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Abstract

In this work, we consider the problem of bandwidth selection for the Fourier integral estimator.

Using a simulation study, we investigate the performance of two bandwidth selectors, find out their

merits and defects.
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1. Introduction

One of main problems in nonparametric density estimation is the smoothing parameter selection.

In this work, we consider this problem for the kernel density estimator based on so-called sinc or

Fourier integral kernel. Let X1, ..., Xn be a random sample (iid random variables) from an absolutely

continuous distribution with the density function f(x). Consider the problem of estimating f(x).

Suppose that a functional form of f(x) is unknown, so it has to be estimated nonparametrically. The

kernel estimator, based on the sample X1, ..., Xn, is defined as

fn(x;h) =
1

nh

n
∑

j=1

K

(

x−Xj

h

)

,

where K(x) is the kernel and h is the smoothing parameter — bandwidth. In this paper, we use the

mean integrated squared error (MISE) as the performance criterion:

MISE(fn) = E

∫

(fn(x;h) − f(x))2dx.

The kernel usually belongs to one of the following families: conventional kernels, higher-order

kernels, superkernels, sinc kernel. We say that a kernel is conventional if it is a probability density

function i.e. is nonnegative and integrates to one. Higher order kernels are defined as follows. Let k

be an integer and k ≥ 2. K(x) is called a k-order kernel if K(x) is symmetric,

∫

K(x)dx = 1,

∫

xjK(x)dx = 0 for j = 1, ..., k − 1,

and
∫

xkK(x)dx 6= 0.

Conventional kernels are second-order kernels. If k > 2, then we say that the kernel is higher-order.

Higher-order kernel estimators have better asymptotic MISE than conventional estimators, provided

that the density to be estimated is smooth enough.

Let K(x) be a kernel and ψ(t) be its characteristic function

ψ(t) =

∫

eitxK(x)dx.

We say that K(x) is a superkernel if ψ(t) has form

ψ(t) =







1 for |t| ≤ ∆,

g(t) for ∆ ≤ |t| ≤ c∆,

0 for |x| > c∆,

where g(t) is a real-valued, even function, satisfying the inequality |g(t)| ≤ 1 and chosen in such a

way that ψ(t) is continuous, ∆ > 0, c > 1. Provided the density to be estimated is smooth enough,

superkernel estimators have better asymptotic MISE than higher-order estimators.

The Fourier integral kernel (sinc kernel) is the function

K(x) =
sinx

πx
.
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Asymptotic behaviour of the MISE of this estimator is similar to that of superkernel estimators.

Thus, if the density to be estimated is smooth enough, then conventional estimators are asymptot-

ically inferior to both higher-order, superkernel and Fourier integral estimators. Situation, however,

is essentially different in the finite sample case, i.e. when the sample size is small or moderate. Ex-

tensive simulations display that there are neither unquestionable leaders nor unquestionable outsiders

in this case, see for example Jones and Signorini (1997). While a conventional estimator is inferior to

a higher-order estimator for some densities to be estimated, it is superior for others.

Therefore, making a choice of the kernel, one should take into account other properties of kernels,

first of all how the problem of the optimal bandwidth approximation is solved for the given kernel.

From this point of view, the Fourier integral estimator is very attractive because there is a very simple

connection between the optimal bandwidth and the underlying distribution, see Glad et al. (2007).

The rest of the paper is as follows. In Section 2, we make a comparison of the MISE of the Fourier

integral estimator with a conventional kernel estimator for a number of different densities. The

comparison shows that the sinc estimator is quite competetive in the finite sample case. Two methods

of bandwidth selection, suggested by Glad et al. (2007), are considered in Section 2. Performance of

these methods is studied in Section 3.

2. Fourier integral and conventional estimators: finite sample comparison

The Fourier integral estimator was studied by Davis (1975), Davis (1977) and Glad et al. (2007).

This estimator can produce estimates which take negative values and do not integrate to one. This

defect however is corrected without loss of performance, see Glad et al. (2003).

