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Abstract

The performance of kernel density estimators is usually studied via Taylor expansions and

asymptotic approximation arguments, in which the bandwidth parameter tends to zero with

sample size tending to infinity. In contrast, this paper focusses directly on the finite-sample

situation. Informative upper bounds are derived for the integrated mean squared error function.

Results are reached for the traditional case, where the kernel is a probability density function,

under various sets of assumptions on the underlying density to be estimated.
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1. Introduction

Let X1, ..., Xn be independent and identically distributed random variables with absolutely con-

tinuous distribution function F (x) and density function f(x). The kernel density estimator associated

with the sample X1, ..., Xn is defined as

fn(x;h) =
1

nh

n
∑

j=1

K

(

x−Xj

h

)

,

where K(x) is the kernel function with scaled version

Kh(x) =
1

h
K

(x

h

)

,

and h = hn is a positive number (depending on n) called the bandwidth or the smoothing parameter.

Kernel estimation of probability density functions is one of the most popular methods having a

number of advantages and quite well developed and studied, see, for example, Wand and Jones (1995)

and Fan and Gijbels (1996).

Let both the density to be estimated f(x) and the kernel K(x) be m times differentiable. Then

fn(x;h) is also m times differentiable and it is natural to estimate the m-th derivative of f(x) by the

m-th derivative of fn(x;h):

f (m)
n (x;h) =

1

nhm+1

n
∑

j=1

K(m)

(

x−Xj

h

)

. (1)

We unite these two cases (estimation of a density and its derivatives) defining, as usually, the 0-th

derivative of a function as the function itself: f (0)(x) = f(x). Thus, the main subject of this work is

estimator (1) with m ≥ 0.

Under some standard assumptions, the mean integrated squared error (MISE) of the kernel esti-

mator is represented as the sum of the main term and the remainder

MISE = AMISE+ REM

where the AMISE (asymptotic MISE) is explicitly expressed in terms of a few parameters of the kernel

and of the density to be estimated, and

REM = o(AMISE), h→ 0 (n→ ∞)

(more precise and detailed description of the AMISE is given in the next section). Typically, the

remainder is ignored and all procedures (like selection of the smoothing parameter, estimation of the

real error — MISE, etc.) are based on the AMISE. This approach, however, does not have an adequate

basis because in the considered case “large sample size” means “very large”. This is illustrated by

examples presented in Marron and Wand (1992). Typically the reminder REM has approximately the

same value (near the optimal value of h) as the MISE if n ≤ 100. It is more than 25% of MISE for

n = 1000 and almost 10% for n = 106.

Marron and Wand (1992) established the following remarkable fact. If the kernel is non-negative,

then, under some regularity conditions, for m = 0,

MISE < AMISE (2)
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for all h. Marron and Wand (1992) speculated that (2) was true in general i.e. for kernels taking both

positive and negative values. This is not correct (see Appendix 1), but (2) is true for all m ≥ 0 if the

kernel is non-negative (Corollary of Theorem 1 below). For many situations however this beautiful

inequality is not of practical interest because of the reason we have just discussed, that is this inequality

is very crude, except n is huge.

In this paper some upper bounds for the MISE are obtained which are essentially closer to the

MISE than the AMISE is. Analysis of these bounds shows that in many situations the bandwidth

selection, based on the AMISE minimization approach, is justified.

2. AMISE definition and MISE representation

In the following we will omit integration limits when the integral is to be taken over the full real

line. Let f̂n(x) be an estimator (not necessarily a kernel estimator) of f (m)(x) associated with the

sample X1, ..., Xn. The bias, the mean squared error (MSE) and the mean integrated squared error

(MISE) of f̂n(x) are defined, respectively, as

B(f̂n(x)) = E f̂n(x) − f (m)(x),

MSE(f̂n(x)) = E[f̂n(x) − f (m)(x)]2,

and

MISE(f̂n(x)) =

∫

MSE(f̂n(x))dx = E

∫

[f̂n(x) − f (m)(x)]2dx.

