t → ∞) but maybe non-unique.

Consider all solutions of equation (6.1) for which |ϕ(δ − 0)| > 1/
√
n+ 1 and |ϕ(δ + 0)| < 1/

√
n+ 1.

Denote them by δ1, ..., δm (suppose for simplicity that δ1 < δ2 < ... < δm). Since |ϕ(δ)| decreases in

some neighbourhood of each δi,
∂

∂δ
|ϕ(δ)|2

∣

∣

∣

∣

δ=δi

< 0

and therefore
∂2

∂δ2
MISE(fn(x;h))

∣

∣

∣

∣

δ=δi

> 0.

Thus each δi is a local minimum of the MISE.

The global minimum can be found by computing and comparison of the MISE at h = 1/δ1, ..., 1/δm.

This does not lead to large computational expenses because, if one uses (2.3) for the computation,

the first integral in the right hand side of (2.3) for δ = δ2, ..., δm is a part of this integral for δ = δ1,

while the second integral for δ = δ1, ..., δm−1 is a part of this integral for δ = δm.

The characteristic function ϕ(t) however is (of course) unknown, therefore the procedure, described

above, is used to the empirical characteristic function ϕn(t) instead of ϕ(t). Here one must take into

account that ϕn(t) is an almost periodic function, and equation

|ϕn(δ)| =
1√
n+ 1

has infinitely many roots. Therefore, since

lim
n→∞

sup
|t|≤Tn

|ϕn(t) − ϕ(t)| = 0

(see Csörgő and Totik, 1983), where Tn → ∞ and logTn = o(n) as n→ ∞, it suffices to consider only

roots on the interval [0, en]. Of course it is not necessary to calculate ϕn(t) on such a wide interval:

all roots of this interval are contained in the interval [0,
√
n], practically, in a much shorter interval.
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7. Uniform consistency and estimation of the mode

In this section we prove that the sinc estimator is uniformly consistent: it converges (in probability)

to the true density function uniformly over the whole real line, and that the mode of the sinc estimator

is a consistent estimator of the mode of the true density function. We formulate and prove results in

the simplest form, leaving possible generalizations to the reader.

Let K(x) be a symmetric, differentiable, conventional kernel with finite variance σ2. Suppose also

that its derivative has finite total variation which we denote by v. Denote the characteristic function

of K(x) by ψ(t) and the kernel estimator, based on K(x), by f̂n(x;h). As before, fn(x;h) denotes the

sinc estimator.

Lemma 7.1. Let the characteristic function ϕ(t) of the underlying distribution be integrable:
∫

|ϕ(t)|dt <∞.

Then

sup
x

|fn(x;h) − f̂n(x;h)| a.s.−→ 0 as n→ ∞, h→ 0, nh→ ∞.

Proof.

sup
x

|fn(x;h) − f̂n(x;h)| ≤

≤ 1

2π

[ ∫

|ψ(ht)| · |ϕn(t) − ϕ(t)|dt+

∫

|ϕ(t)| · |ψ(ht) − I[−1/h,1/h](t)|dt+

+

∫ 1/h

−1/h

|ϕn(t) − ϕ(t)|dt
]

.

Now we prove that each of the three integrals in the square brackets tends to zero as n → ∞, h →
0, nh→ ∞. Denote these integrals by I1, I2 and I3, respectively. Then

I1 ≤
∫

|t|≤n2

|ϕn(t) − ϕ(t)|dt + 4

∫ ∞

n2

|ψ(ht)|dt.

The first integral in the right hand side almost surely converges to zero as n → ∞ due to theorem 1

by Csörgő and Totik (1983). To estimate the second integral, we use the inequality

|ψ(t)| ≤ v

|t|2 ,

which holds for all t, see Ushakov and Ushakov (2000). Making use of this inequality, we obtain
∫ ∞

n2

|ψ(ht)|dt ≤ v

n2h2
→ 0 as nh→ ∞.

