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Abstract

This manual describes thela program, a new instrument which allows the user to easily perform
approximate Bayesian inference using integrated nested Laplace approximation (INLA). We describe the
set of models which can be solved by ida program and provide a series of worked out examples
illustrating its usage in details. Appendix A contains a reference manual fanlthe program.

This manual is for version 1.0-0 of theinla program.

1 Introduction

Integrated nested Laplace approximation (INLA) is a new approach to statistical inference for latent Gaussian
Markov random field (GMRF) models introduced by Rue and Martino (2006) and Rue et al. (2007). It provides

a fast, deterministic alternative to Markov chain Monte Carlo (MCMC) which, at the moment, is the standard
tool for inference in such models. The main advantage of the INLA approach over MCMC is that it is much
faster to compute; it gives answers in minutes and seconds where MCMC requires hours and days. The theory
behind INLA is thoroughly described in Rue et al. (2007) and will not be repeated here.

In short, a latent GMRF model is a hierarchical model where, at the first stage we find a distributional assump-
tion for the observableg usually assumed to be conditionally independent given some latent parameters
and, possibly, some additional parameiys

7(yln,61) = [ [ (y;ln;, 61)-
j

The latent parameteng are part of a larger latent random fietd which constitutes the second stage of our
hierarchical model. The latent field is modelled as a GMRF with precision matix depending on some
hyperparameterg,

1
7(@(0:) o exp{—3 (@ — ) Qe — p)}
The third, and last, stage of the model consists of the prior distribution for the hyperparathetées , 65).

The INLA approach provides a recipe for fast Bayesian inference using accurate approximatig@gyto
andr(x;ly), i = 0,...,n — 1, i.e. the marginal posterior density for the hyperparameters and the posterior
marginal densities for the latent variables. Different types of approximations are available, see Rue et al.
(2007) for details. The approximate posterior marginals can then be used to compute summary statistics of
interest, such as posterior means, variances or quantiles.
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Using the INLA approach it is also possible to challenge the model itself. The model can be assessed through
cross-validation in a reasonable time. Moreover, Bayes factors and deviance information criterion (DIC) can
be computed in an efficient way providing tools for model comparison.

Computational speed is one of the most important components of the INLA approach, therefore special care
has to be putin the implementation of the required algorithms. All procedures necessary to perform INLA are
efficiently implemented in th&MRFLib library. This an open source library written in (ANSI) C and Fortran
which is freely available on the web pab#p://www.math.ntnu.no/ ~hrue/GMRFLib/

Theinla program is a useful tool which allows the user to easily specify and solve a large class of models,
using the algorithms in th&MRFLib library, without any need for C programming. The components of the
model and the options for the INLA procedures are specified throumjh dile. Theinla program reads the

ini  file, then it builds and solves the model returning the required approximate posterior marginal densities
and summary statistics.

The class of models which can be solved usingitile program is wide, coveringgme series models
generalised additive mode(slastie and Tibshirani, 1990)eneralised additive mixed modélsn and Zhang,
1999),geoadditive modelammand and Wand, 2003)nivariate volatility modelgTaylor, 1986). With the
exception of univariate volatility models, thela program supports a subset of the models supported by
BayesX. BayesX is a software tool, developed in the University of Munich, for estimating structured additive
regression models, Brezger et al. (2003).

In this tutorial we present thala program and, through a series of worked out examples show the possible
range of applications where approximate Bayesian inference using INLA can be useful. In Section 2 we
discuss the class of models which can be defined and solved usinglahe program. In Section 3 we
describe the use of thala  program through a series of worked out examples of increasing complexity.
The examples include all, but one, examples in Rue and Held (2005) and all examples in Rue et al. (2007), plus
some more examples previously analysed with BayesX. Section 4 describes how to perform model assessment
and model comparison. Appendix A consists of a reference manual forléhe program while appendix B
describes some of the implememnted probability density.

2 Model description

Theinla program supports hierarchical GMRF models of the following type

yjlnj, 01 ~ m(y;|n;, 61)  j€J 1)
nyg—1
ni:ka(cki)-f—ZZTB-f-Ei i:07...,nn—1 (2)
k=0
where
e Jisasubsetof0,1,...,n, — 1}, that is, not necessarily all latent parametgi@re observed through
the datay.

e 7(y;j|n;,01) is the likelihood of the observed data assumed to be conditional independent given the
latent parameterg, and, possibly, some additional paramet@rs The latent variable); enters the
likelihood through a known link function, see Appendix A.1 for details.

¢ e is avector of unstructured random effects of lengthwith i.i.d Gaussian priors with precisiox,:

€|A, ~ N(0,\,I) 3



e 11 = (n1,72,...)is avector of predictors.

e fr(ck;) is the effect of a generic covariatewhich assumes value,; for observation:;. The func-
tions fi, k = 0,...,ny — 1 comprise usual nonlinear effect of continuous covariates, time trends
and seasonal effects, two dimensional surfaces, iid random intercepts and slopes and spatial random
effects. The unknown functions, or more exactly the corresponding vector of function evaluations
Fr=(fory---s f(mk,l)k)T, are modelled as GMRFs given some paramedgrsthat is

Frl05, ~N(0,Q; ") 4)

e z; is a vector ofng covariates assumed to have a linear effect, andl ise corresponding vector of
unknown parameters with independent zero-mean Gaussian prior with fixed precisions.

The full latent field, of dimension = n, + Z?Lal mj + ng, is then
= (T'T7 fg;a AR f?jzjffb/BT)-

Note that in thénla program the latent fiela@ is parametrised using the predicteyinstead of the unstruc-
tured termse.

All elements of vector: are defined as GMRFs, heneas itself a GMRF with density:

np—1 ny—1 ng—1
w(@)02) = [ 7nilfor - Fa,m1:8.00) T] 7(Falss) T #(Bm) )
i=0 k=0 m=0
where
ny—1
77z|f0>>fnf—lvﬁNN(Z fk’(ckl)—l_zzTB>)‘7]) (6)
k=0
and@; = {log A\, 0y,,...,0,,-1} is a vector of unknown hyperparameters. Note that we include the loga-

rithm of the precision parameters in the vector of hyperparameters.

The last element in the definition of our hierarchical model is a prior distribution for the hyperparameters
6 = (01,02). Intheinla function all precisions are given a Gamma prior with parametexsdb so that

the mean is;/b and the variance ig/b%. See the Appendix for details about the prior distributions for all the
hyperparameters of the model.

Many well known models from the literature can be written as special cases of (1) and (2)

e Time series models

Time series models are obtainedf= ¢ represents time. The functiorfs can model nonlinear trends
or seasonal effects

e = ftrend(t) + fseasonal(t) + thﬁ

e Generalised additive models (GAM)

A GAM model is obtained ifr(y;|n;, 8;) belongs to an exponential family, are univariate, continuous
covariates and, are smooth functions.

e Generalised additive mixed models (GAMM) for longitudinal data

Consider longitudinal data for individuais= 0,...,n; — 1, observed at time point,t1,.... A
GAMM model extends a GAM by introducing individual specific random effects, i.e.

nit = fo(cito) + -y +fap—1(Cit(n,—1))) + boiwito + ++* + by —1)iWit(ny—1)
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wheren;; is the predictor for individual at timet, x;;,, K = 0,...,ny — Lwig, ¢ = 0,...,mp — 1

are covariate values for individualat timet, andby;, . . ., b,,—1); is @ vector ofn; individual spe-
cific random intercepts (ifv;;, = 1) or slopes. The above model can be written in the general form
in equation (2) by defining = (i,t), ¢;; = cuj forj = 0,....ny —1andc, ;1)1 = Witg,
f(nf_1)+q(cw,(nf_1)+q) = bgiwig for ¢ = 0,..., 1. In the same way GAMM’s for cluster data can be
written in the general form (2).

e Geoadditive models

If geographical information for the observations in the data set are available, they might be included in
the model as

N = fl(COi) R fnffl(c(nf—l)i) + fspat(si) + Z?IB
wheres; indicates the location of observatioand fs,,. is a spatially correlated effect. Models where
one of the covariate represent the spatial effect have recently been coined geoadditive by Kammann and
Wand (2003).

e ANOVA type interaction model
The effect of two continuous covariateandv can be modelled as

ni = fi(wi) + fa(vi) + fipp(wi,vi) + ...

where f1 and f, are the main effects of the two covariates gfid is a two dimensional interaction
surface. The above model can be written in the general form (2) simply by definiegw;, co; = v;,
c3i = (wi, vi),

e Univariate stochastic volatility model

Stochastic volatility models are time series models with Gaussian likelihood where it is the variance,
and not the mean of the observed data, to be part of the latent GMRF model. That is

yilmi ~ N(0, exp(n;))
The latent field is then typically modelled as a autoregressive model of order 1.

3 Examples of application

In this section we present a series of worked out examples mostly taken from Rue and Held (2005), Rue et al.
(2007) and from the BayesX web page. The aim is both to show the wide range of models which can be solved
using the approximate Bayesian inference techniques presented in Rue et al. (2007), and to intradace the
program which makes it possible for the user to apply the above mentioned approximation techniques, making
use of theGMRFLIib library, in an easy and painless way.

The only input required from thimla program is a@ni file containing the description of the model, the
location of the files where the data and the covariates are stored, and, possibly, some options to be passed
to the underlyingcMRFLib library. Theini file is organised in sections each of which either describes

one element of the hierarchical model in equations (1) and (2), or specifies some global parameters for the
underlying functions in th&MRFLib library. The user is required to specify the likelihood model for the

data, the parameters for the prior distribution of the model hyperparantgtarsl to describe, one by one,

all components of the latent GMRE in (2). Theinla program will then read the model specifications,

build the joint probability distribution for the latent GMREin equation (5), compute approximations for the
required posterior marginals and store the results in a user defined directory.

Before presenting the examples, we describe how the covariate values are stored in files. Each covariate has to
be stored in a separate file. The format of the file depends on whether the covariate is assumed to have linear
or non-linear effect:



Covariates with linear effect: The value of the covariate is simply stored in a file withcolumns each row
having the format:
) Zi

wherei = 0,...,n, — 1 andz; is the value of the covariate for observation

Covariates with non-linear effect: Letc € C andC = {¢(9) < (V) < ... < ld2) < ... < (m=D} That
is, covariatec takes one of then values in the ordered vect@'. The file storing covariate hasn,,
row, each with the following format:

wherei = 0, ..., n, —1 and(idz), is the position of the observed valygin the vectorC. If the values
in C are different fronD, 1, ..., another file ofm rows, is necessary to store the value€bfA short

example will be useful:

Example: Letn, = 5 andC = {9,10,11}. Let the observed covariate values §e= 10, ¢c; = 9,
co = 11, ¢3 = 9 andey = 10. Then the covariate file will be as following

S w N — O
_— o N O =

We would need also a file storing the value€in

9
10
11

Note that all indexes go frofito n — 1 and not froml to n.

We run each example in Section 3.1 on two different machines. The first, defined Machine 1, is a laptop with
a Intel(R) Pentium(R) M processor 1.86GHz. The second one, defined Machine 2 is a Dell Poweredge 2950
equipped with two quad-core Itel Xeon 2.66GHz CPUs. For each of the examples we describe the model, the
correspondingni  file and report some output results and the computation time for each of the two machines.

3.1 A simple time series: the Tokyo rainfall data

Our first example is a simple time series model, analysed, among others, in Rue and Held (2005, Sec. 4.3.4).

Example 1 The number of occurrences of rainfall over 1 mm in the Tokyo area for each calendar year during
two years (1983-84) are registered. It is of interest to estimate the underlying probahilitfyrainfall for
calendar dayt which is, apriori, assumed to change gradually over time. The likelihood model is binomial

Ye|me ~ Bin(ng, py)

with logit link function
~exp(m)
Pt=———F~-
1+ exp(m)

The model for the latent variables can be written in the general form of equation (2) as

ne = f(t)
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wheret is the observed time whose effect is modelled as a smooth furfgtipnFollowing Rue and Held
(2005), the random vectof = { fo, ..., f365} is assumed to have a circular random walk of order 2 (RW2)
prior with unknown precision .

There is only one hyperparamet@r= (log A¢) which we assign a LogGamra b) prior distribution with
a = 1l andb = 0.0001. The LogGamma distribution is defined such thakif~ LogGamméa,b), the
Y = exp(X) ~ Gammda, b) with E(Y) = a/band Var(Y) = a/b?.

