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Abstract

Motivated by the application of seismic inversion in the petroleum industry we con-

sider a hidden Markov model with two hidden layers. The bottom layer is a Markov chain

and given this the variables in the second hidden layer are assumed conditionally inde-

pendent and Gaussian distributed. The observation process is assumed Gaussian with

mean values that are linear functions of the second hidden layer. This model class, which

we call switching linear Gaussian models, has clear similarities with what is known as

switching linear dynamical systems and conditionally Gaussian state space models. The

important difference is that we allow the observations to depend on both past and future

values of the hidden Gaussian process. The forward-backward algorithms is not directly

feasible for switching linear Gaussian models as the recursions then involve a mixture of

Gaussian densities where the number of terms grows exponentially with the length of the

Markov chain. We propose an approximate forward-backward algorithm by dropping the

less important terms and thereby obtain a computationally feasible algorithm that gen-

erates samples from an approximation to the conditional distribution of the unobserved

layers given the data. We also use this approximation as a proposal distribution in a

Metropolis–Hastings setting and obtain high acceptance rates and good mixing proper-

ties. We demonstrate the effectiveness and quality of the approximation in simulation

examples.

1 Introduction

Hidden Markov models combined with recursive algorithms have successfully been used in
many areas, see the discussion and references in MacDonald and Zucchini (1997), Künsch
(2000), Scott (2002) and Cappé et al. (2005). In a hidden Markov model the observations are
assumed to be an incomplete and noisy function of an underlying unobserved process, where
the latent unobserved process has a discrete state space and is assumed to be Markov. The
goal is typically to restore the underlying Markov chain from the noisy observations and per-
haps also to estimate unknown parameters in both the latent and observation processes. With
reasonable assumptions for the observation process these goals are achieved via efficient recur-
sive computations known as the forward-backward algorithms, corresponding to the famous
Kalman filter equations when the latent Markov process is Gaussian.

Hidden Markov models with two hidden layers have been considered by several authors.
Switching linear dynamical systems (Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998)
and switching state space models (Barber, 2006) are hidden Markov models with two latent
layers. The bottom hidden layer is a discrete state space Markov chain and conditioned on
this bottom layer the second hidden layer is a Gaussian Markov process. Finally, given the two
hidden layers the observations are assumed independent and Gaussian. The mean vector and
covariance matrix for the observed value at any time index are functions of the two unobserved
states at the same time index. Larsen et al. (2006) consider a similar model, but allow the



observations to be functions of both past and future values of the hidden Gaussian process.
The goal is again to restore the unobserved Markov chain. The forward-backward recursions
can be formulated also for these models, but they are not computationally feasible as the
forward recursion involves a mixture of Gaussian distributions where the number of terms
grows exponentially with the length of the Markov chain. In the two first references given
above, approximate forward recursions are defined by substituting the mixture of Gaussian
distributions by a single Gaussian term. Larsen et al. (2006) define approximate recursions by
approximating the marginal distribution for the unobserved continuous process by a product
of Gaussian densities.

Motivated by the application of seismic inversion in the petroleum industry, we consider the
same model as discussed in Larsen et al. (2006). Here the Markov chain represents lithology-
fluid classes along a vertical trace through the underground, the intermediate Gaussian layer
represents elastic parameters of the rock along the same trace, and the observations are the
seismic data. The focus is again to restore the unobserved layers and particularly the Markov
chain. Parameter estimation is clearly also of interest, but not considered here. To get a
computationally feasible algorithm we must again consider approximate forward-backward al-
gorithms. In the forward part of the forward-backward algorithm we propose to drop terms
associated with small weights in the Gaussian mixture. Thus, our approximation is less dra-
matic than what is used before, but to a somewhat higher computational cost. The quality
of the approximation depends on the number and importance of the terms that are dropped.
Using the output of the resulting approximate forward-integration-backward-simulation algo-
rithm as proposals in a Metropolis–Hastings setting (Hastings, 1970) we are able to correct
for the induced approximation and the associated Metropolis–Hastings acceptance rate is a
natural measure of the quality of the approximation.

The paper is organised as follows. Section 2 defines and introduces necessary notation for
what we call the switching linear Gaussian model. In Section 3 we give a brief introduction
to the seismic inversion application and explain how the switching linear Gaussian model
constitutes the core part of this model. In Section 4 we first develop the exact forward
recursions for the switching linear Gaussian model, then discuss the dropping Gaussian terms
approximation and develop the backward simulation algorithm. In Section 5 we evaluate the
approximate forward–backward algorithm in simulation examples. Finally, in Section 6 we
provide conclusions.