In case of the kernel estimator f
(m)
n (x;h), defined by (1), the bias may be expressed via the convolution

as

B(f (m)
n (x;h)) = (K

(m)
h ? f)(x) − f (m)(x) =

∫

K
(m)
h (x− y)f(y)dy − f (m)(x) =

= (Kh ? f
(m))(x) − f (m)(x) =

∫

Kh(x− y)f (m)(y)dy − f (m)(x). (3)

Since convolution is a kind of smoothing, the bias of the kernel estimator is the difference between

a smoothed density/derivative and the density/derivative itself. The mean integrated squared er-

ror admits a well-known decomposition into integrated variance and integrated squared bias, with

consequent representation

MISE(f̂n(x)) =

∫

B2(f̂n(x))dx +

∫

Var(f̂n(x))dx. (4)

Consider the MISE of the kernel estimator (1). The integrated squared bias tends to 0 as h → 0.

The integrated variance tends to 0 as nh2m+1 → ∞. Suppose that conditions n → ∞, h → 0, and

nh2m+1 → ∞ are satisfied. Consider the expansion of the integrated squared bias into a series in

powers of h, and the expansion of the integrated variance into a series in powers of 1/(nh2m+1),

assuming that necessary derivatives exist. We define the sum of the main terms of the first order of

these two expansions as the main term of the MISE and call it asymptotic mean integrated squared

error (AMISE). It is clear that MISE ∼ AMISE as n→ ∞, h→ 0, nh2m+1 → ∞.
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Note that together with MSE and MISE other mausures of deviation may be used. Among them

the mean absolute error E |f̂n(x)−f (m)(x)| and its integral are especially important (see Devroye and

Györfi, 1985). In the present article we restrict attention to MSE and MISE, however.

Denote the characteristic function of random variables Xj by ϕ(t) and the empirical characteristic

function associated with sample X1, ..., Xn by ϕn(t):

ϕ(t) = E e
itXj =

∫

eitxf(x)dx, ϕn(t) =
1

n

n
∑

j=1

eitXj .

The general form of the kernel estimator (1) in terms of the empirical characteristic function is

f (m)
n (x;h) =

1

2π

∫

e−itx(−it)mϕn(t)ψ(ht)dt,

where ψ is the characteristic function of the kernel:

ψ(t) =

∫

eitxK(x)dx.

The characteristic function of the estimator f
(m)
n (x;h) is (−it)mϕn(t)ψ(ht).

Lemma 1. Let ϕ(t) and ψ(t) be characteristic functions of the density f(x) and the kernel K(x)

respectively. If the density f(x) and the kernel K(x) are m times differentiable, then

MISE(f (m)
n (x;h)) =

1

2π

∫

t2m|ϕ(t)|2|1 − ψ(ht)|2dt+

+
1

n
· 1

2π

∫

t2m(1 − |ϕ(t)|2)|ψ(ht)|2dt. (5)

Proof. Due to the Parseval-Plancherel identity we have

MISE(f (m)
n (x;h)) = E

∫

(f (m)
n (x;h) − f (m)(x))2dx =

=
1

2π
E

∫

t2m|ϕn(t)ψ(ht) − ϕ(t)|2dt =

=
1

2π

∫

t2m
E

[

(ϕn(t)ψ(ht) − ϕ(t))(ϕn(t) ψ(ht) − ϕ(t))
]

dt =

=
1

2π

∫

t2m
[

|ψ(ht)|2 E |ϕn(t)|2 − ϕ(t)ψ(ht) Eϕn(t) − ϕ(t)ψ(ht) Eϕn(t) + |ϕ(t)|2
]

. (6)

Evidently

Eϕn(t) = ϕ(t) (7)

and

Eϕn(t) = ϕ(t). (8)

Find E |ϕn(t)|2:

E |ϕn(t)|2 = E

∣

∣

∣

∣

∣

∣

1

n

n
∑

j=1

eitXj

∣

∣

∣

∣

∣

∣

2

= E





1

n

n
∑

j=1

eitXj · 1

n

n
∑

k=1

e−itXk



 =
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=
1

n2



n+
∑

j 6=k

eit(Xj−Xk)



 =
1

n
+

(

1 − 1

n

)

|ϕ(t)|2. (9)

Substituting (7)—(9) to the right hand side of (6) and using the elementary identity |ψ|2−ψ+ψ+1 =

|1 − ψ|2, we obtain (5).

