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Abstract

Improper priors are used frequently, but often formally and without reference to a sound
theoretical basis. The present paper demonstrates that Kolmogorov’s (1933) formulation of
probability theory admits a minimal generalization which includes improper priors and a
general Bayes theorem.

The resulting theory is closely related to the theory of conditional probability spaces
formulated by Renyi (1970), but the initial axioms and the motivation differ.

The formulation includes Bayesian and conventional statistics as extreme cases, and sug-
gests that intermediate cases can be considered.
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1 Introduction

Berger (1985, p.90) argues that use of non-informative improper priors represents the single most
powerful method of statistical analysis. Improper priors are indeed used frequently in Bayesian
analysis. The motivation is that they are natural choices for the expression of absence of knowledge
(Bayes, 1763; Laplace, 1812; Jeffreys, 1966). It can be viewed as an attempt at making Bayesian
analysis objective (Berger, 2006). Jeffreys (1966, p.118) argues that improper priors are necessary
from a principal point of view as the first initial prior in a chain of distributions obtained from
Bayes formula.

In certain applications it is reasonable to have an analysis which is invariant with respect to
choices of measurement scale, or more general group actions. The conclusion is then that the prior
must be a Haar measure, and this is often improper. A maximum entropy argument is sometimes
intuitively appealing, and this also tends to lead to improper priors (Jaynes, 2003; Berger, 1985).
In practical applications it may be difficult to decide on a particular prior distribution, and this
typically leads to the choice of a standard improper prior. Finally, and this is most important, use
of improper priors can be used to obtain excellent conventional procedures (Bayard and Berger,
2004). It can safely be concluded that improper priors are here to stay.

The widespread use of improper priors in practice stands in strong contrast to the theoretical
treatment of improper priors in standard textbooks. Berger (1985, p.132) indicates that improper
priors can be viewed as limits of proper priors, but concludes: The resulting formal posterior
distribution cannot rigorously be considered to be a posterior distribution. The usual approach
is to do the calculations with the improper prior as if it were a proper prior. Schervish (1995,
p.20) use this approach, but notes that it is not a very precise recipe. The conclusion seems to be
that many standard textbooks in Bayesian analysis rely on the use of improper priors, but fail to
include improper priors in the fundamental description of the theory.

This conclusion is not satisfactory from a theoretical point of view. The possible practical
consequences are perhaps even more disturbing. One example is given by the use of improper priors
in Markov chain Monte Carlo methods (Gelfand and Sahu, 1999), and a possible consequence is
that the resulting posterior is improper. Propriety of the resulting priors is a fundamental question.
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Hobert and Casella (1996) discuss this in more detail with examples, and give conditions which
ensure propriety for an important class of models.

The marginalization paradoxes presented by Stone and Dawid (1972) give additional doubt
about the use of improper priors. In a discussion of the marginalization paradoxes the prominent
Bayesian D. V. Lindley concludes (Dawid et al., 1973, p.218): Clearly after tonight’s important
paper, we should use improper priors no longer. The paradoxes displayed here are too serious to be
ignored and impropriety must go. Let me personally retract the ideas contained in my own book.

The aim in the following is to present the essential ingredients in a minimal theory which
explains and avoids the problems encountered above. The easy solution is to avoid improper dis-
tributions altogether, but it turns out that improper priors can be included by a slight adjustment
of the Kolmogorov axioms. This minimal extension of the Kolmogorov theory can be viewed as
a special case of the more general theory presented by Hartigan (1983), and the results presented
in the following supplements this theory.

The companion paper (Taraldsen and Lindqvist, 2007) presents similar results, and includes
in particular a discussion of the marginalization paradoxes. The purpose here is to give a more
precise definition of the theory, and to include some proofs.

2 Conditional probability spaces

The concept of a conditional probability space Ω to be defined below is identical with the more
standard concept of a σ-finite measure space. The first term was introduced by Renyi (1970), and
this will be explained below.