2 The switching linear Gaussian model

In this paper we represent (multivariate) Gaussian distributions in its canonical form, as this
simplify the forward-backward recursions. A Gaussian distribution with mean vector µ and
covariance matrix Σ is in its canonical form parametrised by the precision matrix Q = Σ−1

and the vector q = Qµ, and we use N(q,Q) to denote this distribution. The corresponding
density we denote by N(u|q,Q) and this reads

N(u|q,Q) =

√
|Q|

(2π)
r

2

exp

{
−

1

2
qT Q−1q

}
exp

{
−

1

2

[
uT Qu − 2qT u

]}
. (1)

Consider a three layer hidden Markov model {(xi, yi, zi)}
n
i=1 as visualised in Figure 1,

where xi ∈ {1, . . . , L}, yi = (yi1, . . . , yir)
T ∈ R

r and zi = (zi1, . . . , zis)
T ∈ R

s for i = 1, . . . , n.
We require the number of possible values for the xi’s, L, to be small. In the seismic data
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Figure 1: Directed acyclic graph representation of the hidden Markov model discussed in
Sections 2 and 4.

example in Section 5 we have L = 4. We assume x = (x1, . . . , xn) to be a stationary, aperiodic
and ergodic Markov chain with transition matrix

P = [p(xi|xi−1)]
L
xi−1,xi=1. (2)

Thus, the marginal distribution of x1 equals the limiting distribution induced by P, which
we denote by p(x1). Conditioned on x we assume the elements of y = (y1, . . . , yn) to be
independent and Gaussian distributed, where the (conditional) mean vector and precision
matrix of yi are (known) functions of xi, which we denote by µ(xi) and Q(xi), respectively.
Thus,

yi|x ∼ N(q(xi), Q(xi)), (3)

where q(xi) = Q(xi)µ(xi). Given y we assume the elements of the third layer, z = (z1, . . . , zn),
to be independent of x and independent of each other. The conditional distribution for zi is
Gaussian with mean vector aT

i yi−1 + bT
i yi + cT

i yi+1 and precision matrix Ri, i.e.

zi|y ∼ N
(
AT

i yi−1 + BT
i yi + CT

i yi+1, Ri

)
, (4)

where Ai = aiRi, Bi = biRi and Ci = ciRi. Note that we allow the coefficient matrices ai, bi

and ci to vary with i, and in particular we of course require a1 = cn = 0.

3 The seismic inversion application

Seismic inversion is the discipline of predicting lithology-fluid characteristics in a reservoir
from seismic data. Numerous introductory books to seismic terminology and inversion exist,
see for example Sheriff and Geldart (1995).

Seismic data is created by an explosion which sends sound waves into the ground. Parts of
the waves are reflected, returned upwards and observed by microphones (geo- or hydrophones).
These observations are the basis for the seismic data. A forward model, describing what we
observe for given lithology–fluid characteristics, is known from physics theory. In seismic
inversion we are interested in the corresponding inverse problem, predicting the lithology–
fluid characteristics given observed seismic data.
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Seismic inversion is typically done based on either pre-stack or post-stack data. The pre-
stack data are also referred to as amplitude versus offset (AVO) data or common midpoint
gather (CMP). In a CMP gather, seismic data with different offsets (reflection angles) related
to the same vertical profile are gathered together. Before the data is used for inversion, noise
effects like moveout, multiples and the effect of geometrical spreading and absorption are
removed. The data is also pre-stack migrated such that any dip related effects are removed.
Post-stack data are generated from pre-stack data using the method of “stacking” (Sheriff
and Geldart, 1995). Here we consider how to do seismic inversion from one vertical profile of
pre-stack seismic data.

Our forward model is similar to the ones in Buland et al. (2003) and Larsen et al. (2006).
When dealing with seismic data the depth is typically not referenced by distance from the
surface, but by the time used by the sound wave from the surface to a location in the un-
derground and back, called travel time and denoted by t. A problem not considered here is
how to convert travel times to depths. Let the discrete variable x(t) be the lithology–fluid
class in the reservoir at travel time t. Assuming an isotropic and elastic medium, the material
properties are uniquely defined by the continuous variables P-wave velocity, S-wave velocity
and density. At time t we let

y(t, 1) = ln(α(t))

y(t, 2) = ln(β(t))

y(t, 3) = ln(ρ(t))

(5)

denote the logarithms of each of these three quantities, respectively. The forward relation
from x to y is based on the so-called Gassman equations (Berryman, 1995), we return to this
below. For each depth t and offset (reflection angle) θ a reflection coefficient, r(t, θ), results
from y. For this we use what is known as a weak contrast approximation (Aki and Richards,
1980; Buland and Omre, 2003), which reads

r(t, θ) = γα(θ)
∂

∂t
y(t, 1) + γβ(θ)

∂

∂t
y(t, 2) + γρ(θ)

∂

∂t
y(t, 3), (6)

where

γα(θ) =
1

2
(1 + tan2(θ)) (7)

γβ(θ) = −4β/α
2
sin2(θ) (8)

γρ(θ) = −4
(
β/α

2
sin2(θ)

)
, (9)

and one has assumed the ratio β(t)/α(t) to have an approximately constant value, β/α, in the
reservoir. Seismic data depends on the reflection coefficients and is observed for each travel
time t and offset θ. Still following Buland et al. (2003) and Larsen et al. (2006), we use a
convolution model with additive noise for this,

d(t, θ) =

∫
w(u, θ) · r(t − u, θ)du + ε(t, θ), (10)

where w(u, θ) is a wavelet function and ε(t, θ) is Gaussian noise. Similar to Buland and
Omre (2003) we assume that the main part of the Gaussian noise has a correlation structure
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corresponding to the wavelet. The argument for this is that both the signal and noise parts
are the results of sound waves going through the (same) underground.