Remark. Consider the integrated squared bias. Using (3) and the Parseval-Plancherel identity,

we obtain
∫

B2(f (m)
n (x;h))dx =

∫
[
∫

Kh(x− y)f (m)(y)dy − f (m)(x)

]2

dx =

=
1

2π

∫

|(−it)mψ(ht)ϕ(t) − (−it)mϕ(t)|2 dt =
1

2π

∫

t2m|ϕ(t)|2|1 − ψ(ht)|2dt,

that is the integrated squared bias is the first summand in representation (5) of Lemma 1. Hence, due

to (4), the second summand in the right hand side of (5) is the integrated variance of the estimator.

3. Smooth case

3.1. Main result

For a real valued function g(x) we will use the following notation, provided the integrals exist:

µk(g) =

∫

|x|kg(x)dx, k = 0, 1, 2, ..., R(g) =

∫

g2(x)dx.

In this section, we suppose that the function to be estimated (density or derivative) is twice

differentiable. More exactly, we suppose that the following conditions are satisfied:

(a) the density f(x) is m+ 2 (m ≥ 0) times differentiable and the (m+2)−nd derivative is square

integrable,

(b) the kernel K(x) is a symmetric m times differentiable probability density function with finite

second moment.

Under these conditions MISE(f
(m)
n (x;h)) is represented in the form (see Wand and Jones, 1995,

p. 21)

MISE(f (m)
n (x;h)) = AMISE(f (m)

n (x;h)) + o

(

h4 +
1

nh2m+1

)

as

h→ 0, nh2m+1 → ∞,

where AMISE is

AMISE(f (m)
n (x;h)) =

1

4
h4µ2(K)2R(f (m+2)) +

1

nh2m+1
R(K(m)).

Denote the variance of the density to be estimated by σ2 (including σ2 = ∞) and put

c(h) = min

{

1

σ
,

1
√

µ2(K)h

}

(10)
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(if σ2 = ∞, then c(h) = 0).

Theorem 1. Let conditions (a) and (b) be satisfied. Then for all m, n and h

MISE(f (m)
n (x;h)) < AMISE(f (m)

n (x;h))−

− c(h)2m+1

π(2m+ 1)n

[

1 − 2m+ 1

2m+ 3
(σ2 + µ2(K)h2)c(h)2 +

2m+ 1

2m+ 5
σ2µ2(K)h2c(h)4

]

, (11)

where c(h) is defined by (10).

Proof. Since K(x) is symmetric, ψ(t) is real, therefore, due to Lemma 1,

MISE(f (m)
n (x;h)) =

1

2π

∫

t2m|ϕ(t)|2(1 − ψ(ht))2dt+

+
1

n
· 1

2π

∫

t2m(1 − |ϕ(t)|2)|ψ(ht)|2dt.

We have
(

1 − ψ(ht)
)2 ≤ µ2(K)2h4t4

4

for all t, and

|ϕ(t)ψ(ht)|2 ≥ (1 − σ2t2)(1 − µ2(K)h2t2)

for |t| ≤ c(h) (see Ushakov, 1999, p.89) Using these inequalities and the Parseval-Plancherel identity

in two forms
∫

K(m)(x)2dx =
1

2π

∫

t2m|ψ(t)|2dt

and
∫

(f (m+2)(x))2dx =
1

2π

∫

t2(m+2)|ϕ(t)|2dt,

we obtain

MISE(fn(x;h)) ≤

≤ µ2(K)2h4

4

1

2π

∫

t2(m+2)|ϕ(t)|2dt+
1

n
· 1

2π

∫

t2m|ψ(ht)|2dt−

− 1

n
· 1

2π

∫

t2m|ψ(ht)ϕ(t)|2dt ≤ µ2(K)2h4

4

∫

(

f (m+2)(x)
)2
dx+

+
1

nh2m+1

∫

K(m)(x)2dx− 1

πn

∫ c(h)