Asymptotically, the Fourier integral estimator beats any finite-order kernel estimator, in particular

any conventional estimator, provided that the density to be estimated is smooth enough. But in the

finite sample case, a conventional estimator can have smaller error, the situation is very similar to

that for higher-order estimators studied by Jones and Signorini (1997). In this section we compare

the Fourier integral estimator with a conventional estimator for several different densities. We use a

method, developed by Marron and Wand (1992), which is based on the exact MISE calculation for

normal mixture densities. The following densities (normal mixtures) are used.

#1. Normal

N(0, 1).

#2. Bimodal
1

2
(N(−1.4, 1) +N(1.4, 1)).

#3. Bimodal
1

2
(N(−1.8, 1) +N(1.8, 1)).

#4. Plateau
1

2
(N(−1, 1) +N(1, 1)).
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#5. Separated bimodal
1

2
(N(−2.5, 1) +N(2.5, 1)).

#6. Kurtotic
1

2
(N(0, 1/16) +N(0, 3)).

#7. Skewed unimodal

1

5
N(0, 1) +

1

5
N(1/2, 4/9) +

3

5
N(13/12, 25/81).

#8. Trimodal

0.3N(−2.7, 1/2) + 0.4N(0, 1/2) + 0.3N(2.7, 1/2).

#9. Asymmetric unimodal

1

3
(N(−0.6, 1/16) +N(0, 1) +N(2, 1)).

#10. Asymmetric bimodal

0.7N(−1.8, 1) + 0.3N(1.8, 1).

These ten densities are presented in Figure 1.

The comparison is made between the Fourier integral estimator and conventional estimator with

normal kernel

K(x) =
1√
2π
e−x2/2.

Results of the comparison are presented in Table 1 and in Figures 2 and 3. Table 1 contains the

minimized MISE of the Fourier integral estimator (“sinc”) and normal based estimator (“norm”) for

two sample sizes, n = 100 and n = 1000. For n = 100, the Fourier integral estimator is better than

the normal based estimator for densities #1, #3, #4, #5, #7, #8, #10 and is worse for densities #2,

#6, #9. For n = 1000, the sinc estimator is better for all ten densities, usually essentially (more than

50%).

The reason that we include two very similar densities #2 and #3 is that we would like to show

the behaviour of the ratio between the minimal MISE of the sinc and conventional estimators (for

n = 100) for such bimodal symmetric densities when peaks go away from each other: first the sinc

estimator is better, then, from some distance between the peaks, the conventional estimator becomes

better (for example #2), but starting approximately from #3 the sinc becomes better again.
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(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

(e) Separated Bilmodal Density (f) Kurtotic Density

Figure 1: Densities
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(g) Skewed Unimodal Density (h) Trimodal Density

(i) Asymmetric Unimodal Density (j) Assymetric Bimodal Density

Figure 1: Densities
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Table 1

Minimal MISE of the sinc estimator and the normal based estimator

n = 100 n = 1000

sinc norm sinc norm

#1 0.00470 0.00541 0.00061 0.00103

#2 0.00586 0.00467 0.00070 0.00089

#3 0.00551 0.00553 0.00063 0.00100

#4 0.00323 0.00374 0.00069 0.00073

#5 0.00481 0.00570 0.00073 0.00101

#6 0.02166 0.01941 0.00283 0.00344

#7 0.00827 0.00831 0.00111 0.00157

#8 0.00771 0.00777 0.00085 0.00137

#9 0.02046 0.01659 0.00277 0.00299

#10 0.00539 0.00557 0.00064 0.00101

More detailed information is presented in Figures 2 and 3. Here, the MISE of the estimators are

presented as a function of h, for n = 100 in Figure 2 and for n = 1000 in Figure 3. Solid lines

correspond to the Fourier integral estimator and dotted lines — to the normal estimator.
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(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

(e) Separated Bilmodal Density (f) Kurtotic Density

Figure 2: MISE, n=100
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(a) Normal Density (b) Bimodal Density

(c) Bimodal Density (d) Plateau Density

(e) Separated Bilmodal Density (f) Kurtotic Density

Figure 3: MISE, n=1000
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(g) Skewed Unimodal Density (h) Trimodal Density

Figure 3: MISE, n=1000
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3. Optimal bandwidth of the Fourier integral estimator and its estimation

Data-driven bandwidth selection is a large and difficult topic for conventional estimators and even

more for many higher-order estimators, see Jones et al. (1996), Jones and Signorini (1997). At the

same time, a simple representation of the MISE of the Fourier integral estimator suggests simple

methods of bandwidth selection.