For doing the inversion we consider a discrete version of the forward model discussed above.
We use i = 1, . . . , n to denote n travel times along the vertical profile and let xi and yi ∈ R

3

denote corresponding values for x(t) and y(t). We consider s offset values θ1, . . . , θs and let
ri = (ri1, . . . , ris)

T ∈ R
s and di = (di1, . . . , dis)

T ∈ R
s denote reflection coefficients and seismic

data at travel time i, respectively. As prior for x = (x1, . . . , xn)T we use a Markov chain, as
specified in (2). The distribution for y = (yT

1 , . . . , yT
n )T given x is, as mention above, based

on the Gassman equations and we assume Gaussian distributions as specified in (3). Using
a central difference approximation for the partial derivatives in (6) we get an expression for
r = (rT

1 , . . . , rT
n )T as a function of y,

ri = ΓT ·
yi+1 − yi−1

2
for i = 1, . . . , n, (11)

where

Γ =




γα(θ1) γα(θ2) · · · γα(θs)
γβ(θ1) γβ(θ2) · · · γβ(θs)
γρ(θ1) γρ(θ2) · · · γρ(θs)


 . (12)

To avoid boundary problems for i = 1 and i = n, we use forward and backward difference
approximations, respectively, for the derivatives there.

Finally we discretise (10) to get the distribution for d = (dT
1 , . . . , dT

n )T given r,

dij =
k∑

u=−k

w(u, θj) · ri−u,j + εij , (13)

where the zero mean Gaussian noise εij is given as

εij =

k∑

u=−k

w(u, θj)ε
1
i−u,j + ε2

i,j (14)

and ε1
i,j and ε2

i,j are independent Gaussian white noise and we assume the variance of ε1
ij to

be much larger than the variance in ε2
ij so that most of the noise are on the same form as the

wavelet. Clearly, we also assume the wavelet to be nonzero only in a finite interval so that the
sum in (13) has a finite number of terms.

3.1 Simulating from the seismic model

We are now interested in simulating the variables x and y conditioned on the data d from the
model above. To define an effective MCMC algorithm for this, we introduce z = (z1, . . . , zn)T ,
where zi = (zi1, . . . , zis)

T ∈ R
s for i = 1, . . . , n,

zi = ri + ε1
i (15)

and ε1
i = (ε1

i1, . . . , ε
1
is)

T . The distribution for x, y and z is then on the form specified in Section
2. In (4) we have Ai = −Γ Ri/2, Bi = 0 and Ci = Γ Ri/2 for i = 2, . . . , n − 1, and using
forward and backward difference at the boundaries B1 = −Γ R1, C1 = Γ R1, An = −Γ Rn and
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Bn = Γ Rn. Finally we use Ri = σ−2
1 I for i = 1, . . . , n, where I denote the identity matrix.

Combining (13), (14) and (15) we get the relation between z and d,

dij |z ∼ N

(
σ−2

2

k∑

u=−k

w(u, θj) · zi−u,j, σ
−2
2 I

)
. (16)

To simulate effectively from the specified model we use a Metropolis–Hastings algorithm (Han
and Green, 1992; Hastings, 1970) consisting of two steps in each iteration. In the first step we
use a joint Gibbs update for y and z. The joint full conditional for y and z is Gaussian and
thereby easy to sample from. The full conditional for x and y is a model of the type specified
in Section 2. In the next section we discuss how to generate samples from an approximation
to this distribution and we adopt this as proposal distribution.

Remark 1. A perhaps more direct Metropolis–Hastings algorithm would be a three block
Gibbs algorithm, updating each of x, y and z separately. The full conditionals for y and z are
Gaussian and to sample the full conditional for x the (standard and exact) forward-backward
algorithm can be used. However, this algorithm has an extremely slow mixing because x and
y are highly correlated. This is the reason we in stead propose the two step algorithm specified
above.

Remark 2. A variant of the two block Metropolis–Hastings algorithm defined above is to
propose new values only for parts of x and y in each iteration. In simulations we have found
that one has to adopt this alternative if n is large, as otherwise either the approximate proposal
distribution is not computational feasible or the resulting Metropolis–Hastings acceptance rate
becomes very low.