0

t2m(1 − σ2t2)(1 − µ2(K)h2t2)dt =

=
h4µ2(K)2R(f (m+2))

4
+

1

nh2m+1
R(K(m))−

− c(h)2m+1

π(2m+ 1)n

[

1− 2m+ 1

2m+ 3
(σ2 + µ2(K)h2)c(h)2 +

2m+ 1

2m+ 5
σ2µ2(K)h2c(h)4

]

=

= AMISE(f (m)
n (x;h))−

− c(h)2m+1

π(2m+ 1)n

[

1 − 2m+ 1

2m+ 3
(σ2 + µ2(K)h2)c(h)2 +

2m+ 1

2m+ 5
σ2µ2(K)h2c(h)4

]

.

It is easy to see that the expression in the square brackets in the right hand side of (11) is always

positive, therefore we obtain the following extention of the Marron–Wand inequality (2) to arbitrary

m.
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Corollary. Let conditions (a) and (b) be satisfied. Then

MISE(f (m)
n (x;h)) < AMISE(f (m)

n (x;h))

for all n, m and h.

Note that inequality (11) is essentially more precise than (2).

3.2. Bandwidth selection

Majority of methods of bandwidth selection are based on estimating hAMISE — such a value of

h which minimizes the AMISE and which in the considered case (the estimated function f (m)(x) is

twice differentiable) is

hAMISE =

[

4(2m+ 1)R(K(m))

nµ2(K)2R(f (m+2))

]1/(2m+5)

.

The right hand side of (11) is a more precise approximation of the MISE than the AMISE therefore it

seems to be reasonable to estimate h which minimizes the right hand side of (11) instead of AMISE.

It turns out that both minimizations practically give the same result. Indeed, consider the reminder

in the right hand side of (11)

R =
c(h)2m+1

π(2m+ 1)n

[

1 − 2m+ 1

2m+ 3
(σ2 + µ2(K)h2)c(h)2 +

2m+ 1

2m+ 5
σ2µ2(K)h2c(h)4

]

.

Except a very irregular density and under a reasonable choice of the kernel, for h to be close to the

optimal value, σ is much greater than µ2(K)1/2h, so in this case, c(h) = 1/σ, and

R ≈ 1

π(2m+ 1)nσ2m+1

(

1 − 2m+ 1

2m+ 3

)

. (12)

The right hand side of (12) does not depend on h, i.e. R is almost a constant (with respect to h), and

hence minimization of the difference AMISE−R is, roughly speaking, almost the same as minimization

of the AMISE.

Thus the bandwidth selection, based on the AMISE minimization approach, is justified (at least

for more or less regular densities).

4. Intermediate case

In this section, we assume that the function to be estimated (density or derivative) has the first

derivative but does not have the second one. If the function to be estimated f (m)(x) is twice dif-

ferentiable (with square integrable f (m+2)(x)), then, under the optimal choice of the bandwidth h,

the order of decrease (as n → ∞) of the MISE of the kernel estimator under consideration (order of

consistency) is n−4/(2m+5) independently of further smoothness of f(x). If f (m)(x) has only the first

derivative and does not have the second one, then the MISE decreases slower than n−4/(2m+5), one

can only guarantee that

inf
h>0

MISE(f (m)
n (x;h)) = O

(

n−2/(2m+3)
)

, n→ ∞.
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In fact, for any α ∈ [2/(2m+ 3), 4/(2m+ 5)], there exists a density f(x) (for which f (m+1)(x) exists

and f (m+2)(x) does not exist) such that

inf
h>0

MISE(f (m)
n (x;h)) = O(n−α), n→ ∞. (13)

Existence of such densities is proved in Appendix 2. Exact conditions, under which (13) holds for a

given α, are related to fractional derivatives of f(x). Some results, concerning these conditions, will

be published elsewhere.

The following theorem gives an upper bound for MISE in the considered case.

Theorem 2. Let f (m)(x), m ≥ 0, be differentiable and its derivative be square integrable. If K(x)

is a symmetric m times differentiable probability density function with finite first moment, then for

all n,

MISE(f (m)
n (x;h)) < h2µ1(K)2R(f (m+1)) +

1

nh2m+1
R(K(m)).