So, I1
a.s.−→ 0 as n→ ∞, nh→ ∞.

I2 ≤ 2

∫ 1/
√

h

0

[1 − ψ(ht)]dt+ 4

∫ ∞

1/
√

h

|ϕ(t)|dt.

The second integral tends to zero as h→ 0 because |ϕ(t)| is integrable. To estimate the first integral,

we use the inequality

ψ(t) ≥ 1 − σ2t2

2
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which holds for all t, see Ushakov (1999). Making use of this inequality, we obtain

∫ 1/
√

h

0

[1 − ψ(ht)]dt ≤ σ2

6

√
h→ 0 as h→ 0.

Thus I2 → 0 as h→ 0.

Finally, if nh→ ∞, then 1/h ≤ cn with some constant c, and therefore

I3 ≤
∫

|t|≤cn

|ϕn(t) − ϕ(t)|dt a.s.−→ 0 as n→ ∞

due to the mensioned theorem by Csörgő and Totik (1983).

Remark. The condition of the lemma (ϕ is integrable) implies that f(x) is uniformly continuous

but is a little more restrictive. It is satisfied for example when f(x) is differentiable and f ′(x) has

finite total variation.

Theorem 7.1. Let ϕ(t) be integrable. Then

sup
x

|fn(x;h) − f(x)| P−→ 0 as n→ ∞, h→ 0, nh2 → ∞. (7.1)

Proof. Let K(x) be any conventional kernel satisfying conditions of both Lemma 7.1 of this

section and Theorem 3A of Parzen (1962). Then, due to Theorem 3A by Parzen (1962),

sup
x

|f̂n(x;h) − f(x)| P−→ 0 as n→ ∞, h→ 0, nh2 → ∞, (7.2)

and, due to Lemma 7.1,

sup
x

|fn(x;h) − f̂n(x;h)| P−→ 0 as n→ ∞, h→ 0, nh2 → ∞. (7.3)

(7.2) and (7.3) evidently imply (7.1).

Denote a mode of f(x) by θ. Suppose it is unique. Let θn be a mode of the sinc estimate.

Theorem 7.2. Let ϕ(t) be integrable. Then

θn
P−→ θ as n→ ∞, h→ 0, nh2 → ∞.

Proof of the theorem coincides with that of the second part of Theorem 3A by Parzen (1962).

8. Inequalities

In this section, we derive some upper bounds for the MISE of the sinc estimator. In addition to

practical importance (evaluation of the sample size sufficient for achieving a given accurancy etc.),

these inequalities throw more light onto properties of the sinc estimator (especially for finite samples)

and make easier comparison of this estimator with other estimators.

We define the 0-th derivative of a function as the function itself: f (0)(x) = f(x) (as usually).

We need below the following form of the Parseval equality: let f(x) be m times differentiable prob-

ability density function (m ≥ 0), its m-th derivative f (m)(x) be square integrable, and ϕ(t) be the

14



corresponding characteristic function. Then
∫

(f (m)(x))2dx =
1

2π

∫

t2m|ϕ(t)|2dt. (8.1)

Theorem 8.1. Let f(x) be m times differentiable (m ≥ 0), and its m-th derivative is square

integrable. Then

MISE(fn(x;h)) < ε(h)h2mR(f (m)) +
1

πnh
(8.2)

where ε(h) ≤ 1 for all h and ε(h) → 0 as h→ 0.