Definition 1 (Conditional probability space) A conditional probability space is a set Ω equipped
with a σ-finite measure P defined on a σ-algebra E of sets in Ω. The members of the σ-algebra
are called the events. An event A is an elementary condition if 0 < P(A) < ∞. The conditional
probability given an elementary condition is defined by

P(B |A) =
P(A ∩B)

P(A)
(1)

A probability space is a conditional probability space such that P(Ω) = 1. An improper probability
is a measure such that P(Ω) = ∞.

It follows immediately that each elementary conditional probability P(· |A) is a probability mea-
sure, and it is in particular normalized: P(Ω |A) = 1. This will be generalized below for more
general conditions. General terms and results from probability theory are found in standard text-
books (Rudin, 1987; Doob, 1990; Halmos, 1950; Kolmogorov, 1956). Some terms have been used
already above, and some familiarity with measure theory will be assumed also in the following.
The following are however so central that they are repeated here:

Definition 2 (σ-algebra) A σ-algebra is a family E of subsets of a set Ω which includes Ω and
is closed under complements and countable unions. A measurable space is a set equipped with a
σ-algebra. The members of the σ-algebra are called the measurable sets.

Definition 3 (Measure) A function P is countably additive if P(∪iAi) =
∑

i P(Ai) holds for
every disjoint countable family {Ai} of sets in the domain of P. A measure P is a countably
additive function defined on a σ-algebra of sets with P(∅) = 0, and 0 ≤ P(A) ≤ ∞ for all
measurable sets A. A measure space is a measurable space equipped with a measure. A measure
space is σ-finite if it equals a countable union of measurable sets with finite measure.

Renyi (1970, Def.2.2.1) gives the following definition:

Definition 4 (Bunch) A family B ⊂ E of events is a bunch if it is closed under unions, the sure
event Ω is a countable union of sets from B, and the empty event ∅ is not a member of B.
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Renyi (1970, Def.2.2.2) defines the concept of a conditional probability space by a family of
conditional probability measures {P(· |B)}B∈B, where B is a bunch. His definition is more general
than Definition 1, but he proves that every conditional probability space can be extended to a full
conditional probability space. The Renyi (1970, Thm.2.2.2) extension coincides with the concept
of a conditional probability space given in Definition 1. It can be observed that P is uniquely
determined from P(· |B) up to a positive constant factor.

The condition of σ-finiteness of P ensures that the set of elementary conditions is a bunch. This
gives a natural motivation for the σ-finiteness condition, and it demonstrates that the common
condition P(Ω) = 1 can be too restrictive. Another, and quite different approach (Taraldsen and
Lindqvist, 2007), will also show that the condition of σ-finiteness is natural and that the condition
P(Ω) < ∞ can be too restrictive. The required theory will be presented next.

3 Random quantities and statistics

The main motivation historically, and also to day, for the concept of probability is its use in
modeling. In statistics the first part is given by the assumed identification of some observed
results with the realization of a random quantity. It is assumed that the random quantity has
a distribution, but this distribution is unknown. Roughly speaking, the purpose of probability
theory is to characterize the outcome and consequences of the experiment when the distribution is
known, but in statistics the purpose is to characterize the distribution based on the observations.

The standard parametric set-up is to assume that the experiment is described by a family
{Pθ

X} of distributions indexed by a parameter θ. This is referred to as the statistical model.
The quantity X corresponds to the observations, and the purpose is to characterize the unknown
parameter θ.

In Bayesian statistics it is assumed that the parameter is also a random quantity. The param-
eter values are not observed, but it is assumed that the parameter has a known distribution Pθ.
This prior distribution together with the statistical model gives the joint distribution of (X, θ),
and hence also the posterior distribution Px

θ of the parameter given the data.
In applications it is often required to consider cases where Pθ is improper, but then the standard

probability theory is not sufficient. The common approach is to simply calculate Px
θ by common

rules and ignore that there is a lack of underlying theory for these rules. It will be shown here that
the conditional probability space gives an underlying theory, and that the above conventional and
Bayesian set-up follows as consequences. The theory gives also the correct rules for the calculation
of Px

θ, but some ’common rules’ fail.