Figure 1, panel (a), displays the observed frequencies of rain for the 366 time pointSORNMD.ini  file
which defines the above model for tidka  program is:

[The Tokyo-rainfall example]
type = problem
dir = results

[Predictor—term]
type = predictor

initial = 10
fixed = 1

n = 366
[data]

type = data

likelihood = binomial
filename = tokyo.rainfall.data

[latent —RW2]

type = ffield

covariates = time.covariate
n=366

model = rw2

parameters= 1.0 0.0001
cyclic =1

guantiles=0.025 0.975

In the following we guide the reader, section by section, through the abovefile and explain what the
different fields represent. We then briefly illustrate how to runith@ program and how and where the
output is stored.

Each section of thani  file starts with a tag (in square brackets) which is simply a user defined name for the
section itself. The order of the sections is not important. The field nappeds contained in each section. It
defines the role of the section in the problem specification and, consequently, determines also the nature of all
other fields in the same section. There are six specifications fayghéield, see Appendix A.1 for details.

The first section in oumi file, defined bytype=problem, specifies some global parameters. The options
specified in this section are valid for the whole problem. Here, the directory where the results will be stored
is defined (line 3).

The second section, defined Ibype=predictor, (lines 5-9), deals with vecton in (6). The fieldn is re-

quired and indicates the length, of the latent variable vector. Theinla program requires a sec-

tion of type=predictor to always be present, even in cases, like the example we are presenting here, where
there is no unstructured random effactand therefore the predictor vector is a deterministic function of
fos--s fnf_l,ﬁ. We mimic the absence of unstructured random effect by declaring the presjstorbe

fixed and not randomfiked=1), and the value of the log precisidsg A, to be high (initial =10).

The following section, defined byype=data (lines 11-14), specifies the model for the likelihood of the data
7(y:|nt) (line 13), and the name of the file where the data are stored (line 14). The format of the data file
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depends on the likelihood model, see Appendix A.1.2. For binomial likelihood it is as following:

e Y
wheret is the data index going fromito (ng — 1) = 365.

The last section, defined hype= ffield (lines 16-23) specifies the model for the random vegtorin this
example we have a second order random walkdekrw2) of length 366 §=366) which is cyclical (cyclic=1).

We also specify here the parameterandb for the LogGamma prior for the log precision paraméter ;

(line 21). We require thanla program to compute also the 0.025 and 0.975 quantiles for each of the posterior
marginal densities in the latent RW2 field (line 23). The name of the file where the covariate values are stored
(line 18) completes the model specification. In this case the covariate is just the observed time point. The
covariate file consists of two identical columns with index going from 0 to 365.

N = O
N = O

Oncetheni file is ready, we can run the program using the following command line:
The optionv (verbose) makes the program print out some more information about the model while running.
Only for this example, we reproduce the output ofitlla program to make the reader familiar with it.

Processing file [DKYO. ini]
inla_build ...
number of sections =[5]
parse section=[0]name=[the tokyo—rainfall example] type =[PRBLEM]
inla_parseproblem ...
name=[the tokyo—rainfall example]
use.derivaties =[1]
dof.max=[50]
store reslts in directory=[reslts0]
output:

cpo=[0]
dic=[0]
kld=[1]
mlik =[0]
hyperparameters =[0]
summary =[1]
density =[1]
nquantiles=[0] [ ]
npercentiles=[0] [ ]
parse section=[1]lname=[predictorterm] type=[PREDICTOR]
inla_parsepredictor
section=[predictorterm]
PRIOR—>name =[IOGGAMMA]
PRIOR—>PARAMETERS=[1, 0.001]
initialise log_precision[10]
fixed =[1]
n=[366]
compute =[0]
output:
summary =[1]
density =[1]
nquantiles=[0] [ ]
npercentiles=[0] [ ]
parse section=[2]name=[data] type =[DATA]
inla_parsedata ...
tag=[data]
likelihood =[BINOMIAL]
file —>name=[tokyo . rainfall . data]
read n=[1098] entries from file=[tokyo.rainfall.data]



0/366 (idx,a,y) = (0, 2, 0)
1/366 (idx,a,y) = (1, 2, 0)
2/366 (idx,a,y) = (2, 2, 1)

parse section=[3]name=[latent-rw2] type=[FFIELD]
inla_parseffield ...
section=[latentrw2]
model=[rw2]
PRIOR->name =[IOGGAVMA]
PRIOR>PARAMETERS=[1, 0.000289]
constr=[0]

diagonal =[0]
compute =[1]
fixed =[0]

read covariates from file=[time.covariate]
read n=[732] entries from file=[time covariate]
file=[time.covariate] 0/366 (idx,y) = (0, 0)
file=[time.covariate] 1/366 (idx,y) = (1, 1)
n=[366]: use déault locations, if required
cyclic=[1]
initialise log_precision[1]
output:
summary =[1]
density =[1]
nquantiles=[2] [0.025 0.975 ]
npercentiles=[0] [ ]
parse section=[4]name=[inla] type=[NLA]
inla_parselINLA ...
section[inla]
Contents of aiparam 0x9aa3428

Strategy: Use amean-skew correctedGaussian by fitting aSkew-Normal

Fast mode: On
Use linear approximation to log(Q +c|)? No
Parameters forimproved approximations

Number of points evaluate: 9
Step length tocompute derivativesnumerically: 0.000018
Cutoff value to construct local ngborhood: 0.001000
Limit to accept a Gaussian fit: 0.010000
Limit to accept aSkew-Normal fit: 0.010000
Log calculations: On
Log calculated marginal for thehyperparameters: Off
Integration strategy: Use adaptive gridpproach GRID)

fO (CCD only): 1.100000
dz (GRID only): 1.000000
Adjust weights (GRID only): On

Difference in log-density limit (GRID only): 2.500000

Skip configurations with (presmed) small density GRID only): On
Gradient is computed using Forwardiflerence with step-length 0.001000
Hessian is computed using Centraldifference with step-length 0.001000

Hessian marix is forced to be a diagonal matrix? [No]
Compute effective number of paameters? [Yes]

Perform a Monte Carlo errottest? [No]

Interpolator [Auto]

inla_build: check for unusedentries in[OKYO. ini]
inla_INLA ...
Size of full graph=[732]
Found optimal reordering =[amd]
List of hyperparameters:
theta[0] = [log—precision for latentrw2]

Maximise marginal for hyperparam: log¢lensity) = —332.2833 heta =

Maximise marginal for hyperparam: log¢lensity) = —332.2833 heta
Compute the Hesian using central idferences and stepsize[0.001].
3.757422

8.826705
8.826704
Matrix-type [dense]



Eigenvectors of the Hssian

1.000000
Eigenvalues of the H&sian
3.757422
StDev/Correlation m#@rix (scaled inverse Hessian)
0.515887

Search: coordinate 0 direction1

config 0=[ —1] log(rel.dens)=-0.46, accept, compute, 0.10s

config 1=[ —2] log(rel.dens)=-1.68, accept, compute, 0.10s

config 2=[ —3] log(rel.dens)=-3.44, diff to large, stop searching
Search: coordinate 0 direction 1

config 3=[ 1] log(rel.dens)=-0.54, accept, compute, 0.11s

config 4=[ 2] log(rel.dens)=-2.35, accept, compute, 0.10s

config 5=[ 3] log(rel.dens)=-5.90, diff to large, stop searching
Fill —in computations

config 6=[ O] log(rel.dens)=-0.00, accept, compute, 0.10s
Combine the densities with relative weights:

config 0/ 5=[ —1.00] weight =0.632 adjusted weight = 0.633 neff = 12.49
config 1/ 5=[ —2.00] weight =0.186 adjusted weight = 0.209 neff = 14.19
config 2/ 5=[ 1.00] weight = 0.584 adjusted weight = 0.585 neff = 9.69
config 3/ 5=[ 2.00] weight = 0.095 adjusted weight = 0.107 neff = 8.53
config 4/ 5=[ 0.00] weight = 1.000 adjusted weight = 0.963 neff = 11.00

Expected effectivenumber of paameters:11.233, #data/#eff.params: 32.58
Done.
store results indirectory[resultsO]
store simmary resilts in[resultsO/latentrw2/summary. dat]
store simmary (gaussian) results
in[results0/latent—rw2/summary-gaussian . dat]
store marginals in[resltsO/latent—-rw2/ marginal-densities . dat]
store marginaldensities @aussian)
in[results0/latent—rw2/ marginal-densities—gaussian . dat]
store (gyymmetric) kild's in[resultsO/latentrw2/symmetric-kld.dat]
store quantiles in[resltsO/latent—rw2/quantiles.dat]
store quantiles @gaussian)
in[results0/latent—-rw2/quantiles—gaussian.dat]

Wall—clock time used on[TOKYO. ini]

Preparations : 0.025 seconds
Approx inference: 5.007 seconds
Output : 5.848 econds

Total : 10.880 seconds

¢¢From the above output we can follow what itlle  program does: it first reads the different sections,
builds the model for the full latent fielat, performs the INLA approximation and, finally, stores the results

in the appropriate directories. The whole procedure takes less than 10 seconds on Machine 1 and about 2
seconds on Machine 2.

Note that in the output is also reported, for each computed configuration of the hyperparameters, the estimated
number of effective parameters (neff), Rue et al. (2007) suggest these as a way to check the accuracy of the
approximation ofr(6|y). Namely, if the number of effective parameters is small compared to the number of
data, then we can expect the approximation to be accurate. In this case the ratio between the number of data
and the effective number of parameters is around 32, thus suggesting a good quality of the approximation.

The results are stored in the the directagsults. The program creates sub-directories to store separately
results for each component of the model. In our Tokyo example we have two sub-directories:

e predictor—term/

e |atent—rw2/
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The first one is an empty directory since by default the marginals for the predictor term are not computed, see
Appendix A.1.3. The second directory contains results for the latent RW2 model. The sub-directories where
the results are stored are printed in the last part of the output ddfildne function.

The default results consist of five files for each sub-directory created, namely:
e marginal- densities-gaussian.dat

e summary-gaussian.dat
e marginal- densities . dat
e summary.dat

e symmetrie-kid.dat
Moreover we have two files containing the quantiles
e (uantiles—gaussian.dat

e (uantiles . dat
The names of the files are always the same for each sub-directory created. The files whose names ends with
—gaussian.dacontain results obtained using the Gaussian approximation to approximate the dengigy 6f
(see Rue et al. (2007), Section 3.2.1) while the other files contain results obtained using one of the improved
approximations forr;|y, @ described in Rue et al. (2007), i.e. the Laplace approximation or its simplified
version (default).

The file symmetrie-kld.datcontains the (symmetric) Kullback-Leibler (KL) divergence between the Gaussian
and the (simplified) Laplace approximation to the marginal posterior densities, which we have plotted in
Figure 1, panel (b). In this example the divergence is larger for the winter months (November to February),
when the observed frequencies are lower, but it stays always very low. Rue et al. (2007) propose to use the
Kullback-Leibler distance to check the accuracy of the Gaussian approximation.

1.0

08

0.6

0.4

0.2

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

T T T T T T T T T T 1T
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(b) KL-divergence between Gaussiafpaussian (broken line) and simpli-
and simplified Laplace approximatiofied Laplace approximation (solid
for m(z¢|y) line) for 7r(xo|y)

(a) Observed frequencies and fitt
probabilities with uncertainty bounds

Figure 1: Results for the Tokyo rainfall example

The “summaryfiles contain the mean and the standard deviation for each posterior density. There is one line
for each node in the RW2 model and each line is structured as follows:

t E(xily) o(aily)

Also in the “guantiles files each line refers to one node and is structured as follows:

t p0) x(0) p(1) x¢(1)...

11



wherep(j) andx(j) are such that Prdle; < x:(j)|y) = p(j), j = 0,1,.... The number of columns in the
“quantiles files depends on how many quantile values the user choose to compute. In our example there are
5 columns.

Figure 1, panel (a), displays the binomial frequencies and the approximated posterior mean with uncertainty
bounds for the underlying probabilities. The probability of rain is smaller in the winter months.

The “marginal-densitiesfiles contain the approximated marginal posterior densities. Again each line refers
to a different node in the RW2 model and the structure of each line is as follows

t owo w(wly) ra T(ealy) ... ok T(@yx-1)|y)
where(z, z41, - - ., ¥4x—1)) are K = 201 selected values of the variabig and
(T(zt0), T(we1), - - -, (24 —1))) @re the corresponding values of the density. Figure 1 (right) displays the

Gaussian approximation (broken line) and the simplified Laplace approximation (solid line) for the marginal
posterior density of:s¢5 |y, this node is chosen for being the one for which the KL divergence is maximised.
The following R code can be used to reproduce this figure

>marginal<-read.table("resultsO/latent-rw2/marginal.densities.dat")

>gaus.marginal<-read.table("resultsO/latent-rw2/marginal.densities-gaussian.dat")

>

>

>plot(marginal[1,seq(2,403,2)],marginal[1,seq(3,403,2)],type="1",
lwd=2,ylab="",xlab="")

>lines(gaus.marginal[1,seq(2,403,2)],gaus.marginal[1,seq(3,403,2)],type="I"
lwd=2,lty=2)

12



P
© N o

9
20

N
[y

3.2 Atime series with seasonal component: the drivers data

The second example is also taken from Rue and Held (2005, Sec 4.4.2). It is again a time series but here we

decompose the latent variablgsinto a trend and a seasonal component.