4 Simulation algorithm

In this section we define the approximate forward-backward algorithm for the model defined in
Section 2 and discuss how this can be used as a proposal distribution in a Metropolis–Hastings
algorithm. We start by deriving the exact forward-integration recursion.

4.1 Forward integration

The conditional distribution of interest is

π(x, y|z) ∝ π(x)π(y|x)π(z|y) = p(x1) ·

n∏

i=2

p(xi|xi−1) ·

n∏

i=1

N (yi|q(xi), Q(xi)) (17)

·

n∏

i=1

N
(
zi|A

T
i yi−1 + BT

i yi + CT
i yi+1, Ri

)
.

To make the forward integration easier we need to introduce more notation. Let T1(x1, y1, x2,
y2, y3) be a product of all the factors in π(x, y|z) containing x1 or y1, let T2(x2, y2, x3, y3, y4)
be a product of all factors in π(x, y|z) containing x2 or y2 and that is not already included
in T1(x1, y1, x2, y2, y3), and so on. Thus, by adopting the conventions p(xn+1|xn) = 1 and
Bn+1 = Cn+1 = 0 we have

π(x, y|z) ∝

n∏

i=1

Ti(xi, yi, xi+1, yi+1, yi+2), (18)
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with

T1(x1, y1, x2, y2, y3) = p(x1)p(x2|x1)

N(y1|q(x1), Q(x1))N(z1|B1y1 + C1y2, R1)N(z2|A
T
2 y1 + BT

2 y2 + CT
2 y3, R2), (19)

Ti(xi, yi, xi+1, yi+1, yi+2) =

p(xi+1|xi)N(yi|q(xi), Q(xi))N(zi+1|A
T
i+1yi + BT

i+1yi+1 + CT
i+1yi+2, Ri+1) (20)

for i = 2, . . . , n. Recalling Cn = 0 and the notational conventions just made we see that
none of the above functions really depends on xn+1, yn+1 or yn+2. We include these in
the argument lists just to simplify the notation. Now define Ui(xi, yi, xi+1, yi+1, yi+2) and
Vi(xi, xi+1, yi+1, yi+2) for i = 1, . . . , n − 1 so that

π(xi, . . . , xn, yi, . . . , yn|z) ∝ Ui(xi, yi, xi+1, yi+1, yi+2)

·
n∏

j=i+1

Tj(xj , yj , xj+1, yj+1, yj+2), (21)

π(xi, xi+1, . . . , xn, yi+1, . . . , yn|z) ∝ Vi(xi, xi+1, yi+1, yi+2)

·

n∏

j=i+1

Tj(xj , yj , xj+1, yj+1, yj+2). (22)

This gives U1(x1, y1, x2, y2, y3) = T1(x1, y1, x2, y2, y3),

Ui(xi, yi, xi+1, yi+1, yi+2) = Ti(xi, yi, xi+1, yi+1, yi+2)
L∑

xi−1=1

Vi−1(xi−1, xi, yi, yi+1) (23)

for i = 2, . . . , n − 1, and

Vi(xi, xi+1, yi+1, yi+2) =

∫
Ui(xi, yi, xi+1, yi+1, yi+2)dyi (24)

for i = 1, . . . , n. Note that none of the Ui or Vi functions are really functions of xn+1, yn+1 or
yn+2, but again we include them as arguments to simplify the notation. In the following we
use 0 and I to denote an r × r matrix with all elements equal to zero and the r-dimensional
identity matrix, respectively. Moreover, let Di and Fi be 3r×3r and 2r×2r identity matrices,
respectively, for i = 1, . . . , n − 2, and define

Dn−1 =

[
I 0 0

0 I 0

]
, Dn =

[
I 0 0

]
and Fn−1 =

[
I 0

]
. (25)

The following Theorem presents the forward recursions for i = 1, . . . , n.

Theorem 1. Consider the hidden Markov model defined in Section 2 and the notation intro-
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duced above. We then have

Ui(xi, yi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi)

·

Ni∑

j=1

fij(xi)N


Di




yi

yi+1

yi+2




∣∣∣∣∣∣
gij(xi), Gij(xi)


 for i = 1, . . . , n

(26)

Vi(xi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi)

·

Ni∑

j=1

fij(xi)N

(
Fi

[
yi+1

yi+2

]∣∣∣∣ kij(xi),Kij(xi)

)
for i = 1, . . . , n − 1

(27)

Vn(xn, xn+1, yn+1, yn+2) ∝

Nn∑

j=1

fnj(xn), (28)

where Ni = Li−1 and fij(xi), gij(xi), Gij(xi), kij(xi), and Kij(xi) can be computed recursively.