The characteristic function of the sinc estimator is simply the indicator

ψ(t) = I[−1,1](t)

(so the sinc kernel can be considered as a limit case of superkernels as c → 1). Let ϕ(t) be the

characteristic function of the density to be estimated. Then the MISE of the Fourier integral estimator

is represented as

MISE =
1

2π

∫

|t|>1/h

|ϕ(t)|2dt+ 1

n
· 1

2π

∫ 1/h

−1/h

(1 − |ϕ(t)|2)dt =

=
1

πnh
+R(f) −

(

1 +
1

n

)

1

π

∫ 1/h

0

|ϕ(t)|2dt, (1)

where

R(f) =

∫

f2(x)dx.

It follows from this representation that local minimums of the MISE are solutions of the equation

|ϕ(1/h)| =
1√
n+ 1

(2)

for which |ϕ(t)| decreases in some neighbourhood. Fortunately, for moderate n (n < 1000) and for

more or less regular densities, there are only one or two such solutions. For example, for normal

mixtures, considered in Section 2, the number of local minimums of the MISE of the Fourier integral

estimator is given in Table 2. For smaller n situation is even better because the number of solutions

of equation (2) decreases as n decreases.

Table 2

Number of local minimums of the MISE

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

n = 100 1 2 2 1 2 1 1 2 1 1

n = 1000 1 2 2 2 2 1 1 2 1 1

Glad et al. (2007) suggested the following methods of bandwidth selection. One method consists

in replacing the characteristic function ϕ in (2) by the empirical characteristic function. Let ϕn(t) be

the empirical characteristic function associated with the sample X1, ..., Xn, i.e.

ϕn(t) =
1

n

n
∑

j=1

eitXj .
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It is known that ϕn(t) converges to ϕ(t) uniformly on each interval, therefore roots of equation (2)

can be approximated by roots of the equation

|ϕn(1/h)| =
1√
n+ 1

. (3)

So first, roots of (3) are found such that |ϕn(t)| decreases in a neighbourhood of each root. Then

the approximate MISE is calculated using (1) with ϕ(t) replaced by ϕn(t) (and with an appropriate

truncation for calculation the integrals). Bandwidth is selected as a root having minimal approximate

MISE.

Now suppose that the MISE has one local minimum. Then the suggested bandwidth selector

becomes

ĥecf = 1/δ0 (4)

where

δ0 = min{δ : |ϕn(δ)| = (n+ 1)−1/2}. (5)

Another method from Glad et al. (2007) is based on the idea of the normal rule: if we suppose

that Xi have the standard normal distribution, then the unique solution of (2) is

hopt =
σ

√

ln(n+ 1)
,

where σ2 is the variance of Xi. Thus the normal rule selector is

ĥnorm =
σ̂

√

ln(n+ 1)
, (6)

where σ̂2 is a reasonable estimator of σ2, for example

σ̂2 =
1

n

n
∑

i=1

(Xi − X̄)2, X̄ =
1

n

n
∑

i=1

Xi.

In the next section, we study the performance of these two selectors using simulation.

4. Performance of the bandwidth selectors

The first bandwidth selector, suggested by Glad et al. (2007), which we briefly described in the

previous section, consists of two stages: approximation of solutions of equation (2) and choice of the

solution with minimal approximate MISE. Since in this work the first stage is our main target, we

simplify the problem and consider those densities for which the MISE has only one local minimum,

namely densities #1, #4, #6, #7, #9, #10 for n = 100, and #1, #6, #7, #9, #10 for n = 1000.