Example 2 The data consist in monthly counts of car drivers in Great Britain killed or seriously injured in
car accidents from January 1969 to December 1984. The time serieg;lad 92 data points and exhibits a

strong seasonal pattern. One of our goals is to predict the pattern of counts in the 12 month following the last

observation.

We assume the squared root of the coupt® be conditionally independent Gaussian random variables:
Yelne, Ay ~ N, 1/),), t=0,...,ng—1
The conditional mea;, is then a sum of a smooth trend and a seasonal component:
n; = seasop+trend, ¢t=0,...,n,—1 @)

We assume the vectseason= (seasop, . .. ,seasop, 1) to follow the seasonal model in (3.58) of Rue and
Held (2005), with length 12 and unknown precisidason and the vectotrend = (trend, ..., trend,, 1)
to follow a RW2 with unknown precisiogeng.

Note that we have that,, = ng + 12 = 204, since no observationg; are available fort = ng4,ng +
1,...,nq + 11. For prediction we are interested in the posterior marginal$®f,, . . ., 7n,+11)-

There are three hyperparameters in the moflek (log ), 10g Aseason 10g Mrend) for which we choose the
following prior distributions:

Ay ~ LogGamm#, 4)

Aseason ~ LogGammal,0.1)

Mrend  ~ LogGammal,0.0005)

See Rue and Held (2005) for more details.

The correspondinPRIVERS.ini file is as follows:

[Drivers data]

type = problem

dir = results—%d
guantiles = 0.025 0.975

[Predictor]

type = predictor
parameters= 1 0.0005
initial = 13

fixed = 1

n = 204

compute=1

[data]

type = data

likelihood = gaussian
filename = sqrt—drivers.dat
parameters= 4 4

initial = -2

[trend]

13



2 type = ffield

23 covariates = time.dat
24 N=204

25 model = rw2

26 parameters= 1 0.0005
27 initial =7

28

20 [seasonal]

0 type = ffield

a1 model = seasonal

2 covariates = time.dat
:3h = 204

34 seasorrl2

35 parameters=1 0.01
% initial = 10

37

ss [INLA parameterq

39 type = INLA

20 h = 0.001

We go briefly through th&ni file ,section by section, highlighting the difference with the previous example.

e [Drivers data] section: specifying the quantilestype=problemsection (line 4) , will make the program
compute quantiles for all nodes in the latent field.

¢ [Predictor] section: the precision is fixed to a high value (lines 9-12) to mimic the absence of an
unstructured term in the model. Anyway, since our goal is to predict the expected counts we ask the
program to compute posterior marginals fpas well compute=1).

e [data] section: for Gaussian likelihood the data file has the following format

t we Y

wherew, are fixed weights, see Appendix A.1.2. Note that in this example the length of the observed
data (194) is smaller than the length of the latent variables vecta04).

¢ [trend] section: defines the RW2 model for the trend component. At line 26 we also define a starting
value forlog Ai,enq fOr the optimiser.

e [seasonal]section: defines the model for the seasonal component of the model, the paswasiemt
line 34 defines the season length

e [INLA parameters] this is an optional section, defined lype=INLA, which specifies some param-
eters to be passed to tlEMRFLIib library, in this case we specify the step length for the numerical
computation of the gradient and the Hessiam @|y) at its mode, see Appendix for details.

Building and solving the model takes about 10 seconds on Machine 1 and about 3 seconds on Machine 2.

Figure 2 displays the observed and expected counts in the squared root scale (together with 0.025 and 0.975
guantiles). Following is the R code used to produce Figure 2:

Read the files

data=read.table("sqrt-drivers.dat")
pred=read.table("results-0/predictor/summary.dat")
quant=read.table("results-0/predictor/quantiles.dat")

vV V. V #
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Figure 2. Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers
data example without the seat belt covariate

#Make the plot
plot(data[,3],pch=19,xlim=c(0,205))
lines(pred[,2])

lines(quant[,3],Ity=2)
lines(quant[,5],lty=2)

\Y

vV V V

We consider now a slight modification of Example 2 as discussed by Rue and Held (2005, Sec 4.2.2):

Example 2 cont.On January 1983 wearing seat belt became compulsory. To check whether this law had an
effect on the number of serious accidents we modify the model as follows:

o

We assign additional parametgra Gaussian distribution with precision, equivalent to a flat prior.

Modifying the DRIVERS.ini
section as below:

[belt]

type=linear
covariates= belt.dat
precision=0

seasolt) + trend(t) t=0,...,168
seasoft) + trendt) + 3 t = 169,...,204.

file to account for the extended model is really easy; it is enough to add a new

The type=linear parameter specifies that the new covariate has a lines effect, thelfildatis as follows

0 0

168
169 1
203 1

Figure 3 displays the approximate posterior marginal densitys flagether with 0.025 and 0.975 quantiles.
The 95% confidence region is well below indicating a significant effect of the seat belt law in reducing

15
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Figure 3: Approximate posterior marginal for parametavith 0.025 and 0.975 quantiles

the number of dead or injured drivers. Finally, the observed and expected counts in the squared root scale
(together with 0.025 and 0.975 quantiles) for the model with the seat belt covariate are displayed in Figure 4,
a slightly better fit of this model before and after January 1983 is visible.
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Figure 4: Observed and predicted counts (posterior mean within 0.025 and 0.975 quantiles) for the drivers
data example with seat belt covariate
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3.3 Stochastic volatility models

Stochastic volatility models are common models in financial time series analysis, lately much interest has been
shown in developing efficient MCMC methods for such models, e.g. Shephard and Pitt (1997) and Chib et al.
(2002). In the following example, we show how easily a univariate stochastic volatility model can be solved
using theinla program. The example is taken from Rue et al. (2007) but the model is slightly modified here.

Example 3 The data consist in 945 observed logarithms of the daily difference of the dollar-pound exchange
rate from October 1st, to June 28th, 1985. The data are displayed in Figure 5, panel (a). We analyse this data
set using a univariate stochastic volatility model (Taylor, 1986). The likelihood of the data, conditional on the
latent variables is:

ytlne ~ N(0,exp(ne)), t=0,...,ng—1 (8)
and the model for the latent variables:

77t:M+ft t:()v 7n77_1 (9)

wherey is an unknown common mean with vague Gaussian priorfasd( fo, . . ., fn,—1) is modelled as an
auto regressive process of ordeAR1) with persistence parametgre (—1,1) to ensure stationarity, and
precision parametea;.

The model has two hyperparametsiisg A ¢, ¢). We re-parametrise the persistence parametes

k = logit (T)

and assign the following prior distributions

log Ay ~ LogGammal, 0.0005)
k ~ N(0,1/0.0001)

TheVOLATILITY.ini  file defining the model is the following:

[Standard Vdatility]
type = problem
dir = results—%d

[Predictor term]
type = predictor
n = 1001

initial = 13
fixed = 1
compute=1

[Data]

type = data
likelihood = stochvol
filename = poundd. dat

[AR1]

type = ffield

model = arl
covariatestime . dat

n=1001
priorO=loggamma ;prior for the log-precision
initial0 =3 ;initial value for the log-precision
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parametersO= 1.0 0.0005 ;parameters for the&amma prior of the precision

priorl=gaussian yprior for \kappa
initiall =4 ;initial value for \kappa
parametersl= 0 0.0001 ;paramters for the Gaasian prior of \kappa

[Common mean]
type=linear

The likelihood for the stochastic volatility model is namstdchvol(line 14) and the format of the data file is

Uyt

As in Example 2, the precision for the unstructured teyms fixed, but we compute the marginal posteriors
distributions for the elements of vectgr

The AR1 model forf is defined in lines 17-28. Unlike all other models at the moment available for the
ffield section, the AR1 has two hyperparameters, namely the precision parampeterd the transformed
persistence parameter Lines 22-24 specify the prior and the starting value for the precision paramgter
and lines 26-28 do the same for parameter

The last section of thimi  file describes the model for the common mean, the default value for the precision
is used here.

Note that the length of the data set is 945 but we have set the length of the latent variable vegtto be
n, = 1001 (lines 7 and 21). In this way we obtain also predictions for the unobserved volatility for the 56
days following the last observation.

o

0 200 400 600 800 200 400 600 800 1000

(a) Log of the daily difference in the Pound/Dollar €k) Posterior mean af together with 0.025 and 0.975
change rate quantiles.

Figure 5: Data and results for the volatility model in Example 3

Building and running the model takes around 110 seconds on Machine 1 and 26 seconds on Machine 2.

Figure 5, panel (b), display the approximate posterior mean for the logarithm of the unobserved volatility,
together with 0.025 and 0.975 posterior quantiles. The vertical line indicates the last observed data point.

An alternative model for the response variapjdés a Student- This allows heavier tail, a feature which is
often observed in financial time series. The observation model in equation (8) then becomes

yr =exp(n/2) Te(v) t=1,...,T (10)

18



where7;(v) is a random variable having a Studerdistribution having’ degree of freedom and standardised

so that its variance i$ for any value ofv > 2. To implement the new model it is sufficient to substitute the
[Data] section (lines 12-15) with

1 [Data]

2 type=data

s likelihood=stochvol.t
4 filename=poundd . dat

Yet another model is theormal inverse GaussiafiNIG) distribution, for which
y =exp(n/2) NIG, t=1,...,T (11)
where NIG is a standarised NIG distrubution with two parameters, which (essentially) are skewness and

shape-parameters. To implement the NIG model it is sufficient to substitufpdled section (lines 12-15)
with

1 [Data]

2 type=data

3 likelihood=stochvolnig
4 filename=poundd. dat
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3.4 Bayesian multiscale analysis for time series data

In the previous examples we were interested in the posterior margifwalg ) where the uncertainty about the
hyperparametdf is integrated out. We present here one example where it is important to be able to precisely
estimate posterior marginals for a fixed value of the hyperpararfetdyat is=(z;|y, 6). The example is

taken from Rue et al. (2007).

Example 4 A signal is observed with noise and the goal of the analysis is to detect significant features and
structures in the signal. Since some features might be visible only at some specific level of smoothing it is in-
teresting to consider several levels of smoothing simultaneously. This is the idea behind the SIZer (Significant
ZERo crossing of derivatives) methodology, see Chaudhuri and Marron (1999) asth E2005).

In our example the data are Gamma ray burst intensity, plotted in Figure 6 (panel (a)). The observations are
assumed to be conditionally independent Poisson random variables

y(t:)In(t:) ~ Polexp(n(t:)} i =0,1,...

Wheren(t) is the underlying signal of interest. We assung to be continuous with derivativeg(t), and
level of smoothing. The derivative is said to be “significant positive” at timé

Prob(n/(t) > 0ly, k) > 1 — /2
with « being the level of significance. A similar definition holds for “significant negative”.

We model)(¢) as an integrated Wiener process with precisiomhich is Markov if augmented with derivatives
(Wecker and Ansley, 1983), hence a discretely observed Wiener process obsertiateipoints is a GMRF
of dimensior2n, see Rue and Held (2005, Sec. 3.5). Our latent GMRF is thea (n,n’), that is the
log-mean of the data augmented with its derivatives.

In this example the precisionis fixed therefore there are no random hyperparameters in the model.

The file BURST.iniis as follows:

[Burst data example]
type = problem

dir = results—%d

smtp = GMRFLiIb_.SMTPBAND

[Poisson data]

type = data
likelihood = poisson
filename = burst.dat

[Predictor term]
type = predictor
n =512
initial = 10

fixed = 1

[Smoother]

type = ffield

model = crw2

n =512

covariates = covar.dat
initial =7

fixed = 1
percentiles= 0
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Thesmtpfield in the[Burst data examplegection (line 4) determines the type of solver for dealing with sparse
matrices, in this case, since we know that the precision matrix of the problem is a band matrix, we can use the
GMRFLib.SMTPBAND solver which is optimal for band matrices.

50

40
000 005 010 015 0.20

-0.10

@ (b) (©

Figure 6: Multiscale analysis example: (a) observed Gamma ray burst intensity, (b) posterior mean for the
underlying signah(t) for level of smoothing given bjog x = 7, (c) posterior mean of the derivative&t) is
displayed. The band in the lower part of the figure indicates where the derivatives are found to be significantly
positive (white), negative (black) or none (grey).