Proof. We have (see Ushakov, 1999, p. 91)

(1 − ψ(ht))2 ≤ µ1(K)2h2t2.

Using this inequality, Lemma 1 and the Parseval-Plancherel identity, we obtain

MISE(f (m)
n (x;h)) < h2µ1(K)2

1

2π

∫

t2(m+1)|ϕ(t)|2dt+

+
1

nh2m+1
· 1

2π

∫

t2m|ψ(t)|2dt− 1

2πn

∫

t2m|ϕ(t)|2|ψ(ht)|2dt <

< h2µ1(K)2R(f (m+1)) +
1

nh2m+1
R(K(m)).

Corollary. Let conditions of Theorem 2 be satisfied. Then

inf
h>0

MISE(f (m)
n (x;h)) <

<

(

1 +
2

2m+ 1

)

2−
2

2m+3 (2m+ 1)
2

2m+3

[

µ1(K)2(2m+1)R(K(m))2R(f (m+1))2m+1
]

1
2m+3

n− 2
2m+3 .

In the proof of the theorem, we ignored the term

− 1

2πn

∫

t2m|ϕ(t)|2|ψ(ht)|2dt.

It can be taken into account in absolutely the same way as in Section 3, that has sense if n is small

or moderate. Then we obtain

Theorem 3. Let conditions of Theorem 3 be satisfied and, in addition, f(x) and K(x) have finite

variances. Then

MISE(f (m)
n (x;h)) < h2µ1(K)2R(f (m+1)) +

1

nh2m+1
R(K(m))−

− c(h)2m+1

π(2m+ 1)n

[

1 − 2m+ 1

2m+ 3
(σ2 + µ2(K)h2)c(h)2 +

2m+ 1

2m+ 5
σ2µ2(K)h2c(h)4

]

,
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where c(h) is defined by (10).

Letm = 0, i.e. a density is estimated. Using Theorem 2 and its Corollary, we can make comparisons

of the kernel estimator to the histogram. Usually these comparisons are made in the smooth case, i.e.

when the density to be estimated is at least two times differentiable. In that case, the MISE of the

histogram is asymptotically inferior to the kernel density estimator: convergence rate of the MISE

is O(n−2/3) for the histogram and O(n−4/5) for the kernel estimator. However, if the density to be

estimated is only one time differentiable, the order of convergence rate is the same for the histogram

and for the kernel estimator. Nevertheless, Theorem 2 shows that in this case, the kernel estimator is

still better than the histogram, both asymptotically and for finite values of n. Indeed, let fH(x; b) be

the histogram with binwidth b. Then (see for example Wand and Jones (1995), p. 23)

inf
b>0

MISE(fH(x; b)) ∼ 1

4
(36R(f ′))1/3n−2/3, n→ ∞.

Consider the kernel estimator with, for example, the uniform kernel: K(x) = 1/2 for |x| ≤ 1 and

K(x) = 0 for |x| > 1. Then µ1(K) = 1/2, R(K) = 1/2, and therefore, due to Corollary of Theorem 2

inf
h>0

MISE(fn(x;h)) <
3

4
R(f ′)1/3n−2/3 <

1

4
(36R(f ′))1/3n−2/3 ≈ 3.3

4
R(f ′)1/3n−2/3.

5. Non-smooth case

Functions (densities/derivatives), considered in this section, are not supposed to be differentiable

and even continuous. We only suppose that they have bounded total variation, which we denote by

V(·) and which is defined for a real-valued function g(x) as

V(g) = sup

n
∑

i=1

|g(xi) − g(xi−1)|

where sup is taken over all n and all collections x0, x1, ..., xn such that −∞ < x0 < x1 < ... < xn <∞.

As to the kernel, we suppose that K(x) is a symmetric density function. No assumption is made about

moments of the kernel.

It is convenient to use the following parameter of the kernel, which was introduced by Watson and

Leadbeter (1963) and which is expressed in terms of its characteristic function ψ(t):

P (K) =
1

2π

∫
(

1 − ψ(t)

t

)2

dt.

Note that P (K) exists (is finite) under very mild conditions, in particular, it is sufficient if the

expectation of K(x) exists.