For each of this densities we find hopt — the optimal bandwidth. Then we simulate 100 independent

samples from the corresponding underlying distribution and find 100 values of ĥecf using (4) and (5)

and 100 values of ĥnorm using (6). On the basis of these values we estimate expectations E ĥecf and

E ĥnorm and standard errors (Var ĥecf)
1/2 and (Var ĥnorm)1/2 of these selectors. Results are presented

in Tables 3 and 4. In addition, the number of ĥecf and ĥnorm, for which the absolute value of the
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relative error is less than 0.2, i.e. |ĥecf/hopt − 1| < 0.2 and |ĥnorm/hopt − 1| < 0.2, are presented

in the tables (Necf and Nnorm respectively), so that one can see in how many cases a method under

consideration gives a good approximation.

The simulation shows that the normal rule selector is good only when the density to be estimated

is normal or very close to normal (but in this case it is very good), otherwise it is very little effective.

But this must be so not only for the sinc estimator but for all other kernels as well, because the

selector depends only on one parameter of the density — the variance, which can be the same for

densities with very different shapes and, therefore, for very different optimal bandwidths.

As to the empirical characteristic function based selector, it seems to be very promising. Compar-

ison parameters of ĥecf with parameters of some hi-tech selectors, for the latter see for example Park

and Marron (1990), displays that ĥecf usually has substantially better performance.

Analysis of simulated ĥecf shows that values, which are not close to hopt, often appear as outliers.

An example is in Table 5. Here those values, for which |ĥecf/hopt − 1| > 0.2, are marked. This is

also an advantage of the selector. First, outliers are easier disclosed. Secondly, the rest of the sample

(without outliers) has smaller scatter than the whole sample.

Some modifications of ĥecf seem to be reasonable. For example, the empirical characteristic func-

tion can be replased by the uniformly consistent estimator suggested by Lebedeva and Ushakov (2007).

There are grounds to expect that this replacement can reduce both the bias and the variance of the

selector.

Table 3

Performance of the selectors, n = 100

hopt E ĥecf (Var ĥecf)
1/2 Necf E ĥnorm (Var ĥnorm)1/2 Nnorm

#1 0.465 0.405 0.106 59 0.460 0.034 80

#4 0.752 0.688 0.142 75 0.652 0.043 99

#6 0.139 0.133 0.027 63 0.570 0.064 0

#7 0.279 0.258 0.071 50 0.379 0.036 4

#9 0.161 0.181 0.059 55 0.646 0.041 0

#10 0.482 0.451 0.116 77 0.887 0.052 0

Table 4

Performance of the selectors, n = 1000

hopt E ĥecf (Var ĥecf)
1/2 Necf E ĥnorm (Var ĥnorm)1/2 Nnorm

#1 0.380 0.328 0.082 57 0.382 0.010 90

#6 0.106 0.102 0.016 84 0.473 0.017 0

#7 0.232 0.202 0.047 53 0.310 0.010 0

#9 0.115 0.115 0.013 88 0.527 0.011 0

#10 0.419 0.382 0.063 82 0.731 0.014 0
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Table 5

A sample of ĥecf , density #10, n = 100, hopt = 0.482

0.498 0.349 0.467 0.457 0.312 0.496 0.485 0.481 0.464 0.462

0.391 0.462 0.450 0.467 0.436 0.269 0.530 0.491 0.319 0.448

0.424 0.442 0.356 0.302 0.491 0.462 0.276 1.241 0.519 0.496

0.490 0.296 0.512 0.402 0.509 0.492 0.487 0.477 0.467 0.543

0.424 0.508 0.472 0.423 0.419 0.427 0.444 0.547 0.379 0.515

0.472 0.473 0.310 0.545 0.457 0.466 0.521 0.457 0.484 0.427

0.428 0.424 0.522 0.405 0.495 0.478 0.479 0.252 0.565 0.536

0.517 0.496 0.439 0.233 0.433 0.509 0.325 0.450 0.382 0.318

0.428 0.481 0.529 0.452 0.256 0.544 0.578 0.471 0.455 0.484

0.472 0.504 0.339 0.540 0.326 0.510 1.130 0.370 0.468 0.481
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