Notice that all precision parameters are defifiged in theini file (lines 15 and 23). The log-precision of

the [Predictor term]section is fixed to a high value (line 14) again to mimic the absence of the unstructured
component in the model, while the log-precision in {Benoother]section is fixed to a user defined value, in

this casdog v = 7. This determines the level of smoothing in the result. The continuous time random walk
model is defined in line 19. Note that even if the length of the smoother term is declared to be 512 (line 20)
the actual length of the output file is 1024 since the derivatives are also included. The derivatives constitutes
the second half of the output file.

Since we are interested in checking where the derivatives are significantly positive or negative, we compute
also the percentiles Prab(¢) < 0) for the smoother term (line 24). Figure 6 (panel (b)) displays the posterior
mean ofn(t) for logx = 7. In Figure 6(panel(c)) the posterior mean of the derivatiyés) is displayed.

The band in the lower part of Figure 6(c) indicates where the derivatives are found to be significantly positive,
negative or none. Figure 6(c) is produced using the following R code:

#Read the file containing approximate mean and sd
>smooth=read.table("results-0/smoother/summary.dat”)
>

#select the approximations for the derivatives
>deriv=smooth[513:1024,]

>

>xx=deriv[,2]

>

# Create the graph

>split.screen( rbind(c(0,1,0.3,1), ¢(0,1,0,0.3)))

>

>screen(1)

>par( mar=c(2,2,2,2), oma=c(3,3,2,3) )

>

>screen(2)

>par( mar=c(2,2,2,2), oma=c(3,3,2,3) )
>image(1:512,1,mm,axes=F,col=gray(seq(0,1,len=3)))

Theinla program runs in about 7 seconds on Machine 1 and about 2 seconds on Machine 2.
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3.5 Disease mapping

Our next example is taken from (Rue and Held, 2005, Sec. 4.4.2). The data are collected over a spatial domain
rather than over a time period. The data are georeferenced and we want to include the knowledge of the spatial
location of the data in the model.

Each observed data is linked to a spatial region € S = (0,...,S — 1), so thats; indicates the region the

ith data belongs to. A common way to introduce a spatially correlated effect is to assume that neighbouring
sites are more alike than two arbitrary sites, therefore for a valid prior definition, a neighbourhood has to be
defined for each site. In geographical applications a common assumption is that two sites are neighbours if
they share a common border.

Let f,(s;) indicate the spatial effect. The prior model fbr = (f(0), ..., f(s),..., f(S — 1)) implemented
in theinla program is a simple (but most often used) intrinsic GMRF model, see (Rue and Held, 2005, Ch.
3), defined as:
1 1
F ()8 # 8 0~ NG D ) o

s~vs!

) (12)

wheren, is the number of neighbours of sites ~ s’ indicates that the two sitesands’ are neighbours)
is the unknown precision parameter.

The neighbourhood structure has to be passed tmthe program through a file which describes the graph
of the spatial component of the model. We describe the required format for such a file using a small example.
Let the filegra.dat, relative to a small graph, be

5

AWNRO

PR WwN R

NN RO R
w N
IN

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,
line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the
GMRFLib library.

Example 5 The number of cases of oral cavity cancer is observed for a 5 year period (1986-1990) in the 544
districts of Germany. The goal of the analysis is to explore the spatial distribution of the data. The common
approach is to assume that the data are conditionally independent Poisson counts

yilni ~ Po(E;exp(n;)) i=0,...,543

where F; is a fixed quantity which accounts for number of people in districige distribution etc. The
standardised mortality ratiog; / E; are displayed in Figure 7, panel (a).

The model for the latent variablg takes the following form

n; = p+ fs(si) + u; (13)

wherey is th common meary;, is a spatially structured term and is the unstructured term which accounts
for non-observed variability. The prior model fgf, is the intrinsic GMRF in equation (12). We impose a
sum-to-zero restriction oyf; (3, f(s) = 0) to ensure identifiably qf.

Following Rue and Held (2005), the two precision hyperparameters of the niledel,,, log \s) are both
given LogGamma priors with = 1 andb = 0.01.
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Figure 7: Standardised mortality ratio for oral cavity cancer, panel (a) and estimated relative risks (posterior
mean) of the spatial componentp(f.).

The DISEASE-oral.ini file describing the model for thala program is:

[Oral—cavity cancer data]
type = problem

dir = results—for—oral—%d
[Predictor]

type = predictor

prior = loggamma
parameters=1 0.01

n = 544

[data]

type = data

likelihood = poisson
filename = oral. txt

[Spatial]

type = ffield

model = besag
covariatesspatial .covariate
parameters= 1 0.01
constraint = 1

graph = germany.gra

[Constant]
type = linear

The[ predictor ] section (lines 5-9) defines the model fgr Unlike the previous examples, here there actually
is an unstructured component, therefore in this cgsis not fixed.

The model for the spatial component &f -) is defined in lines 16-22. The section is definedtype= ffield .
The intrinsic GMRF model in equation (12) is nameskagin theinla program. Line 21 defines the sum-
to-zero constraint foif ;. The graph off is read from a file (line 22). The last section, lines 24-25 defines
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the model for the common mean Figure 7, panel (b), displays the posterior mean of the spatial component

exp(f)-

A different parametrisation would have been possible for the same model. Namely we could have dropped the
common meam and the sum-to-zero constraint. Modifying time file to account for this other parametri-
sation is extremely easy; it is, in fact, sufficient to remove lines 24-25 defining the common mean and line 21
defining the constraint.

Theinla program allows also the possibility to introduce a user defined model for some fungtioria
equation (2). This is done in gpe= ffield section specifying the fielchodel= generic. The user then has to
provide the precision functio@, corresponding to the stochastic vecfgiin a file with the following format
i Qy

wherei andj are the row and column index aif@;; is the corresponding element of the precision matrix.
Only the non-zero elements of the precision matrix need to be stored in the file. For example, we could have
stored the precision matrix corresponding to the spatial effect in (13) in a file, n@meatldat . We report
the few first lines of such file:

001

0 11 -1

112
19-1

The same model as in (13) can then be defined in ainiewfile as following:

[Oral—cavity cancer — User defined Qmatrix]
type = problem

dir = results—%ld

[Predictor]

type = predictor

prior = loggamma

parameters= 1 0.01

n = 544

[data]

type = data

likelihood = poisson
filename = oral. txt

[Spatial]

type = ffield

model = generic

Qmatrix = Qmat. dat

rankdef = 1

covariates= spatial.covariate
parameters= 1 0.01

constraint = 1

[Constant]
type = linear

Notice that the only difference with respect to ihe file previously used is in the sectigi$patial]. Here

we declarenodel= genericand specify the file containing th@ function in line 19. Thenla  program then
builds a graph based on the non-zero pattern of the specified precision matrix. The optional argoidefit

in line 20, specifies the rank deficiency of the precision matrix. For the intrinsic model in equation (12) the
rank deficiency is 1.
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3.6 Disease mapping with covariate

We present now an extension of the model in Example 5 which allows for adjusting the log-relative risk by
a semi-parametric function of a covariate which is believed to influence the risk. The model is a Bayesian
semiparametric model with an additional spatial effect. These kinds of models have been named “geoadditive
models” in Kammann and Wand (2003). For an introduction to the subject see, for example, Fahrmeir and
Tutz (2001). The example below is taken from Rue et al. (2007).

Example 6 Larynx cancer mortality counts are observed in the 544 district of Germany from 1986 to 1990.
As in Example 5 we assume the data to be conditionally independent Poisson random variables with mean
E; exp(n;), whereE; is fixed and accounts for demographic variation, apds the log-relative risk. Together

with the counts, for each district, the level of smoking consumptismegistered.

The model for); takes the following form

mi = p+ fs(si) + flei) +wi (14)

where, as in Example 5f;(-) is the spatial effect modelled according to (12), andis the unstructured
random effect. The remaining term in (14)¢;), is the unknown effect of of the exposure covariate which as-
sumes value; for observationi. The effect of covariateis modelled as a smooth functigii-) parametrised

as unknown valueg = (fo, ..., fm_1)" atm = 100 equidistant values af;. We have scaled the covariate
values so that they belong to the inter{@&|10]. The vectorf is modelled with a second-order random walk
(RW2) prior with unknown precisiok;. A sum-to-zero constraint is imposed gnand f separate out the
spatial effect and the effect of the covariate from the common mean

The model has three hyperparamet@rs= (log As,log A¢,log \,)). Following Rue et al. (2007) we assign a
vague LogGamma prior to each elemen8of

In Figure 9 the standardised mortality ratigs, E; are displayed (panel (a)) together with the observed values
of the covariate: (panel (b)).

The DISEASE-COVARIATE.ini file defining the model is the following:

[Disease mapping withcovariate]
type = problem
dir = results—%d

[Predictor term]

type = predictor

n = 544

prior = loggamma
initial =9

parameters= 1.0 0.00005

[Data]

type = data
likelihood = poisson
filename = larynx.dat

[Spatial]

type = ffield

model = besag
covariatesspatial—covariate . dat
prior = loggamma

parameters= 1.0 0.00005
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Figure 8: Standardised mortality ratio for larynx cancer, panel (a) and observed covariate values, panel(b)

graph = germany.gra
constraint = 1
initial =3

diagonal = 0.001

[Covariate]

type =ffield

model = rw2

covariates = covariate . dat
locations=covariate .value

prior = loggamma
parameters= 1 0.05
initial =9

diagonal = 0.00001
guantiles=0.025 0.975
constraint = 1

[Constant linear]
type = linear

[INLA param]
type = INLA
h = 0.001

The sectior| Spatial ] defines the model for the structured spatial comporfentWe recognise the intrinsic
GMRF model in line 19 and the graph file in line 23. The fididgonal at line 36 indicates a (small) number
to be added to the diagonal of the precision matrixffoto ensure that it is positive definite.

The model for the semi-parametric functignwhich is the new feature introduced by this example, is defined
in the section tagge{Covariate]. The file covariate . valuedeclared in line 32 contains all values that the
covariatec could assume, they are ordered from the lower to higher. In this case the file contains one sequence
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of numbers from 0 to 9.9 with step 0.1. The fitevariate . datcontains information on which values ofis
actually observed in each district. We report the first 5 lines of the file to better explain the format of such files

56
65
50
63
65

A WNREFLO

For example, line 3 tells us that for distrizthe observed value of the covariatés the50th element of the
series in filecovariate . valugthat is0.5.

In the last section, taggdtNLA param] we define the step length for the numerical computation of the gradient
and Hessian ofr(0|y) at the mode. This is necessary because the default values do not always ensure a
positive definite Hessian matrix.

Figure 9: Posterior mean for the structured spatial effect

The computation time is about 30 seconds on Machine 1 and 15 seconds on Machine 2.
Figure 9 displays the posterior mean of the spatial effecfor all districts. To reproduce Figure 9 the
following R code has been used:

> source("draw-map.r")

> spatial=read.table("results-0/spatial/summary.dat")

> germany.map(spatial[,2])

The R codadraw.map.r  can be downloaded together with all the other example files.

Figure 10, panel (a), displays the effect of the covariafgosterior mean) within 2.5 and 97.5% confidence
intervals. The covariate effect is not too far from a linear effect. We might, therefore, want to run a modified
version of the model in which the effect ofs modelled as a linear function, that is

ni = p 4 fs(si) + Bei + 4 (15)

To modify the DISEASE-COVARIATE.ini file in order to fit the new model it is enough to delete the
[Covariate] section, lines 28-38 and instead add the following section whésealefined.
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Figure 10: Effect of the covariate. Panel (a) nonparametric model and panel (b) linear model: posterior mean
within 2.5 and 97.5% confidence interval.

[Covariate linear]
type=linear
covariatescovariate—linear . dat

The file covariate-linear. dathas the format
) C;
The computation time for the linear-effect model reduces to 11 seconds for Machine 1 and to 6 seconds

on Machine 2. This is due to the fact that in the linear model both the latentdieldd the vectors of
hyperparametem® are of lower dimensionality.

The estimated posterior mean for the slope parametel0.0677 with posterior standard deviatidn0126.

Figure 10, panel (b), displays the linear effect of the covariate within 0.025 and 0.975 quantiles. To com-
pute the quantiles for the regression line in Figure 10, panel (b), we have run the model described in the
DISEASE-COVARIATE.ini file fixing the log precision of the RW2 model to a high value. In this way the
RW?2 is forced to be a straight line.
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3.7 Mapping cancer incidence

We present a little more complicated example on the same line of examples 5 and 6. Instead of observing only
one data point for each district, in the next example there are multiple observations sharing the same spatial
location. Therefore, a possible unstructured spatial effect needs to be coded in a different way than in the two
previous examples. The example is taken from Rue and Held (2005, Sec 4.3.5).