Proof. Estimate the first summand in the right hand side of (2.3). Making use of (8.1), we obtain

1

2π

∫

|t|>1/h

|ϕ(t)|2dt = h2m 1

2π

∫

|t|>1/h

(1/h)2m|ϕ(t)|2dt ≤

≤ h2m 1

2π

∫

|t|>1/h

t2m|ϕ(t)|2dt = h2m 1

2π

∫

t2m|ϕ(t)|2dt−

−h2m 1

2π

∫ 1/h

−1/h

t2m|ϕ(t)|2dt = h2m 1

2π

∫

t2m|ϕ(t)|2dt



1 −
∫ 1/h

−1/h
t2m|ϕ(t)|2dt

∫

t2m|ϕ(t)|2dt



 =

= ε(h)h2m

∫

(f (m)(x))2dx = ε(h)h2mR(f (m)),

where

ε(h) = 1 −
∫ 1/h

−1/h t
2m|ϕ(t)|2dt

∫

t2m|ϕ(t)|2dt
evidently satisfies conditions of the theorem: ε(h) ≤ 1 and ε(h) → 0 as h→ 0.

For the second summand in the right hand side of (2.3) we have

1

n
· 1

2π

∫ 1/h

−1/h

(1 − |ϕ(t)|2)dt < 1

n
· 1

2π

∫ 1/h

−1/h

dt =
1

πnh
.

Thus we finally obtain (8.2).

Corollary 1. Let conditions of theorem 1 be satisfied. Then

MISE(fn(x;h)) < h2mR(f (m)) +
1

πnh
. (8.3)

Putting in (8.3)

h =

[

1

2πnmR(f (m))

]
1

2m+1

(this h minimizes the right hand side of (8.3)), we get

Corollary 2. Let conditions of Theorem 8.1 be satisfied. Then

inf
h>0

MISE(fn(x;h)) <
1 + 2m

(2πm)(2m)/(2m+1)
R(f (m))1/(2m+1)n− 2m

2m+1 .

Corollary 3. Let conditions of Theorem 8.1 be satisfied. Then

inf
h>0

MISE(fn(x;h)) = o
(

n−2m/(2m+1)
)

, n→ ∞.
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Corollary 4. If f(x) is two times differentiable, and its second derivative is square integrable,

then

inf
h>0

MISE(fn(x;h)) = o(n−4/5), n→ ∞

and

inf
h>0

MISE(fn(x;h)) <
5

4π
(4πR(f ′′))1/5n−4/5.

To obtain more sensitive and accurate estimates we use one more characteristic of the density

to be estimated — its total variation (or the total variation of its derivatives). For a function g(x),

we denote its total variation by V r(g). In the general case, two conditions, finiteness of the total

variation and square integrability, are not comparable: a function may have finite variation but be

not square integrable and vice versa. But for densities, square integrability is milder then finiteness

of the total variation: a density, having bounded variation, is square integrable. Thus finiteness of

the total variation of a density (or its derivatives) is a little more restrictive condition than its square

integrability. But on the other hand, assumption that some derivative of the density to be estimated

has finite total variation (together with the use of the sinc kernel) allows one to improve the order of

decreasing the MISE. For example, if the density is two times differentiable and V r(f ′′) < ∞, then

MISE(fn(x;h)) = O(n−5/6), n→ ∞, instead of o(n−4/5) (see below).

Theorem 8.2. Let f(x) be m times differentiable (m ≥ 0), and its m−th derivative has finite

total variation. Then

MISE(fn(x;h)) ≤ h2m+1V r(f
(m))2

(2m+ 1)π
+

1

πnh
. (8.4)

Proof. For all t,

|ϕ(t)| ≤ V r(f (m))

|t|m+1
,

see Ushakov and Ushakov (2000). Making use of this inequality, estimate the first summand in the

right hand side of (2.3):

1

2π

∫

|t|>1/h

|ϕ(t)|2dt ≤ V r(f (m))2

π

∫ ∞

1/h

dt

t2m+2
=
V r(f (m))2

(2m+ 1)π
h2m+1.

For the second summand of the right hand side of (2.3) we have (see proof of Theorem 8.1)

1

n
· 1

2π

∫ 1/h

−1/h

(1 − |ϕ(t)|2)dt < 1

πnh
.

So, we obtain (8.4).

Corollary. Let conditions of Theorem 8.2 be satisfied. Then

inf
h>0

MISE(fn(x;h)) ≤ 2(m+ 1)

(2m+ 1)π
V r(f (m))1/(m+1)n−(2m+1)/(2m+2).