Initial values for g11(x1), G11(x1) and f11(x1) are given by

G11(x1) =




Q(x1)+B1R
−1
1 BT

1 +A2R
−1
2 AT

2 B1R
−1
1 CT

1 +A2R
−1
2 BT

2 A2R
−1
2 CT

2

C1R
−1
1 BT

1 +B2R
−1
2 AT

2 C1R
−1
1 CT

1 +B2R
−1
2 BT

2 B2R
−1
2 CT

2

C2R
−1
2 AT

2 C2R
−1
2 BT

2 C2R
−1
2 CT

2


 (29)

g11(x1) =




q(x1)+B1z1+A2z2

C1z1+B2z2

C2z2


 (30)

f11(x1) = p(x1)
√

|Q(x1)| exp

{
−

1

2

(
q(x1)

T Q(x1)
−1q(x1)

)}
. (31)

For i = 2, . . . , n − 2, j = 1, . . . , Ni and l = 1, . . . , L, we have the following recursions

Gi,(j−1)L+l(xi) =




I

0

0


Q(xi) [I 0 0 ] +




I 0

0 I

0 0


Ki−1,j(l)

[
I 0 0

0 I 0

]

+




Ai+1

Bi+1

Ci+1


R−1

i+1

[
AT

i+1 BT
i+1 CT

i+1

]
,

(32)

gi,(j−1)L+l(xi) =




I

0

0


 q(xi) +




I 0

0 I

0 0


 ki−1,j(l) +




Ai+1

Bi+1

Ci+1


 zi+1, (33)

Ki,(j−1)L+l(xi) =



[

0 I 0

0 0 I

]
Gi,(j−1)L+l(xi)

−1




0 0

I 0

0 I






−1

, (34)

ki,(j−1)L+l(xi) = Ki,(j−1)L+l(xi)

[
0 I 0

0 0 I

]
Gi,(j−1)L+l(xi)

−1gi,(j−1)L+l(xi). (35)

For the final two iterations, i = n − 1 and n, the recursions are slightly different. For j =
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1, . . . , Nn−1 and l = 1, . . . , L we have

Gn−1,(j−1)L+l(xn−1) =

[
I

0

]
Q(xn−1)

[
I 0

]
+ Kn−2,j(l) +

[
An

Bn

]
R−1

n

[
AT

n BT
n

]
(36)

gn−1,(j−1)L+l(xn−1) =

[
I

0

]
q(xn−1) + kn−2,j(l) +

[
An

Bn

]
zn (37)

Kn−1,(j−1)L+l(xn−1) =

([
0 I

]
Gn−1,(j−1)L+l(xn−1)

[
0

I

])
−1

(38)

kn−1,(j−1)L+l = Kn−1,(j−1)L+l(xn−1)
[

0 I
]
Gn−1,(j−1)L+l(xn−1)

−1gn−1,(j−1)L+l(xn−1),

(39)

and for j = 1, . . . , Nn and l = 1, . . . , L

Gn,(j−1)L+l(xn) = Q(xn) + Kn−1,j(l) (40)

gn,(j−1)L+l(xn) = q(xn) + kn−1,j(l). (41)

Finally, the recursion for fij(x) is, for i = 2, . . . , n, j = 1, . . . , Nn−1 and l = 1, . . . , L

fi,(j−1)L+l(xi) = fi−1,j(l)p(xi|l)

√
|Q(xi)Ki−1,j(l)|

|Gi,(j−1)L+l(xi)|
exp

{
−

1

2

[
q(xi)

T Q(xi)
−1q(xi)+

ki−1,j(l)
T Ki−1,j(l)ki−1,j(l) − gi,(j−1)L+l(xi)

T Gi,(j−1)L+l(xi)
−1gi,(j−1)L+l(xi)

]}
.

(42)

The theorem is proved by induction. Reordering terms in T1(x1, y1, x2, y2, y3) straightfor-
wardly gives (26) for i = 1 and initial values (29), (30) and (31). Integrating out yi in (26)
and using well known properties of the multivariate Gaussian distribution gives (27) and (28),
and the recursion formulas (34), (35), (38) and (39). We represent Gaussian distributions in
the canonical form and not by the mean vector and covariance matrix and this is the reason
for the somewhat unfamiliar expressions in these four equations. Summing over xi in (27) and
renumbering terms give after straightforward but tedious calculations (26) and the recursions
(32), (33), (36), (37), (40), (41) and (42).

The number of Gaussian terms in (26) and (27) grows exponentially with i and the recur-
sive algorithm defined by Theorem 1 is thereby computationally feasible only for very small
values of n. In the next section we discuss how to approximate Ui(xi, yi, xi+1, yi+1, yi+2) and
Vi(xi, xi+1, yi+1, yi+2) by ignoring less important terms in (26) and (27).