Theorem 4. Let K(x) be a symmetric, m times differentiable (m ≥ 0) density function and

f (m)(x) have bounded total variation. Then

MISE(f (m)
n (x;h)) ≤ hV(f (m))2P (K) +

1

nh2m+1
R(K(m)). (13)

Proof. Estimate the first summand in the right hand side of (5) using the inequality

|ϕ(t)| ≤ V(f (m))

|t|m+1

10



which holds for all t (see Ushakov and Ushakov, 2000). Then

1

2π

∫

t2m|ϕ(t)|2(1 − ψ(ht))2dt ≤

≤ V(f (m))2h
1

2π

∫
(

1 − ψ(t)

t

)2

dt = V(f (m))2P (K)h.

The second term in the right hand side of (5) is estimated as above (see for example proof of Theorem

1):
1

n
· 1

2π

∫

t2m(1 − |ϕ(t)|2)|ψ(ht)|2dt ≤ 1

nh2m+1
R(K(m)).

Thus we obtain (13).

Corollary. Let conditions of Theorem 3 be satisfied. Then

inf
h>0

MISE(f (m)
n (x;h)) ≤ (2m+ 1)

1
2m+2

(

1 +
1

2m+ 1

)

×

×
(

V(f (m))2(2m+1)R(K(m))P (K)2m+1
)

1
2m+2

n− 1
2m+2 .

Appendix 1

In this Appendix we give an example when AMISE < MISE. Let m = 0 Consider the following

kernel:

K(x) =
1

πx5

[

(2cx3 + 4c3x3 − 24cx) cos(cx) + (24 − 2x2 − 12x2c2) sin(cx)
]

,

where

c =

√√
5 − 1

2
.

This is an even, bounded, continuous, integrable function with

∫

K(x)dx = 1

and

µ2(K) = 2

i.e. K(x) is a second-order kernel. The characteristic function of K(x) is

ψ(t) =

∫

eitxK(x)dx =

{

1 − t2 − t4 for |t| ≤ c,

0 for |t| > c.

Let f(x) be a four times differentiable density function (with square integrable fourth derivative)

whose characteristic function ϕ(t) vanishes for |t| > 1, examples of such densities can be found in

Ramachandran (1997) or in Ushakov (1999). For h < c the MISE is

MISE =
1

2π

∫

|ϕ(t)|2(1 − ψ(ht))2dt+
1

n
· 1

2π

∫

(1 − |ϕ(t)|2)(ψ(ht))2dt =

11



= h4R(f (2)) + 2h6R(f (3)) + h8R(f (4)) +
1

nh
c1−

− 1

n

[

R(h) − 2h2R(f ′) − h4R(f (2)) + 2h6R(f (3)) + h8R(f (4))
]

where

c1 =
1

π

∫ c

0

(1 − t2 − t4)2dt,

and the AMISE is

AMISE = h4R(f (2)) +
1

nh
c1.

It is clear that under appropriate choice of h and n the difference

MISE−AMISE = 2

(

1− 1

n

)

h6R(f (3)) +

(

1 − 1

n

)

h8R(f (4))−

− 1

n

[

R(f) + 2h2R(f ′) + h4R(f (2))
]

can be made positive.

Appendix 2

In this appendix, we prove that for any α ∈ (0, 4/(2m+ 5)) there exists an m times differentiable

density f(x) such that under very mild restrictions on the kernel K(x), the MISE of the kernel

estimator of the m-th derivative f (m)(x) satisfies inequalities

d1n
−α ≤ inf

h>0
MISE(f (m)

n (x;h)) ≤ d2n
−α,

where d1 and d2 are some positive constants.

Let us fix an arbitrary α, 0 < α < 4/(2m+ 5), and put

γ =
2m+ 1

2(1 − α)

(then m+ 1/2 < γ < m+ 5/2) and

c =
γ

1 + γ
.

Consider the function

ϕ(t) =

{

1 − c|t| for |t| ≤ 1,

(1 − c)|t|−γ for |t| > 1.