For example, if m = 2, we get

inf
h>0

MISE(fn(x;h)) ≤ 6

5π
V r(f ′′)1/3n−5/6.

Following Watson and Leadbetter (1963) and Davis (1975), we will say that a characteristic func-

tion ϕ(t) decreases exponentially with degree α and coefficient ρ (ρ > 0, 0 < α ≤ 2) if

|ϕ(t)| ≤ Ae−ρ|t|α (8.5)

16



for some constant A. Davis (1975, Theorem 4.1) proved that if the characteristic function of the

density to be estimated satisfies (8.5), then

lim
n→∞

heρ/hα |B(fn(x;h))| = 0

The next theorem makes this more precise.

Theorem 8.3. Let
1

2π

∫

eρ|t|α |ϕ(t)|2dt = C <∞.

Then

MISE(fn(x;h)) ≤ ε(h)Ce−ρ/hα

+
1

πnh
, (8.6)

where 0 < ε(h) < 1 and ε(h) → 0 as h→ 0.

Proof is similar to that of Theorem 8.1. For the first summand of the right hand side of (2.3), we

have
1

2π

∫

|t|>1/h

|ϕ(t)|2dt < e−ρ/hα 1

2π

∫

|t|>1/h

eρ|t|α |ϕ(t)|2dt =

= ε(h)Ce−ρ/hr

where

ε(h) = 1 −
∫ 1/h

−1/h
eρ|t|α |ϕ(t)|2dt

∫

eρ|t|α |ϕ(t)|2dt .

It is difficult to find explicitly h minimizing the right hand side of (8.6), therefore we take h for

which the right hand side of (8.6) has a simple form. Namely, put

h =

(

1

ρ
lnn

)−1/α

,

then

MISE(fn(x;h)) <

(

C +
(lnn)1/α

πρ1/α

)

1

n
<

(

C +
1

πρ1/α

)

(ln n)1/α

n

provided n > 2. If, for example, f(x) is the standard normal density, then

MISE(fn(x;h)) <

(

1√
2π

+

√
2

π

) √
lnn

n

Corollary. Let the characteristic function ϕ(t) of f(x) decreases exponentially with degree r and

coefficient ρ (i.e. satisfies (8.5)). Then

lim
n→∞

ecρ/hα |B(fn(x;h))| = 0

for any c < 2.

9. Estimation of derivatives

The sinc estimator is especially superior to conventional estimators when a derivative of f(x) is

estimated. Let f(x) be r times differentiable. Suppose that one needs to estimate the r−th derivative
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f (r)(x). A natural way is to estimate f (r)(x) by the r−th derivative of a kernel estimator of f(x),

provided that the kernel is r times differentiable. So, let

f̂n(x;h) =
1

nh

n
∑

j=1

K

(

x−Xj

h

)

be a kernel estimator of f(x), and K(r)(x) exists. Then the estimator

f̂ (r)
n (x;h) =

1

nhr+1

n
∑

j=1

K(r)

(

x−Xj

h

)

is used for estimation of f (r)(x).

If K(x) is a conventional kernel, then the MISE of the estimator f̂
(r)
n (x;h) is represented in the

form (provided that f(x) has r + 2 derivatives and K(x) has finite second moment)

MISE(f̂ (r)
n (x;h)) =

1

4
h4µ2(K)2R(f (r+2)) +

1

nh2r+1
R(K(r))+

+o

(

h4 +
1

nh2r+1

)

, h→ 0.

Therefore the optimal MISE is of order n−4/(2r+5), i.e. the rate becomes slower for higher values of

r, and the difficulty increases, see Wand and Jones (1995) and Stone (1982). In this section, we show

that the sinc estimator f
(r)
n (x;h) is free of this difficulty and the estimator f

(r)
n (x;h) of f (r)(x) has

almost the same order of consistency as the estimator fn(x;h) of f(x) even for large values of r (of

course, if the density to be estimated is smooth enough). First we formulate an analog of Lemma 2.1

for derivatives.