4.2 Approximate forward integration algorithm

In this section we propose an approximate and computationally feasible version of the recur-
sions defined in Theorem 1. We first compute the (exact) representation of U1(x1, y1, x2, y2, y3)
and V1(x1, x2, y2, y3) as given in Theorem 1. When starting iteration i − 1 ≤ n − 2 of the
sequential algorithm we have available an approximation of Vi−1(xi−1, xi, yi, yi+1) on the form

Ṽi−1(xi−1, xi, yi, yi+1) ∝ p(xi|xi−1)

·

eNi−1(xi−1)∑

j=1

f̃i−1,j(xi−1)N

([
yi

yi+1

]∣∣∣∣ k̃i−1,j(xi−1), K̃i−1,j(xi−1)

)
,

(43)
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where we use tilde to distinguish quantities in the approximation from the corresponding
exact ones. Note that the approximate representation is on the same form as in (27), except
that in the approximation the number of Gaussian terms may depend on the value of xi−1.
Of course, for i = 2 we use Ṽi−1(xi−1, xi, yi, yi+1) = Vi−1(xi−1, xi, yi, yi+1). Starting with
Ṽi−1(xi−1, xi, yi, yi+1) we perform iteration i− 1 in two steps. First we compute approximate
representations of Ui(xi, yi, xi+1, yi+1, yi+2) and Vi(xi, xi+1, yi+1, yi+2) using the same type of
recursion formulas as in Theorem 1. More precisely, letting U⋆

i (xi, yi, xi+1, yi+1, yi+2) and
V ⋆

i (xi, xi+1, yi+1, yi+2) denote the approximations, we have

U⋆
i (xi, yi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi) ·

N⋆

i
(xi)∑

j=1

f⋆
ij(xi)N






yi

yi+1

yi+2




∣∣∣∣∣∣
g⋆
ij(xi)G

⋆
ij(xi)


 , (44)

V ⋆
i (xi, xi+1, yi+1, yi+2) ∝ p(xi+1|xi) ·

N⋆

i
(xi)∑

j=1

f⋆
ij(xi)N

([
yi+1

yi+2

]∣∣∣∣ k
⋆
ij(xi),K

⋆
ij(xi)

)
, (45)

where N⋆
i (xi) = LÑi−1(xi), and G⋆

ij(xi), g⋆
ij(xi), f⋆

ij(xi), K⋆
ij(xi) and k⋆

ij(xi) are given from ex-
pressions (32) to (35) and (42) after substituting Gi,(j−1)L+l(xi), gi,(j−1)L+l(xi), fi,(j−1)L+l(xi),
Ki,(j−1)L+l(xi), ki,(j−1)L+l(xi), Ki−1,j(l), ki−1,j(l) and fi−1,j(l) by G⋆

i,(j−1)L+l
(xi), g⋆

i,(j−1)L+l
(xi),

f⋆
i,(j−1)L+l

(xi), K⋆
i,(j−1)L+l

(xi), k⋆
i,(j−1)L+l

(xi), K̃i−1,j(l), k̃i−1,j(l) and f̃i−1,j(l), respectively.

In the second step of the iteration we start from V ⋆
i (xi, xi+1, yi+1, yi+2) and generate a sec-

ond (and final) approximation for Vi(xi, xi+1, yi+1, yi+2), denoted Ṽi(xi, xi+1, yi+1, yi+2), by
dropping the less important Gaussian terms in the first approximation (45) and thereafter
renumbering the remaining terms. We use the same approximation procedure also for the
final two iterations, i = n − 1 and n. The expressions are again slightly modified for this
iterations.

What terms in (45) that are of less importance is not obvious as they are functions of yi+1

and yi+2, which are still unknown when this decision has to be taken. Natural strategies for
handling this are either to maximise over or to integrate out yi+1 and yi+2 before comparing
the size of the different terms. To maximise over yi+1 and yi+2 is obtained by evaluating the
Gaussian density in (45) at its mean value. Thus, for a threshold value ε this strategy gives
that we should drop terms in (45) that have

f⋆
ij(xi)N

(
µ⋆(xi)| k

⋆
ij(xi),K

⋆
ij(xi)

)

maxk=1,...,N⋆

i
(xi)

{
f⋆

ik(xi)N
(
µ⋆(xi)| k

⋆
ik(xi),K

⋆
ik(xi)

)} < ε, (46)

where µ⋆(xi) =
(
K⋆

ij

)
−1

k⋆
ij(xi). With the second strategy, to integrate out yi+1 and yi+2,

only f⋆
ij(xi) remains to compare. Thus, again for a given threshold ε, we drop all terms that

corresponds to a f⋆
ij(xi) that have

f⋆
ij(xi)

maxk=1,...,N⋆

i
(xi)

{
f⋆

ik(xi)
} < ε. (47)

In the simulation examples in Section 5 we adopt the first strategy, but we do not expect the
second strategy to behave much differently. One should note that we decide what terms to
drop separately for each possible value of xi, and as a result the number of remaining terms,
Ñi(xi), may differ for the different values of xi.
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Clearly, alternative term dropping strategies may be defined. First, one may use the term
dropping step for U⋆

i (xi, yi, xi+1, yi+1, yi+2) instead of for V ⋆
i (xi, xi+1, yi+1, yi+2), but we do

not expect this to make much difference. Second, instead of choosing a specific threshold value
ε, one may fix the number of terms we want to keep in Ṽi(xi, xi+1, yi+1, yi+2) and drop the
necessary number of small terms in V ⋆

i (xi, xi+1, yi+1, yi+2). Thereby the memory requirements
for running the algorithm will be known in advance, but the quality of the approximation may
be more variable than with the strategy we have chosen.