Example 7 The data are incident cases of cervical cancer in the former East German Republic (GDR) from
1979, stratified by district and age group. Each cases was classified as pre-malignant (coded as 0) or malig-
nant (coded as 1). For each of thg = 6 690 cases in the data set, the age, agend the district,s;, of the

patient are available. The age was categorised into 15 age groups.

The data are assumed to be conditionally independent Bernoulli random variables:

yi|m NB(pl') i:(),...,nd

with logit link function
__ exp(mi)
" 14 exp(n)

The model for the latent variables is:

ni = p+ f(agg) + fs(si) + fu(si)

wheref(age) is the age group effect, modelled as a RW2 with precision parametdrhe spatial effect of the
district s; is split into a spatially correlated part and an uncorrelated one. The spatially correlated element,
fs(+), is modelled as the intrinsic GMRF in equation (12) with given neighbouring structure. The uncorrelated
part, f.(-), is modelled as by a i.i.d Gaussian effect. Note that, in this model, the unstructured spatial effect
fu(+), does not coincide with the unstructured texfrin equation (2), which was the case in Examples 5 and

6.

There are three hyperparameters in the mailet (log Af, log A, log A,,). Following Rue and Held (2005),
we assume a LogGamifia0, 0.01) prior distribution for log A\s andlog A,, and a LogGamm@ .0, 0.00005)
prior for log A . Moreover we impose a sum-to-zero constraint on o#nd f

The file CANCER-INCIDENCE.inidefining the model is:

[Cancer incidence]
type = problem
dir results—%.d

[Predictor]

type = predictor
n = 6690
initial = 15

fixed = 1

[Likelihood model]
type = data
likelihood = binomial
filename = cancer. dat

[Age classes]

type = ffield

model = rw2

covariates = age—group—cov.dat
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n=15

constraint = 1
diagonal = 1.0e-4
parameters= 1 0.001
initial = 6.456745
guantiles=0.025 0.975

[Spatial]

type = ffield

model = besag

graph = ddr.gra

covariates = spatial—cov.dat
constraint = 1

diagonal = 1.0e-4
parameters= 1 0.0005
initial = 8.006793

[Spatial random effect]
type = ffield

model = iid

n =216

parameters= 1 0.01
covariates = spatial—cov.dat
initial = 4.512093

[constant]
type = linear

[Parameters for INLA]
type = INLA
h =0.01

Note that while in Examples 5 and 6 the spatial unstructured component in the model was coded in the
type=predictor section of thani file, here, for the same purpose, we have to includgpe= ffield section
wheremodekiid (lines 37-43).

The model runs in about 90 seconds on Machine 1 and about 30 seconds on Machine 2.

In Figure 11 the posterior mean of the non-parametric effect of the age group within 2.5 and 97.5% confidence
band is dispayed.

Figure 11: Nonparametric effect of age group. Posterior mean within 2.5 and 97.5% quantiles.
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3.8 Geoadditive model: Munich rental guide

In this section we present a slightly more complex example of geoadditive models where we have a higher
number of covariates in the data set. The example is taken from Rue and Held (2005, Sec. 4.2.1).

Example 8 - Munich rental guide

The response variablg is the rent (Euro per square meter) for a flat in Munich. There are three covariates to
be included in the model: the spatial location)( the floor space (sizpand the year of construction (ygar
Moreover for each data point we have a set of indicator variables such as whether or not the flat has central
heating, bathroom, a large balcony, etc. The data set consisf;ia= 2 035 observations. There are 380
district in Munich, the floor size varies from 17 to 185 square meters and the year of construction goes from
1918 to 2001.

The model for the data is:
Yilni ~ N (i, 1/Ay)
with
mi =+ fo(si) + fo(size) + fi(year) + z/ B (16)

wheref,(-) is the spatial effect modelled as the intrinsic GMRF in equation (£g)) is the non parametric

effect of the floor size anfl (-) is the non parametric effect of the year of construction. Bfgth) and f;(-)

are modelled as RW2 with unknown precision. The last term in (16) models the covariates assumed to have
a linear effect. As usual we choose a Gaussian prior with known precision for the elements of3vedter
impose a sum-to-zero constraint @g(-), fo(-) and fi(-).

The model has four hyperparametés= (log A, log \s,log \g,log A\1). We assign to each precision a
LogGammél.0,0.001) prior. In this example we approximate also the posterior marginals for the four hy-
perparameter®.

In the following we report part of th&RENT.ini  file which defines the model. We have omitted the part
defining most of the indicator variables since they are all defined in the same way.

[Rent in Munich]
type = problem

dir = results—9%d
hyperparameters= 1

[Predictor term]

type = predictor

n = 2035

parameters= 1.0 0.001
initial = 10

fixed = 1

[Data]

type = data
likelihood = gaussian
filename = rent.dat
parameters= 1 0.001
initial = -1

[floor —size]

type =ffield

model = rw2

covariates = size—covariate . dat
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locations = size—loc.dat
diagonal = 1.0e-6
initial =7

constraint = 1
parameters= 1 0.001
guantiles = 0.25 0.975

[spatial]

type = ffield

model = besag

graph = munich.gra

covariates = spatial—-covariate .dat
diagonal = 0.00001

constraint = 1

initial = 0.4

parameters= 1 0.001

compute=1

[year]

type =ffield

model = rw2

covariates = year—covariate . dat
locations = year—loc . dat
diagonal = 1.0e-6

initial =7
constraint
parameters 0.001
guantiles = 0.25 0.975

=1
=1

[constant]
type = linear
precision = 0.01

[linear —beste . dat]

type = linear

covariates = beta—beste.dat
precision = 0.01

62 .

63 .

64 .

65
66
67
68
69

[INLA param]

type = INLA

int_strategy = GMRFLIib_AI_LINT_.STRATEGYCCD;
h =0.01

The flaghyperparameterén line 4 section is turned on to indicate that also posterior marginals for the hyperpa-
rameters have to be computed. The results are displayed in Figure 12 and they agree well with tho use found
by Rue and Held (2005).

The new feature introduced in this example is the use of a different integration scheme to compute

Faily) =Y 7 (@ily, 00)7(Okly) Ay (17)
k

When the dimension of the hyperparameters space grows, in fact, the grid integration scheme, which was used
in all previous examples and which is the default choice initkee program, soon becomes too computa-
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Figure 12: Munich rent example: approximate posterior marginals for the hyperparameter of the model.

tionally intensive. The central composit design (CCD) integration scheme, defined in line 68, is an alternative
integration scheme which computes the integral in (17) using much less points, still providing useful results.
Both integration schemes are described in Rue et al. (2007).

Figure 16, panels (a) and (b), displays the posterior mean, within 0.25 and 0.975 quantiles, of the effect of the
floor size and the year of construction respectively.

To check the quality of the CCD integration scheme we run the model once more using the default grid
scheme (to do so it is enough to delete line 67). The results are plotted in Figure 13 as dotted lines, they are
indistinguishable from the CCD results despite the fact that the grid integration scheme used 115 evaluation
points to compute the integral in (17) and the CCD one only 15.

The computing time for this model on Machine 1 is of 80 seconds if we use the CCD scheme and 250 seconds
using the grid scheme. On Machine 2 the computational time reduces to 30 seconds in the first case and 70 in
the second case.
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Figure 13: Munich rent example: semiparametric effect of the floor size (a) and of the year of construction
(b). The posterior mean within 0.025 and 0.975 quantiles is displayed. The solid line is the result of the CCD
integration scheme and the dotted line is the result of the grid integration scheme.
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3.9 Geoadditive model: Zambia children undernutrition

The second example of geoadditive model with several covariates is from Kandala et al. (2001) and is one of
the worked out examples in the BayesX web page.

Example 9 - Undernutrition of children in Zambia . Undernutrition in children is measured determining
the anthropometric status of the child relative to a reference standard. In our example undernutrition is
measured by stunting, or inefficiency height for age, indicating chronic undernutrition. Stunting for a child
is determined using & score defined as

AL — MAI

g

Z;

whereA[ refers to the child’s anthropometric indicatdv/ A1 refers to the median of the reference population
ando refers to the deviation of the standard population.

The main interest is on modelling the dependence of undernutrition on a set of covariates including the age of
the child (age), the body mass index of the child’s mother (Jnthe district the child lives ins;) and some

further categorical covariates. The data set consists jn= 4846 observations. For more details about the

data set see Kandala et al. (2001) and Kneib et al. (2004).

We assume the scorg&s to be conditionally independent Gaussian random variables
Zilmi ~ N (ni, 1/Ay)

and
mi = p+ fo(bmi) + f1(agg) + fo(si) + fu(si) + 2] B

where fy(-) and f1(-) are the semi parametric effect of the mother’'s body mass index and the age of the child
respectively. fs(-) is the structured spatial effect of the distrigt,(-) is an unstructured spatial effect and

z; are a set of categorical covariates. We model the spatial structured ¢ffeg) as the intrinsic GMRF in
equation (12) and(-) and f1(-) as RW2. The unstructured spatial effégts;) is modelled by i.i.d. Gaussian
random variables. We impose a sum-to-zero constraintfon, fo(-) and fi(-).

In this model there are five hyperparamet@rs- (log A, log A, log Ay, log Ao, log A1) and we assign a vague
LogGamma prior distribution to each of them.

1 [Zambia model]
2 type = problem
s dir = results—%d

4

s [Predictor term]

6 type = predictor

7n = 4846

s prior = loggamma

9 parameters= 1.0 0.005
o initial = 10

1 fixed = 1

12

3 [Data]

4 type = data

s likelihood = gaussian
¢ filename = zambia . dat
parameters= 1 0.005
g initial = 0.2

19

[

T L
~
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o [spatial]

2 type = ffield

22 model = besag

23 graph = zambia.gra

24 covariates = spatial_covariate .dat
2s diagonal = 0.00001

26 constraint = 1

27 initial = 3.6

28 parameters= 1 0.005

29

30 [spatial predictor]

a type = ffield

32 model = iid

33 covariates = spatial_covariate .dat
34 n =57

s diagonal = 0.00001

6 initial = 5.4

37 parameters= 1 0.005

38

30 [agc]

20 type = ffield

21 model = rw2

42 covariates = agc.dat

43 N=60

44 diagonal = 0.0001

45 constraint = 1

4 initial = 6.6

47 parameters= 1 0.005

48 quantiles = 0.025 0.975
49

so [bmi]

s type = ffield

s2 model = rw2

s3 covariates= bmi_covariate . dat
s« locations = bmi.location
ss diagonal = 0.00001

ss constraint = 1

s7 initial = 6.2

ss parameters= 1 0.005

s9 quantiles = 0.025 0.975
60

61 [beta]

62 type=linear

63

6a [rcw]

es type=linear

66 covariates= rcw.dat

67

es [edul]

6o type=linear

70 covariates = edul. dat
71

72 [edu2]

73 type=linear

74 covariates = edu2.dat
75

76 [sex]
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77
78
79
80
81
82
83
84
85
86

type=linear
covariates = sex.dat

[tpr]
type=linear
covariates = tpr.dat

[INLA param]
type = INLA
int_strategy = CCD;

Also in this example we use the CCD integration scheme to compute the integral in (17).

(@) (b)

(c) (d)

Figure 14: Results for the Zambia example. Panel (a) and (b) displays the posterior mean of preainctor
of structured spatial effect respectively. Panel (¢) and (d) display the posterior mean, within 0.025 and 0.975
quantiles, of the age effect (c) and of the mother’s body mass index (d)

In Figure 14, panels (a) and (b), the posterior mean of the predictor and of the structured spatial effect is
displayed. The effect of the age of the children is in Figure 14, panel (c). It shows a clear non linear pattern.
The effect of the mother’s body mass index (Figure 14, panel (d)) instead is more regular and could probably
be substitute in the model formulation by a linear effect.

The computation time is about 4 minutes on Machine 1 and 1 minute on Machine 2.
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3.10 Log-Gaussian Cox processes

The particular feature of our next example is that data are registered on a regular grid of dimepsion..;,
wheren,.., is the number of row and..,; the number of columns. Unlike all the previous examples then,
each data is identified by two index@s; ) indicating respectively the row and column the data point belongs
to. This example is taken from Rue et al. (2007).

Example 10 Log-Gaussian Cox processes (LGCP) are a class of models used for modelling spatial point
processes, see for example Mgller and Waagepetersen (2003). A LGCP is a Poisson point praeéEsc

R4, with random intensity function(¢) = exp(Z(§)), whereZ (&) is a Gaussian field ang € W. Itis
common practice to discretise the observation windBWe1to N' = n,.,, X 1, disjoint cells{s;; }with area

|sij| wherei = 0,..., 1.0y —1andj =0,...,n.; — 1.

Lety;; be the observed number of occurrences of the realised point pattern wjthibetn;; be the random
variable Z(&;;). The likelihood of the model is

YijImij ~ Po(|si;] exp(ni;))
while, as usual the latent variable vectgiis part of a larger GMRF.