Lemma 9.1. For the sinc estimator,

MISE(f (r)
n (x;h)) =

1

2π

∫

|t|>1/h

t2r|ϕ(t)|2dt+
1

n
· 1

2π

∫ 1/h

−1/h

t2r(1 − |ϕ(t)|2)dt. (9.1)

where ϕ(t) is the characteristic function of the density to be estimated.

Proof. Due to the Parseval-Plancherel identity we have

MISE(f (r)
n (x;h)) = E

∫

(f (r)
n (x;h) − f (r)(x))2dx =

=
1

2π
E

∫

t2r|ϕn(t)I[−1/h,1/h](t) − ϕ(t)|2dt =

=
1

2π

∫

E
[

(ϕn(t)I[−1/h,1/h](t) − ϕ(t))(ϕn(t) I[−1/h,1/h](t) − ϕ(t))
]

dt =

=
1

2π

∫ 1/h

−1/h

t2r
E |ϕn(t)|2dt−

− 1

2π

∫ 1/h

−1/h

t2r
(

ϕ(t) Eϕn(t) + ϕ(t) Eϕn(t)
)

dt+
1

2π

∫

t2r|ϕ(t)|2dt. (9.2)

It is easy to see that

Eϕn(t) = ϕ(t), (9.3)
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Eϕn(t) = ϕ(t) (9.4)

and

E |ϕn(t)|2 = E

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

eitXj

∣

∣

∣

∣

∣

∣

2

= E





1

n

n
∑

j=1

eitXj · 1

n

n
∑

k=1

e−itXk



 =

1

n2



n+
∑

j 6=k

eit(Xj−Xk)



 =
1

n
+

(

1 − 1

n

)

|ϕ(t)|2. (9.5)

Substituting (9.3)—(9.5) to the right hand side of (9.2), we obtain (9.1).

Making use of Lemma 9.1 we obtain following analogs of theorems of Section 8.

Theorem 9.1. Let f(x) be r +m times differentiable (r,m ≥ 0), and its r + m-th derivative is

square integrable. Then

MISE(f (r)
n (x;h)) < ε(h)h2mR(f (r+m)) +

1

π(2r + 1)nh2r+1

where ε(h) ≤ 1 for all h and ε(h) → 0 as h→ 0.

Corollary. Let conditions of Theorem 9.1 be satisfied. Then

MISE
h>0

(f (r)
n (x;h)) ≤ Cm,rR(f (r+m))(2r+1)/(2r+2m+1)n−2m/(2r+2m+1)

where

Cm,r = (2πm)−2m/(2r+2m+1) +
(2πm)(2r+1)/(2r+2m+1)

π(2r + 1)
.

Theorem 9.2. Let
1

2π

∫

t2reρ|t|α |ϕ(t)|2dt = C <∞.

Then

MISE(f (r)
n (x;h)) ≤ ε(h)Ce−ρ/hα

+
1

πnh2r+1
,

where 0 < ε(h) < 1 and ε(h) → 0 as h→ 0.

Corollary. Let conditions of Theorem 9.2 be satisfied. Then

inf
h>0

MISE(f (r)
n (x;h)) <

(

C +
(ln n)(2r+1)/α

πρ(2r+1)/α

)

1

n
.

Theorem 9.3. Let the characteristic function ϕ(t) of f(x) satisfies the condition: there exists

T > 0 such that f(t) = 0 for |t| > T . Then, if

h ≤ 1

T
,

then

MISE(f (r)
n (x;h)) ≤ 1

πnh2r+1
.

In particular, if h = const = 1/T , then

MISE(f (r)
n (x;h)) ≤ T 2r+1

πn
.
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Proofs of Theorems 9.1 – 9.3 are similar to those of theorems of Section 8 therefore we leave them

to the reader.
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