This function is symmetric, continuous, decreasing for t > 0, convex for t > 0 and satisfies conditions

ϕ(0) = 1 and lim|t|→∞ ϕ(t) = 0, therefore (see, for example, Feller, 1971) it is the characteristic

function of an absolutely continuous distribution. Denote the corresponding density by f(x). Since

γ > m + 1/2, the function t2m|ϕ(t)|2 is integrable, and therefore f(x) is m times differentiable, and

f (m)(x) is square integrable.

Let K(x), the kernel, be a symmetric probability density function with finite second moment, m

times differentiable with square integrable m-th derivative K(m)(x). Denote its characteristic function

by ψ(t) and put

a0 =
1

2π

∫

t2m|ψ(t)|2dt =

∫

K(m)(x)2dx,

12



a1 =
1

2π

∫

|t|≥1

t2m|ψ(t)|2dt,

c0 =

∫ ∞

0

t2m−2γ(1 − ψ(t))2dt,

c1 =

∫ ∞

1

t2m−2γ(1 − ψ(t))2dt

(c0 and c1 are positive and finite for m+ 1/2 < γ < m+ 5/2),

σ2 =

∫

x2K(x)dx.

Consider the kernel estimator f
(m)
n (x;h) of f (m)(x) based on the kernel K(x). According to Lemma

1,

MISE(f (m)
n (x;h)) =

=
1

2π

∫

t2m|ϕ(t)|2|1 − ψ(ht)|2dt+
1

n
· 1

2π

∫

t2m(1 − |ϕ(t)|2)|ψ(ht)|2dt =

=
1

π

∫ 1

0

t2m(1 − ct)2|1 − ψ(ht)|2dt+ 1

π

∫ ∞

1

t2m

(

1 − c

tγ

)2

|1 − ψ(ht)|2dt+

+
1

n
· 1

2π

∫

t2m(1 − |ϕ(t)|2)|ψ(ht)|2dt = S1 + S2 + S3.

Find lower and upper bounds for each of the three summands in the right hand side. Without loss of

generality we will suppose that 0 < h < 1. We have

0 ≤ S1 ≤ 1

π

∫ 1

0

(1 − ψ(ht))2dt ≤ 1

4π
σ4h4

∫ 1

0

t4dt =
σ4

20π
h4 (14)

(we used the inequality ψ(t) ≥ 1 − σ2t2/2 that holds for all t). For S2 we have

S2 =
(1 − c)2

π
h2γ−2m−1

∫ ∞

h

t2m−2γ(1 − ψ(t))2dt

therefore, since we assume that 0 < h < 1,

c1
(1 − c)2

π
h2γ−2m−1 ≤ S2 ≤ c0

(1 − c)2

π
h2γ−2m−1. (15)

Finally, for S3 we have

S3 ≤ 1

n
· 1

2π

∫

t2m|ψ(ht)|2dt =
a0

nh2m+1

and

S3 ≥ 1

n
· 1

2π

∫

|t|≥1

t2m(1 − (1 − c)2)ψ(ht)2dt =
c(2 − c)

nh2m+1
· 1

2π

∫

|t|≥h

t2m|ψ(t)|2dt ≥

≥ c(2 − c)

nh2m+1
· 1

2π

∫

|t|≥1

t2m|ψ(t)|2dt =
c(2 − c)a1

nh2m+1
a1,

i.e.
c(2 − c)a1

nh2m+1
≤ S3 ≤ a0

nh2m+1
. (16)

From (19)—(21) we obtain that (under conditions m+ 1/2 < γ < m+ 5/2 and 0 < h < 1)

b1h
2γ−2m−1 + b2

1

nh2m+1
≤ MISE(f (m)

n (x;h)) ≤ B1h
2γ−2m−1 +B2

1

nh2m+1

13



with some positive constants b1, b2, B1, B2. These inequalities imply that, for some positive constants

d1 and d2,

d1n
−1+(2m+1)/(2γ) ≤ inf

h>0
MISE(f (m)

n (x;h)) ≤ d2n
−1+(2m+1)/(2γ)

i.e.

d1n
−α ≤ inf

h>0
MISE(f (m)

n (x;h)) ≤ d2n
−α.
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