In this example, the data consist in the locations of a particular tropical tree species ( Beilschmiedia pendula
Lauraceae) registered in a 50-hectares plot in the tropical moist forest of Barro Colorado Island in central
Panama. For more information about this study see Waagepetersen (2006). The 3605 tree locations are plotted
in Figure 6, panel (a). We divide our region of interest int@(d x 101 regular grid, where each square pixel
represent an area of 25 squares meters. Together with theidatae observe, the mean elevation and the
mean norm of the gradient for each area on the grid. These covariates are believed to influence the behaviour
of the tree under examination. A scaled version of these covariates is displayed in Figure 15, panels (b) and
(c). The model for the latent variablg; is

(@) (b) ()

Figure 15: Data and covariate for the LGCP example: panel (a) displays locations for the 3065 trees, panel
(b) displays the altitude and panel (c) the norm of the gradient.

nij = p+ fralty; + fagrad;; + fi(sij) + i

where alf; and grad; are the values for the two covariates at locati@nj), fs is the spatial structured effect
of the location and.;; is the unstructured random effect.

For the spatial structured ternf, we use a second order polynomial intrinsic GMRF with unknown precision
Ar. See Rue and Held (2005, Sec 3.4.2) for a thorough definition of intrinsic GMRF models on a lattice. We
use vague Gaussian priors fpr 5, and 3. The unstructured terms;; are independent/(0,1/),,) random
variables. Notice that the latent field = (n, f., i, 81, B2) in this example has dimensidf 605.

The hyperparameters ae= (log A\r,log \,,) are are assigned vague LogGamma priors.
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[Tropical rainforest data]
type = problem
dir = results—9%d

[Poisson data]

type = data

likelihood = poisson
filename = data—full.dat

[Predictor term]
type = predictor
nrow = 101
ncol = 201
initial = 0.4

[Spatial smoother]

type = ffield
covariatesspatial—full . dat
nrow=101

ncol=201

model = rw2d

constraint=1

initial =0.7

[Constant]
type = linear

[Altitude Covariate]
type = linear
covariates = altitude—full .dat

[Gradient Covariate]
type = linear
covariates = gradient—full . dat

[INLA parameterd
type = INLA
h = 0.001

The data filedata—full . dat has the following format
i g sl v

wherei = 0,...,n.0, — 1 isthe row index ang = 0,...,n.y; — 1 is the column index. Notice then, that

for data observed on a grid the data file has four columns instead of three (see Appendix A.1.2). The data are
stored by row, so that the firat.,,, lines of the data file refer to row 1, the secong,, lines to row 2 etc. The

same also for the covariate files.

Notice also that it is required for the user to specify the number of rows and columns in the data set (lines
12-13 and 19-20). For grid observed data, the fialdsr andncol substitute the fielsh which we have used
in all previous examples. The prior model for the spatial effect is defined in line 21.

The results are displayed in Figure 16. Panel (a) shows the posterior mean of the structured spatial effect.
Following is the R code used to produce Figure 16(a):

> library(fields)
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Figure 16: LGCP example: (a) posterior mean of the spatial eftéey, (b)-(d) posterior marginals fqr, 3,
andg,

xcoord=5 *seq(0,200)

ycoord=5 *seq(0,100)

space=read.table("results-linearO/spatial-smoother/summary.dat")

image.plot(xcoord,ycoord,matrix(space[,3],ncol=101,byrow=F),
col=gray(seq(0,1,len=1000)))

vV V.V V

Panels (b)-(d) show the posterior marginal distributions for the parametgisand ;.

The graph of the full model for this example contaitt$05 nodes, this makes the computation procedures
heavier that for all other examples considered here. The computational time required to solve the model grows
then to about 1 hour and 30 minutes on Machine 2. We have not run the model on Machine 1.
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3.11 Alongitudinal study example - Forest health data

Our last example is a longitudinal study on forest health. The aim of the study if to identify potential factors
influencing the health status of the trees. In addition to covariates characterising a tree and its stand, spatial
and temporal information are also available. The example is taken from Kneib and Fahrmeir (2008), an earlier
version of the data set is analysed in Kneib and Fahrmeir (2006).

Example 11 The data have been collected annually in a visual forest health inventories between 1983 and
2004 in a northern Bavarian district. There are 83 observations plots within an area of around 15 squared

kilometres.

Every year, in some of the 83 observations plots the health status of thg;tree- 0,...,83,t =0,...,21,

is registered. Not all plots are observed every year, so the data set has imfotall 796 observations. In the
original data set there are 9 categories for tree health, anyway, here we consider only two: healthy or non-
healthy. Together with the tree health status, several covariates are registered year after year at the different
observation plot. All covariates are summarised in Table 1. Moreover the location of each registratien plot

Covariate | Description

Age age of the stand in years (continuous between 7 and 234 years)
elevation | elevation above the sea level (continuous, between 250 and 480 meters)
inclination | inclination of the terrain in percent (continuous between 0 and 1)

soil depth of soil level (continuous, between 9 and 51 cm)

ph ph-value in 0-2cm depth (continuous, between 3.28 and 5.05)
canopy density of forest canopy in percent (continuous, between 0 and 1)
stand type of stand (categorical, 3 categories)

fertilisation | fertilisation (categorical: yes or no)

humus thickness of humus (categorical, 5 categories)

moisture level of moisture (categorical, 3 categories)
saturation | base saturation (ordinal)

Table 1: Forest health data: description of covariates.

is known. The spatial distribution of the locations is displayed in Figure 17.
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Figure 17: Forest health example: location of the 83 observation plots.
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The likelihood of the data is binomial:
Yit|mie ~ Bin(pit)
with logit link
. eXP(mt)
bit= 17—~
1+ exp(nit)
Following Kneib and Fahrmeir (2008) we model the latent variables as:

i=0,...,82,t=0,...,21.

nie = p + fo(age,) + fi(inclination;) + fo(canopy,) + fime(t) + fs(si) + fu(si) + 258  (18)

wherefy(+), fi(+), f2(+) are the semiparametric effect of age of the tree, inclination and canopy of the location
respectively, whilefime(+) is the non parametric effect of time. Each semiparametric function is modelled as
a RW2 with unknown precision parameter. The veefprincludes all covariates in Table 2 not mentioned
before which are assumed to have a linear effect. FinAlly) and f,,(-) indicate the structured spatial effect
and the unstructured one.

We models the spatial structured effect as the intrinsic GMRF in equation (12). We build the graph for such
a model by considering two observation plots as neighbours if their distance is less than 1200 meters. The
spatial unstructured effect is modelled as a series of uncorrelated Gaussian random variable.

We can cast the model in (18) in the general formulation in equation (2) by defining a new-irdéx ¢),
r=0,...,nq — 1, and rewriting the model as

nr = n+ fo(age) + fi(inclination,) + fo(canopy) + fime(r) + fs(s) + fu(sy) + 28 (19)

The above model has six precision hyperparametets(log Ao, log A1, log A2, log Atime, log As, log A,,), €ach
is given a vague LogGamma prior.

We report part of theni  file which defines the model. We have omitted the definition of almost all covariates
with linear effect.

[Forest damage]
type=problem
dir=results—%d

[predictor term]
type=predictor
n=1796

initial = 10
fixed=1

[Data]

type=data
likelihood=binomial
filename=damage . dat

[spatial]

type=ffield

modekbesag
graph=forest.gra
covariatesspatial .covariate
diagonal = 0.00001
constraint = 1

initial = —3.346165
parameters= 1 0.001
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[spatial—unstruct]

type=ffield
modekiid
n=83

covariatesspatial .covariate
diagonal = 0.00001
constraint = 1

initial = 7.324791
parameters=1 1

[age]

type = ffield

model = rw2

covariates = age.covariate
locations=age.location
diagonal = 0.0001
constraint = 1

initial = 5.674807
parameters= 1 0.001
guantiles = 0.025 0.975

[canopy]

type = ffield

model = rw2

covariates = canopy.covariate
locations=canopy.location
diagonal = 0.0001

constraint = 1

initial = 13.763045
parameters= 1 0.001
guantiles = 0.025 0.975

[inclination]
type = ffield
model = rw2

covariates= inclination.covariate

n=47

diagonal = 0.0001
constraint = 1

initial = 6.422709
parameters= 1 0.001
guantiles = 0.025 0.975

[time]

type = ffield

model = rw2

covariates = year.covariate
locationssyear.location
diagonal = 0.0001
constraint = 1

initial = 1.211905
parameters= 1 0.001
guantiles = 0.025 0.975

[common mean]
type=linear

43



o]
&)

85

[soil]
type = linear
covariates= soil.cov

[INLA parameterq
type = INLA
int_strategy = CCD;
h = 1.0e-2;

Notice that when using thiala program we treat all covariates, including space and time in the same way.
All covariates files have the same structure.

Again we use the CCD strategy in order to integrate out the uncertainty about the hyperpar@méieen

the high dimension of the hyperparameters space, the CCD strategy gives a much lower computation time if
compared to the grid strategy. We have compared the results coming from the two integration strategies and
the differences are irrelevant.

In Figure 18 the results about the semiparametric effects are displayed. The posterior mean is plotted within
0.025 and 0.975 posterior quantiles. The results agree very well with those found by Kneib and Fahrmeir
(2008).

(a) Age of the tree (b) Canopy

o 10 20 30 40 ]9‘85 19‘9D 15;95 ZO‘DD
(c) Inclination (d) Time

Figure 18: Results for the forest health example, semiparametric effect of covariates, posterior mean within
0.025 and 0.975 quantiles: age of the tree, panel (a), canopy, panel (b), inclination panel (c) and time panel

(d).
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The model runs in around 9 minutes on Machine 1 and around 4 minutes on Machine 2. Much of the time is
used by the optimiser to find the maximumzdi®|y) and to compute the Hessian at the modal configuration.
When the hyperparameter space is high dimensional it is possible that the optimiser fails to succeed at a first
attempt. The problem is usually solved by running i@ program again starting from different initial
values for the hyperparameters. Itis, usually, a good idea to start from the best configuration found during the
previous run.

If one is interested in spatial prediction of tree health outside the observation plots, the spatial model in (12)
is not very useful. We could instead use a second order random walk defined on a regular grid (Rue and Held,
2005, Sec 3.4.2) built as following. We divide the region of interest i3, x n.; cells, withn,..,, = 50 and

neor = 100. We then build a new covariate filespatial —covariate-rw2.dat where, to each data poigt are
assigned two indexes ,, andn/ , indicating its the location of the data on thg,,, x n.y grid.

The code for theni  file substituting sectiofispatial | (lines 16-24) and spatial —unstruct] (lines 26-34) is
the following:

[spatial]

type=ffield

modekrw2d
covariatesspatial—-covariate-rw2. dat
nrow=50

ncol=100

constraint=1

parameters= 1 0.001

initial= —1.570568

The new model has one hyperparameter less than the previous one since no spatial unstructured effect is
present, but the number of nodes in the latent field increased, therefore running the new model will take
longer time.

The results for the spatial effect in the new model is displayed in Figure 19. The non parametric effects of the
other covariates do not change significantly.

Figure 19: Posterior mean estimate for the spatial effect modelled as a Rw2d

Kneib and Fahrmeir (2008) propose to include in the model for the latent variable an interaction between the
age of the tree and the calendar time, so that the model becomes:

ni = -+ fi(inclination;) + fo(canopy,)
f3(t,ag6;) + fs(si) + fu(si) + zLB (20)

where the spatial effegt(-) is modelled as in (12) anfl(-) is the interaction effect between time and age of
the tree modelled as a Rw2d.
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We can include the terryi () in equation (20) in a similar way as we did earlier in this same example for the
RW2d spatial effect. We just create a new covariate yi@y . age-covariate with the format

r t age

where both time and age are recorded, and delete frormtheon page 42 sectiofage] and[time] while
adding the the following lines:

[year—age interaction]
type=ffield

modekrw2d
covariatesyear.age-covariate
nrow=22

ncol=223

constraint=1

diagonal = 0.01
parameters=1 0.01

initial= 2.025712

The new model has 5 hyperparameters and the total number of nodes in the latent field is 6939. We run the
model on Machine 2 and the computation time was around 30 minutes using a CCD integration strategy.

The posterior mean and standard deviation of the interaction effect are displayed in Figure 20, panel (a) and
(b) respectively.