Definition 5 (Random quantity) A random quantity X in a set ΩX is a measurable function
X : Ω→ ΩX from the conditional probability space Ω into the measurable space ΩX . The dis-
tribution PX of X is defined by PX(A) = P(X ∈ A), where (X ∈ A) = {ω |X(ω) ∈ A}. The
random quantity is called σ-finite if its distribution is σ-finite. A random variable X is a random
quantity such that ΩX is the set of real numbers equipped with the Borel σ-field. The expectation
of a random variable is defined by EX =

∫
X(ω) P(dω) if it exists. A random variable X is locally

integrable if
∫

A
|X(ω)|P(dω) < ∞ for all events A with P(A) < ∞.

If X is σ-finite, then it follows that (ΩX ,PX) is a conditional probability space. The previous
definition makes perfect sense also when P is only required to be a measure, but it follows then
that P is σ-finite if there exist a σ-finite random quantity. The standard probabilistic set-up is to
assume that there is a fixed underlying probability space, and that every random quantity is based
on this space. The generalization here is simply given by a replacement of the probability space by
a conditional probability space as suggested by Renyi. The reward of the standard set-up, and the
set-up here, is that the joint distribution of any family of random quantities is well defined. The
definition of more advanced random quantities such as random functions, random sets, or random
linear operators are naturally given. A main issue of discussion in these case are the definition,
and characterization of the family of events in ΩX . An additional issue here in the case of an
underlying conditional probability space is to prove σ-finiteness.
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It is quite natural to identify the prior distribution Pθ in Bayesian statistics with the distri-
bution of a random quantity θ : Ω→ Ωθ. It follows as a consequence that P is improper if Pθ

is improper. The prior distribution in applications are usually σ-finite, and as noted above this
leads to a σ-finite P.

The following two results give characterizations of σ-finiteness which are most useful. Some
applications are discussed by Taraldsen and Lindqvist (2007).

Proposition 1 A measure µ is σ-finite if and only if the measure ν(dx) = n(x)µ(dx) is a proba-
bility measure for some measurable function n > 0.

Proof. Let Ak = (n > 1/k). It follows that ΩX = ∪kAk because n > 0. The equalities 1 ≥
ν(Ak) ≥ (1/k)µ(Ak) give µAk ≤ k < ∞, and proves that µ is σ-finite.

The second part of the proof is a slight modification of the proof given by Rudin (1987,
Lemma 6.9): Let A1, A2, . . . be a countable partition of ΩX such that 0 < µAk < ∞. Define
n(x) =

∑
k[x ∈ Ak]/(2kµAk). It follows that n > 0, and that ν(dx) = n(x)µ(dx) is a probability

measure. 2

Proposition 2 Let µ(dx) = f(x)ν(dx), where the measure ν is σ-finite and the measurable func-
tion f is positive: f ≥ 0. The measure µ is σ-finite if and only if ν(f = ∞) = 0.

Proof. The σ-finiteness of µ follows if it can be proven that the restriction to (0 < f < ∞) is
σ-finite since µ(0 < f < ∞)c = 0. It can and will hence be assumed that ΩX = (0 < f < ∞) in
the first part of the proof. Let m > 0 be such that m(x)ν(dx) is a probability measure. It follows
that n(x)µ(dx) with n = m/f > 0 is a probability measure, and hence that µ is σ-finite.

Let n > 0 be such that n(x)µ(dx) is a probability measure. It follows that 1 =
∫

n(x)f(x)ν(dx)
≥ (1/k)ν(n > 1/k, f = ∞) · ∞, and hence ν(n > 1/k, f = ∞) = 0. This proves the claim
ν(f = ∞) = 0, since (f = ∞) = ∪k(n > 1/k, f = ∞) from n > 0. 2

The prior distribution in Bayesian analysis is most often specified on the form Pθ(dθ) =
π(θ)ν(dθ) where ν is counting measure or Lebesgue measure on Rd. The condition ν(π = ∞) = 0
ensures that the prior distribution is σ-finite.