4.3 Backward simulation

When the (exact or approximate) forward integration has been done and the necessary quan-
tities stored in memory, backward simulation is straight forward. Here we give the necessary
equations for the approximate, computational feasible algorithm.

Sequentially for i = n, . . . , 1 we first simulate xi from

π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z) ∝ V ⋆
i (xi, xi+1, yi+1, yi+2) (48)

and then draw yi from

π⋆(yi|xi, . . . , xn, yi+1, . . . , yn) ∝ U⋆
i (xi, yi, xi+1, yi+1, yi+2). (49)

The first is a discrete distribution and the second a mixture of r-variate Gaussian densities,
so both are simple to generate realizations from. The resulting sample is thereby simulated
from an approximation to the conditional distribution π(x, y|z),

π⋆(x, y|z) =
n∏

i=1

[π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z)π⋆(yi|xi, . . . , xn, yi+1, . . . , yn)] . (50)

One should also note that it is straight forward to evaluate π⋆(x, y|z) for the generated
sample (x, y), but to do this correctly one must of course remember to include the nor-
malizing constants in the two conditional distributions π⋆(xi|xi+1, . . . , xn, yi+1, . . . , yn, z) and
π⋆(yi|xi, . . . , xn, yi+1, . . . , yn).

4.4 Simulation from the hidden Markov model

To correct for the error introduced by the approximation discussed above one may use π⋆(x, y|z)
as a proposal distribution in a independent proposal Metropolis–Hastings algorithm. The re-
sulting acceptance rate is also a natural measure for the quality of the approximation.

5 Simulation examples

We study the approximate forward-backward algorithm introduced above in a number of
simulation exercises. We consider five sets of parameter values, which we denote by P1 to P5.
Parameter set P1, which is our base case, are chosen to reflect realistic values for the seismic
inversion application. P2 and P3 are identical to P1 except that we decrease and increase,
respectively, the noise variance. The parameter values in P4 is the same as in P1 except for
the rock physics model, the variances in y given x are larger in P4 than in P1. In all these
first simulation studies we use a seismic profile of length n = 100, which is sufficiently small
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to allow us to use the approximate forward-backward algorithm for all of x and y. In a last
simulation example we increase the resolution of the lattice and consider n = 400. For this
we use parameters corresponding to P1, but where some parameter values are changed to
compensate for the increased resolution. We denote the resulting parameter values by P5.
With n = 400 we are no longer able to update the whole profile, but must adopt the block
Metropolis–Hastings algorithm discussed in Remark 2 in Section 3.1 to obtain satisfactory
convergence and mixing results.

In the following we first, in Section 5.1, define the precise parameter values used for P1 to
P5. Thereafter, in Section 5.2, we quantify the noise level in the five models by defining and
reporting values for the signal-to-noise-ratios. In Section 5.3 we present simulation results and
use these to discuss the quality of the approximate algorithms and convergence and mixing
properties of the corresponding Metropolis–Hastings algorithms. We consider both simulation
of x and y given z and the seismic inversion problem of sampling x, y and z given the seismic
data d. In Section 5.4 we present results for the seismic inversion problem for parameter sets
P1 to P4. Finally, in Section 5.5 we give results for a small sensitivity study, using a different
parameter set for inversion than what is used to generate the data.

5.1 Parameter values

Our base case parameter values, P1, are chosen to be realistic for the seismic inversion appli-
cation and is based on the values used in Larsen et al. (2006). We consider a model with L = 4
possible classes for xi, where xi = 1, 2 and 3 represent gas-, oil- and brine (water) saturated
sandstone, respectively, and xi = 4 represents shale. Sandstone is porous and allows flow of
gas, oil, and water, whereas the porosity in shale is negligible and therefore acts as a barrier
to fluid flow. Our choice of transition matrix for x, P, is based on the values used in Larsen
et al. (2006), but we consider a coarser seismic resolution than done there. Numbering the
nodes from the bottom of the trace, we use

P =




0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591


 . (51)

This is obtained by first cubing the P used in Larsen et al. (2006) and thereafter moving
the resulting values at the three positions with zeros above to the diagonal. The three zero
elements are important in the seismic application as these represent known physical properties.
As water has a higher density than oil, which again has a higher density than gas, water can
not be above gas or oil and oil can not be above gas, unless separated by a non-porous shale
layer. The resulting marginal probabilities for xi are [0.24, 0.16, 0.38, 0.22].