52 s

,’2“““““““““‘“‘“‘“
o2 “;“\\:‘\‘\‘\‘\“‘“v%
o

(a) Posterior mean (b) Posterior standard deviation

Figure 20: Interaction effect between age of the tree and calendar time in Model (20). Panel (a) posterior
mean, panel (b) posterior standard deviation.
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4 Model assessment and model choice
For the material in this section refer to the revised version of Rue et al. (2007)

4.1 Marginal Likelihood

The marginal likelihood for a certain modéM, defined as
7yl M) = [ 7(y.9.6M) dz do

can be used as a basis for model comparison. The Bayes factor for two competing models is in fact defined as

_ m(Mily)m (M)

9 = 2 Myly)n(M,)
If we choose the models to be apriori equiprobatia/;) = --- = m(M), then the Bayes factor reduces
to
o m(yIMy)
B(i,j) = ==
9= 2yia,)

Hence, we can compare models by comparing their marginal likelinéggMy, ).

NB: For (21) to be well defined it is necessary for the prior of the latent fi¢ld|@) to be proper. For
intrinsic models, in fact, there is an arbitrary missing constant which cannot be determined, see for example
Gelfand (1996).

Using the INLA approach, the marginal likelihood for a certain mati€l (y|M) can be computed as the
normalising constant af(8|y) using two different approaches:

1. Via numerical integration af(0|y)

2. Assuming a Gaussian approximationt®|y)

see Rue et al. (2007, Revised version) for details. Usingnlle program it is enough to set thdik flag in
the sectiontype=problemto 1 for the marginal likelihood to be computed. The first approximation (which is
more accurate) is computed only if in thge = INLA section, int_strategy = CCD is selected.

Example 12 We want to check which one, between a Gaussian and a Studeot-is more appropriate to
describe the dollar-pound exchange rate data set in Example 3.

It is enough to add to the first section of the corresponding the line
mlik = 1

The output is stored in the filesults/marginal-likelihood/marginal-likelihood.datich contains both appro-
ximations for the log marginal likelihood of the modelg 7(y|M).

For the Gaussian error model in (8) we have

log marginalklikelihood (integration): —933.258
log marginaklikelihood (Gaussian): —933.324

while for the Student-model in (10) the result is
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log marginalklikelihood (integration): —934.997
log marginaklikelihood (Gaussian): —935.233

In this case the Gaussian error model is preferred.

Note that in the volatility model example we have considered, the prior for the latent malah autoregres-

sive model of order one. This is a proper model, therefore the marginal likelihood gives a reasonable tool for
model comparison. If we would have chosen, for example, a RW1 model (or any other intrinsic distribution)
as prior for the latent volatility the marginal likelihood computed would have been meaningless.

4.2 Deviance Information Criterion (DIC)

Deviance information criterion (DIC) is a criterion for comparing complex hierarchical models introduced in
Spiegelhalter et al. (2002) and defined as:

DIC =D +pp (22)
whereD is the posterior mean of the deviance of the model gndsithe effective number of parameters in
the model, see Spiegelhalter et al. (2002). Details on how to compute the quantities in equation (22) using the
INLA approach are described in Rue et al. (2007, Revised version).

To compute the DIC using thala program it is enough to set the flait in the sectiorntype=problento 1.

For example, if we want to compute the DIC for the two disease mapping models considered in Section 3.6,
it is enough to add to the first section of the corresponding file the line:

dic = 1

The result is printed in the output of tirda  program, moreover it is stored in the file:

results/dic/dic.dat

which contains four quantities: the mean of the deviance, the deviance of the mean, the effective number of
parameters and the DIC.

For model (14) in Section 3.6, which assumes a non-linear effect of the covariatdicttiat file is the
following:

mean of the deviance: 2652.86

deviance of themean: 2563.22
effective number of paameters: 89.6438
dic: 2742.51

We can compute the DIC also for model (15), which assumes a linear effect of the covariate, obtaining:

mean of the deviance: 2655.87

deviance of themean: 2552.33
effective number of paameters: 103.542
dic: 2759.42

The difference in DIC values i56.91 in favour of model (14) which suggests that the effect of the exposure
covariate is better represented by a non linear function.

4.3 Predictive measures

Predictive measures can be used both to validate and to compare models (Gelfand, 1996; Gelman et al., 2004)
and as a device to detect possible outliers or surprising observations (Pettit and Young, 1990nl&siiitg
is possible to compute Conditional Predictive Ordinates (CPOs) and Probability Integral Transforms (PIT).
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Conditional predictive ordinates (CPOSs) are defined as:

CPQ = m(yily_;)

where the subfix-i indicates that elemeritof the vector is removed. CPOs are discussed among others by
Pettit (1990) and Gelfand (1996).

Unusually small or large values of CR(dicate a surprising observation. Anyway, before being compared,
the CPOs have to be calibrated. One of the possible calibration procedures is to compute the probability
integral transform

PIT; = Prob(y®" < y;ly_;)

see also Gneiting and Raftery (2007). An unusual large or small value indicates possible outliers. Furthermore,
an histogram of the PITs far from uniform might indicate a questionable model (Czado et al., 2007).

Intheinla program to compute CPOs and PITs it is sufficient to add inythbe=problemsection of theni
file the line

cpo =1

The results will be stored in thresults/cpodirectory in the two filexpo.datandpit.dat

As an example we consider the volatility model with Gaussian observation in Example 3. The corresponding
PIT values are plotted in Figure 21(a). There are three observation whose PIT is dipsautoely 331 656
and 862. Figure 21(b) displays the histogram of the PIT values which is reasonably close to uniform.
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Figure 21: PIT values for the volatility model with Gaussian observation in Example 3 (panel (a)) and corre-
sponding histogram (panel (b)).

NB: In some cases the value of RIfight result exactly equal tbor 0, this simply means that its real value
is very close td or 0.
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A Reference manual for theinla program

A.1 Structure of theini file

Theini file describes the model and sets some additional parameters to be passéaidtAkib library. It is divided
in several sections. Each section starts with a tag written between squared bijgagéjsihich is simply a user defined
name for the section itself.

Each section contains the fietgipe which determines the role of the section in the problem definition and also the
structure of the section itself. The six different types of section are described in details below.

A.1.1 Thetype=problensection

This sections specifies some global parameters which are valid for the whole problem. It consists of the following fields:

dir: A string indicating the name of the directory where the results are stored. The directory is created vitlen the
program is run. The directory name can inclédd

hyperparametersA Boolean variable indicating whether or not to compute the marginals for the hyperparaéheters
of the model.

Default =0

summary A Boolean variable indicating whether or not to output a short summary of the posterior densitiytfer
nodes in the GMRIz. Currently the summary contains the posterior mean and standard deviation.

Default =1

density. A Boolean variable indicating whether or not to output the marginal densitiedl fioodes in the latent GMRF
x.
Default = 1

quantiles A list of maximum 10 quantilesp(0), p(1),..., to compute for each posterior marginal. The function

returns, for each posterior marginal, the valu€s), z(1), ... such that
Prob(X < z(p)) =p

Default: Empty

percentiles A list of maximum 10 percentiles;(0), z(1), . .., to compute for each posterior marginal. The function
returns, for each posterior marginal, the probabilities Pkoke x(p)).

Default: Empty
smtp A string indicating which type of solver for sparse matrices should be used. The available choices are:

¢ GMRFLiIhSMTRPBAND Lapack’s band-solver. This is optimal for band matrices
e GMRFLib.SMTRPTAUCSThe solver in the TAUCS-library. This is generic for all kind of sparse matrices.
Default: GMRFLIbLSMTRTAUCS

dic: A Boolean variable indicating whether or not to compute the deviance information criterion (DIC) for the model.
Default: O

cpa A Boolean variable indicating whether or not to compute the conditional predictive ordinates for the model
Default: 0

mlik A Boolean variable indicating whether or not to compute the marginal likelihood for the model

NB: this quantity is meaningful ONLY if in all the sections type= ffield presentin theini file model=arlis
chosen.

Default: 0
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A.1.2 Thetype=datasection

This section specifies the model for the likelihood of the ddta|7;, 01) in equation (1). It consists of the following
fields:

likelihood: A string indicating the name of the required likelihood model. The available choices are listed in Table 2.

prior : Prior distribution for hyperparamet@y in one-parameter likelihood models:
likelihood =gaussiaror stochvol-t.
If likelihood =gaussiarthend; = log \, and the corresponding prior is a LogGan{ma)?.
If likelihood =stochvol-t thenf; = v/ (see Table 2) and the corresponding prior israean Gaussian distribu-
tion A/(0, 1/preg).

initial : Initial value for hyperparameté; in one-parameter likelihood models:
likelihood =gaussiaror stochvol-t.

Initial value forlog A, (if likelihood =gaussiajor for v/ (if likelihood =stochvol-t).
parameters Parameters for(0,) in one-parameter likelihood models:
likelihood =gaussiaror stochvol-t.

If likelihood =gaussianparameters andb for the LogGamma prior of the log-precisidwg A, .
If likelihood =stochvalt: parameter prec for the Gaussian prior of the

prior0: Prior distribution for the first hyperparametgs in vectorf; = (611, 612) in two-parameter likelihood models:
likelihood =T or stochvalnig.

If likelihood =Tthend;; = log A, and the corresponding prior is a LogGan{ma).
If likelihood =stochvalnig thenf;; = 3 (see Table 2) and the corresponding prior (sraean Gaussian distri-
bution\/ (0, 1/prec).

initial0 : Initial value for hyperparametek ; in two-parameter likelihood models:
likelihood =T or stochvolnig.

Initial value forlog A, (if likelihood =T) or for 3 (if likelihood =stochvalnig).
parametersOParameters for (6;1) in two-parameter likelihood models:
likelihood =T or stochvalnig.

If likelihood =T: parameters andb for the LogGamma prior of the log-precisidwg A, .
If likelihood =stochvalnig: parameter prec for the Gaussian prior of the

priorl: Prior distribution for the second hyperparameter in vectorf; = (611, 612) in two-parameter likelihood
models:
likelihood =T or stochvolnig.

If likelihood =Tthenf;, = v’ and the corresponding prior if)anean Gaussian distributio% (0, 1/preg.
If likelihood =stochvalnig then 6,2 = «’ and the corresponding prior is (amean Gaussian distribution
N(0,1/preg.

initiall : Initial value for hyperparameté , in two-parameter likelihood models:
likelihood =T or stochvalnig.

Initial value forv/ (if likelihood =T) or for ¢’ (if likelihood =stochvalnig).
parameters1Parameters for(6;2) in two-parameter likelihood models:
likelihood =T or stochvolnig.

If likelihood =T: parameter prec for the Gaussian priowaf
If likelihood =stochvalnig: parameter prec for the Gaussian prior/of

1See Appendix B for a definition.
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fixed: A Boolean variable indicating whether the hyperparameters of the likelihood model are fixed or random.

Default: 0

filename The name of the file which contains the data for the model. The format of the file depends on the likelihood

model chosen and is indicated in Table 2

Model Distribution Link Parameters | Input File Input File
name function 04 format format
(on agrid)
. Ay T .
gaussian yi ~ N (pi, 72-) i = ;i 61 =log Ay iow Y Jowij i
pOiSSOﬂ Yi ~ PC(ElAl) )\1 = exp(m) - (3 El Y; ] Eij Yij
binomial yi ~ Bin(ni,pi) | pi = % - N Yi Joni o Yi
T Yi = x; + ﬁT T =1 01 = (log Ay, V') | i w; y J Wi Yij
T ~t,® V' =log(v — 2)
stochvol yi ~ N(0,0?) o; = exp(n;/2) - iy -
stochvolt yi = o;T o; = exp(n;/2) 0, =1 T Y -
T ~t, ™ v =log(v — 2)
stochvolnig yi=oi xT o =exp(ni/2) | 01=(B,¢') iy -
T ~ NIG(8, )" Y =log(y) — 1)

) ¢, is a scaled Studentdistribution, see Appendix B for definition

(*) See Appendix B for definition of a NIG distribution.

Table 2: Likelihood models supported in tida  program.

Hyperparameter \ Prior distribution \ Default param

Log-Precisiorlog )\, | LogGamméa, b)™) | a = 1,b = 0.001

vy 8 N(0,1/preg prec= 0.001

*)) See Appendix B for definition of a LOgGamma distribution.