The joint distribution of (X, θ) is given by f(x | θ)π(θ)µ(dx)ν(dθ) when the statistical model is
given by Pθ

X(dx) = f(x | θ)µ(dx). Proposition 2 can again be used to verify that (X, θ) is σ-finite.
The marginal distribution of X equals the distribution of X, and is given by PX(dx) =

f(x)µ(dx) where

f(x) =
∫

f(x | θ)π(θ)ν(dθ) (2)

It is here easy to find examples where the necessary and sufficient condition µ(f = ∞) = 0 in
Proposition 2 is not fulfilled. This means that Proposition 2 gives the crucial test for verification of
the σ-finiteness of the marginal. This is most important since σ-finiteness of the marginal ensures
existence and uniqueness of the main result in a Bayesian analysis: The posterior distribution Px

θ.
This claim follows as a special case of the following Theorem:

Theorem 1 Let X be a locally integrable random variable, and let T be a σ-finite random quantity.
The conditional expectation Et(X) = E(X |T = t) is defined to be a measurable function of t such
that

E(X [T ∈ A]) = E(ET (X)[T ∈ A]) (3)

holds for all measurable sets A. The conditional expectation exists, is uniquely defined PT almost
everywhere, and is normalized.

Proof. The expectation values involved in equation (3) are both defined by integration with respect
to P. The right-hand side is however also equal to an integral with respect to PT∫

A

Et(X) PT (dt) (4)
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The proof of this claim follows from the general Change-of-variables formula∫
φ(T (ω)) P(dω) =

∫
φ(t) PT (dt) (5)

which remains valid for improper distributions P. The proof follows from consideration of limits
of simple functions φ.

The measure determined by A 7→ E(X[T ∈ A]) is σ-finite and absolutely continuous with re-
spect to PT , and the Radon-Nikodym theorem ensures existence and uniqueness of the conditional
expectation identified as the density with respect to PT .

The measure is σ-finite since X is assumed to be locally integrable, and because PT is assumed
to be σ-finite. The absolute continuity follows since PT (A) = 0 implies E(X[T ∈ A]) = 0.

The calculation ∫
A

Et(1) PT (dt) = E(1 [T ∈ A]) =
∫

[T (ω) ∈ A] P(dω)

=
∫

A

1 PT (dt)
(6)

proves the normalization. This is the almost everywhere equality Et(1) = 1. 2

4 Discussion and conclusion

The conditional distribution Pt is defined from the above by Pt(A) = Et[A]. The indicator
function X = [A] is locally integrable. As explained by Kolmogorov (1956, p.54) it is possible to
extend the conventional definition of the integral to allow integration with respect to conditional
distributions in general, and this holds also for the more general case of a conditional probability
space. It is however well known that a conditional distribution can be identified with a family
of distributions if Ω is a complete separable metric space equipped with the Borel field, and the
proof of this generalizes verbatim to the case of a conditional probability space considered here.

Theorem 1 gives a generalization of conditioning (· |A) with respect to a elementary condition
A to the case of conditioning (· |T = t) with respect to a σ-finite random quantity. The link
between the definitions is obtained from consideration of the random quantity T =

∑
ti[Ai],

where Ai is a countable partition of Ω into elementary conditions with A1 = A.
The conditional distribution Pθ

X corresponding to a σ-finite θ can be defined by either (PX)θ

based on P(X,θ) or by (Pθ)X , but the result is the same. This gives a convenient formulation
which includes both conventional statistics and Bayesian statistics. Conventional statistics is
here characterized by avoiding any specification of the distribution Pθ, and Bayesian statistics
represents the other extreme in that it is assumed that the distribution Pθ is completely known.
This suggests also that it could be reasonable in some concrete problems to consider statistical
inference where Pθ is unknown, but restricted by some conditions such as symmetry.

It is convenient to have a theoretical model which includes both conventional and Bayesian
statistics, and it has been demonstrated here that Renyi (1970)’s theory of conditional probability
accomplishes this. This theory includes in particular improper priors as used in Bayesian statistics.
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