Table 3: Prior distributions for the hyperparameters in the likelihood models

A.1.3 Thetype=predictorsection

This section defines the model for the unstructured teyrim equation (2). Theénla program requires a section of
type=predictorto always be present. It consists of the following fields:

prior: Name of the prior for the log-precision parameleg A,,. At the moment only the LogGamr(wa b) prior is
implemented.
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Default: loggamma

parameters Parameters andb for the LogGamma prior of the log-precisio).
Default: ¢ = 1.0 andb = 0.001

fixed: A Boolean variable indicating whether the precision parametek,, is fixed or random.
Default: 0.

initial : Starting value fotog A,,

n: Length of the latent variable vectgr Eithern, or nrowandncol are required.

nrow. Number of rows of the latent variable vectr Eithern, or nrow andncol are required.
ncol: Number of columns of the latent variable vectprEithern, or nrow andncol are required.

compute A Boolean variable indicating whether or not the marginals for vegtbave to be computed.
Default: 0 section

summaryA Boolean variable indicating whether or not to output a short summary of the posterior densijty for
Default: compute

density. A Boolean variable indicating whether or not to output the marginal densitieg for
Default: compute

quantiles: A list of maximum 10 quantilex(0),p(1), ..., to compute for each node i
Default: Empty

percentilesA list of maximum 10 percentile;(0), (1), ..., to compute for each node i
Default: Empty

A.1.4 Thetype=ffield type section

A section oftype = ffield specifies the model for one of the functigrin equation (2). Hence, iniai file there must
beny sections otype= ffield. Eachtype= ffield section consists of the following fields:

model A a string indicating the name of the chosen model. All available choices are listed in Table 4.

prior: Name of the prior for the log-precision paramelieg )\ ;. At the moment only the LogGamr(xa b) prior is
implemented (not in use ihodel=ar])

Default: loggamma

parameters Parametera andb for the LogGamma prior of the log-precisidsg Ay (not in use ifmodel=ar)
Default: ¢« = 1.0 andb = 0.001

initial : Starting value fotog A (not in use ifmodel=arl)

prior0: Name of the prior for the log-precision paramelgrif model=arl At the moment only the LogGamr{xa b)
prior is implemented

Default: loggamma

priorl: Name of the prior for the precision parameteif model=arl At the moment only the Gaussi@npreg,)
prior is implemented

Default: gaussian

parameters@Parameters andb for the LogGamma prior of the precisidog A ; (only for model=ar)
Default: ¢« = 1.0 andb = 0.001

parameters1Parameter precfor parameter (only for model=arl)
Default: preg, = 0.001

initial0 : Starting value fotog Ay (only for model=ar1)

initiall : Starting value for (only for model=arl)
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Model Model

Type Name Parameters Reference

Independent
random noise id log-precisionlog A
Random Walk

of order 1 rwl log-precisionlog As | (Rue and Held, 2005, Ch. 3.3.1)
Random Walk

of order 2 rw2 log-precisionlog Ay | (Rue and Held, 2005, Ch. 3.4.1)

First order

Intrinsic GMRF besag | log-precisionlog Ay | (Rue and Held, 2005, Ch. 3.3.2)
on a irregular lattice

Continuous
random walk crw2 | log-precisionlog Ay | (Rue and Held, 2005, Ch. 3.5)

Autoregressive
of order 1 arl log-precisionlog Ay | (Rue and Held, 2005, Ch. 1.1)
Ty = Qxi1 + € K= Iogit%

User defined
precision matrix | generic | log-precisionlog A ¢ (see Example 5)

Table 4: Models for theype= ffield section implemented in thala program.

Hyperparameter | Prior distribution | Default param
Log-Precisionog Ay | LogGammda, b)

 (only for AR1) N(0,1/preg,) | preg, = 0.001

Table 5: Prior distributions for the hyperparameters

rankdef A number indicating the rank deficiency of the user defi@enhatrix (Only used ifmodel=generi}.
Default: 0.

fixed: A Boolean variable indicating whether the precision paramketés fixed or random.
Default: 0.

constraint: A Boolean variable indicating whether or not to impose a sum-to-zero constrafit= 0
Default: 0.

diagonat Additional constraint to add on the diagonal
Default: 0.

graph The name of the file where the graph is stored (onmdfdel=besa}
n: Lengthm of vector f. Only if model=rw1,rw2,crw2and nolocationsis specified.

locations: The name of the file where the value of the covariate are stored, omigdel=rw1,rw2or crw2. If no file
is specified the covariate are assumed to take valugg in ..., m — 1}.

cyclic: A Boolean variable specifying whether the model is cyclical, onlypnddel=rwl,rw2and no locations is
specified.
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compute A Boolean variable indicating whether or not the marginals for vefgtbave to be computed.
Default: 1

summaryA Boolean variable indicating whether or not to output a short summary of the posterior dengfity for
Default: compute

density. A Boolean variable indicating whether or not to output the marginal densitieg. for
Default: compute

quantiles A list of maximum 10 quantileg;(0),p(1), ..., to compute for each node jfr
Default: Empty

percentilesA list of maximum 10 percentiles;(0), z(1), ..., to compute for each node jfr
Default: Empty

A.1.5 Thetype=linearsection

A section oftype=linear specifies the model for one of the elemgptof vector3 = (5, . .., Bn,—1) in equation (2).
Hence ani file will containng sections otype=linear. Each section consists of the following fields:

covariates Name of the file where covariate are stored. If empty, then all covariates are assumeéd to be
precision: Fixed precision for the Gaussian prior distributionmf
Default: 0.001

compute A Boolean variable indicating whether or not the marginaldgthas to be computed.
Default: 1

summaryA Boolean variable indicating whether or not to output a short summary of the posterior dengity for
Default: compute

density. A Boolean variable indicating whether or not to output the marginal densitig$; for
Default: compute

quantiles A list of maximum 10 quantileg;(0),p(1), ..., to compute for each node .
Default: Empty

percentilesA list of maximum 10 percentiles;(0), z(1), ..., to compute for each node #),.
Default: Empty

A.1.6 Thetype=INLA section

This section is optional, it specifies parameters to be passed @MiRE-Lib library. It is possible to specify here all pa-
rameters in th&MRFLibh.ai_paramtp structure. We describe here the most used and useful ones, for more details see the
on-line documentation for th@MRFLib library: http://www.math.ntnu.no/ ~hrue/GMRFLib/doc/html/

strategy : The strategy used to compute approximations to the posterior margipalg, ). The three main choice
are:

e GMRFLib AI_.STRATEGYGAUSSIANcomputes the Gaussian approximation

e GMRFLIh AI_STRATEGWEANSKEWCORRECTEBAUSSIAN computes the simplified Laplace ap-
proximation.

e GMRFLIih AI_STRATEGYADAPTIVE Computes the full Laplace approximation.

The three approximation types are described in Rue et al. (2007).
Default: GMRFLib AI_ STRATEGYWEANCORRECTEISAUSSIAN
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int_strategy : The strategy used to integrate out the hyperparamétevhen computingr(z;|y). There are two
possible choices:
e GMRFLIibAILINT_.STRATEGYGRID (or grid) : Use a grid strategy, slower and somehow more accurate.

e GMRFLIh AILINT_.STRATEGYCCD (or ccd) : Use a central composite design strategy, faster and espe-
cially useful for problems with higher dimension of the hyperparameter véctor

Both strategies are described in Rue et al. (2007).
Default: GMRFLIb AILINT_STRATEGYGRID

dz: Step length for the integration procedure, onlyiift_strategy =grid
Default: 1

diff_logdens: Only used if int_strategy = grid Threshold for accepting a configuration.
Default: 2.5

skip.configurations : Only used if int_strategy = grid Skip fill-in configuration larger than a non-accepted one.
Default: GMRFLIb- TRUE

gradientfinite_differencesteplen  (or h): Step length to compute the gradientd).
Default: 1.0e-4

hessianfinite differencesteplen  (or h): Step length to compute the Hessiargf|y) at the mode.
Default: 1.0e-4

interpolator Type of interpolator used to compute marginals for each hyperparaf@gly), the available choices
are:

e GMRFLIh AILINTERPOLATORAUTG Chose interpolation type based on the integration strategy.
If int_strategy =grid then choos&MRFLib AI_INTERPOLATORNEIGHTEDDISTANCE If int_strategy =ccd
then the choice iISMRFLIb AI_LINTERPOLATORCCD

e GMRFLIh AILINTERPOLATOR.INEAR Linear interpolation using the@\/ 4 1) nearest points, wherel
is the dimension of the hyperparameters space.

e GMRFLih AILINTERPOLATORQUADRATIC Quadratic interpolation using tHé/ + 1) nearest points.
e GMRFLIh AILINTERPOLATORNVEIGHTEDDISTANCE Linear interpolation using weighted distance.
e GMRFLib AILINTERPOLATORCCD: Special interpolation for the CCD integration scheme.

The interpolations are described in Martino (2007).

A.2 Format of the input files

There are five type of input files which can be read fromitiiee program: the data file, the covariate file, the covariate
locations type, the graph file and tiematrix file, each with its own format required. The formats have been already
presented in different examples but are all collected here.

Data file The format of the data file depends on the likelihood model chosen and on whether the data are collected on a
grid or not. The format of the data file is displayed in Table 2.

Covariate and location file Each covariate has to be stored in a separate file. The format of the file depends on whether
the covariate is assumed to have linear or non-linear effect:

Covariates with linear effect: The value of the covariate is simply stored in a file with columns each row
having the format:
) Zi

wherei = 0,...,n, — 1 andz; is the value of the covariate for node

58



Covariates with non-linear effect: Letc € C andC = {c( < ¢ < ... < c(d2) < ... < (m=D} Thatis,
covariatec takes one of then values in the ordered vectGr. The file storing covariate hasn,, row, each
with the following format:
wherei = 0,...,n, — 1 and(idz); is the position of the observed valugin the vectorC'. If the values in
C are different fron0, 1, ... then another file (the locations file) of rows, is necessary to store the values
of C. A short example will be useful:

Example: Letn, = 5andC = {9,10,11}. Moreover assume that the observed covariate values are
co=10,c1 =9,co =11, c3 = 9 andcy = 10. Then the covariate file will be as following

0

[ENEGUR N
— O N O

We would need also a file storing the value€in

9
10
11

Graph file The graph file contains information on the neighbourhood structure of the spatial effect We describe the
required format for such a file using a small example. Let thegfigh.dat relative to a small graph, be

5

PR WN R
NN R O
w N

IS NS B AR R
A WNEFO

Line 1 declares the total number of nodes in the graph, then, in lines 2-6 each node is described. For example,
line 4 states that node 2 has 3 neighbours and these are nodes 1, 3 and 4. This is the same format used in the
GMRFLIib library.

Q-matrix file This file is only needed if the fielthodelin a ffield -type section is defined ageneric The file should
contain all non-zero entries of the user specified precision m@tiixthe following format

i Qy

wherei and; are the row and column index adg;; is the corresponding entry in the precision matrix.

A.3 Some possible problems and solutions
1. Theinla function checks that all entries intid  file are used while building the models, so an error message
like
inla_build: [ZAMBIA.ini] contain[1] unused entries. PLEASE CHECK
probably means that some of the fields inithie file have been misspelled.

2. In our experience the most common problems withitttee  function comes from the optimisation procedure
and the numerical computation of the Hessiaitogfr(0|y) at the modal configuration.

The optimiser might not converge, thus producing an error message like:
GMRFLib version 3.0-0—snapshot, has eceived error no [12]

Reason . The NewtonReason optimiser did noftconverge

Function : GMRFLibhoptimize_store

File : optimize.c

Line : 460

RCsSId : $ld: tutorialinla.tex,v 1.8 2008/02/11 08:46:05 hrue Exp $
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Usually restarting thénla  function assigning different starting values for the hyperparameters v@¢fld
initial ), will solve the problem.

. Another error which might happen is that the computed numerical Hessikg 60|y ) in not positive definite.
This produces the following error message:

GMRFLib version 3.0-0—snapshot, has eceived error no [2]
Reason . Matrix is not positive definite
Message : Condition ‘gslvector.get(eigenvalues, (unsigned int) i)>
0.0’ is not TRUE
Function : GMRFLihai_INLA

File . approx—inference.c
Line : 2689
RCSId : $Id: tutorialinla.tex,v 1.8 2008/02/11 08:46:05 hrue Exp $

To solve this problem it is usually enough to increase the step length used to numerically compute the Hessian
and the gradient. These quantities can be re-defined ityplee=INLAsection by using the paramete(or equiv-
alently the two parameters gradientfinite_differencesteplen and hessianfinite_differencesteplen ).
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B Some Distribution Functions

B.1 Log Gamma distribution

A random variableX has a LogGamma distribution with parametersndb (LogGamma(a,b))) it” = exp(X) has a
Gamma distribution with meam/b and variance/b>.

B.2 Scaled Student:distribution

A scaled Student-distribution is a Student-distribution withv degrees of freedom scaled so that its meahaad its
variance isl for any value of the parameter

B.3 NIG distribution

A random variableX is saied to have a standarised normal inverse Gaussian distriBufioii 3, 1) with hyperparam-
etersf; = ([, psi) if its density is given by

o) = 2\ [ B e (6 4 80+ ) K (VI E T (G B T )

wherey? = 1 + 3?/4%. The above density has zero mean and unit variance. The parainetetrols (essentially)

the skewness of the density, while the paramétés (essentially) a shape parameter. This density is used in financial
applications.
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