As discussed in Section 3 we consider a situation where yi ∈ R
3, where the three elements

represent the logarithms of P-wave and S-wave velocities and density, respectively. In Larsen
et al. (2006) the distribution of yi|xi is represented as empirical distributions given by a set
of corresponding xi and yi values. We use the same set of (xi, yi) values to estimate mean
vectors and covariance matrices for the four assumed Gaussian distributions. The resulting
mean vectors are

µ(1) =




8.052
7.492
7.688


 , µ(2) =




8.071
7.472
7.730


 , µ(3) =




8.121
7.467
7.746


 , µ(4) =




8.166
7.546
7.846


 (52)
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Figure 2: Scatter plots of P- and S-wave velocities and density of samples from the distribution
adopted for yi|xi in P1, P2, P3 and P5 (upper row) and P4 (lower row). Red, green, blue and
black is used for gas-, oil- and brine-saturated sandstone and shale, respectively.

and the covariance matrices are given by the following figures, where the diagonal and off-
diagonal entries give standard deviations and correlations, respectively, for each of the four
possible values of xi,




0.031 0.876 0.322
0.876 0.033 0.271
0.322 0.271 0.012


 ,




0.027 0.891 0.384
0.891 0.032 0.295
0.384 0.295 0.009


 (53)




0.022 0.912 0.453
0.912 0.032 0.317
0.453 0.315 0.008


 ,




0.044 0.982 0.935
0.982 0.068 0.917
0.935 0.917 0.015


. (54)

The upper row in Figure 2 shows scatterplots of simulated P- and S-wave velocities and density
according to the specified distributions. Here and in all the following figures we use the colours
red, green, blue and black for gas-, oil- and brine-saturated sandstone and shale, respectively.
We observe that shale is well separated from the other three classes and that gas-saturated
sandstone is reasonably well separated from oil- and brine-saturated sandstone, whereas there
is large overlap between the densities of oil- and brine-saturated sandstone.

To specify the model of d given y it remains to specify the number of and what angles
that are used, the wavelet for each angle, and variances for the two error terms ε1

ij and ε2
ij .

Analogously to Larsen et al. (2006) we use the s = 5 angles θ = 0◦, 10◦, 20◦, 30◦ and 40◦. We
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also use the same angle independent Ricker wavelet, except that we scale it to compensate for
coarser resolution. We use

w(u, θ) = (1 − 2(π φu)2) exp (−(π φu)2), u = −k, . . . , k, (55)

where φ = 0.11 and k = 10. Also for the error variances we use corresponding values as in
Larsen et al. (2006), except for an appropriate scaling to compensate for the difference in
seismic resolution. We use Var(ε1

ij) = 0.0152 and Var(ε2
ij) = Var(ε1

ij)/10
4.

The above completely defines the parameter values in P1. P2 to P4 are small modifications
of P1. In P2 and P3 the variances for the noise terms ε1

ij and ε2
ij are scaled to give higher

and lower signal-to-noise ratios, respectively. We use Var(ε1
ij) equal to 0.00852 and 0.0262 in

P2 and P3, respectively, still with Var(ε2
ij) = Var(ε1

ij)/10
4. The parameter values in P4 are

identical to P1 except for a scaling of the covariance matrices in the Gaussian densities for
yi|xi so that the four classes are less separated. For classes 1 to 3, gas-, oil- and brine-saturated
sandstone, the covariance matrices used in P1 are multiplied with 10, whereas for class four,
shale, the covariance matrix is multiplied with 2. These scaling values are also used in Larsen
et al. (2006). Scatter plots of simulated P-wave and S-wave velocities and density are shown
in the lower row of Figure 2.

Parameter set P5 corresponds to P1, but some of the parameter values are changed to
compensate for an increased lattice resolution. Thus, P5 corresponds to the base case P1 on
a finer lattice. The transition matrix P for P5 is the same as in Larsen et al. (2006)

P =




0.980 0 0 0.020
0.015 0.970 0 0.015
0.002 0.008 0.980 0.010
0.007 0.007 0.036 0.950


 (56)

with resulting marginal probabilities for xi equal to [0.23, 0.16, 0.39, 0.22]. The distribution for
yi given xi is the same as for P1. The wavelet has the same parametric form as for P1, but the
parameter values are changed to compensate for the difference in resolution. We use (55) with
φ = 0.03 and k = 30, which is identical to the choice in Larsen et al. (2006). To compensate
for the change in resolution we also need to scale the error variances to get approximately the
same noise level as in P1. We set Var(ε1

ij) = 0.0152/3 and again Var(ε2
ij) = Var(ε1

ij)/10
4.

5.2 Signal-to-noise-ratio

It is common to quantify the amount of noise in an inversion problem by a signal-to-noise
(SN) ratio. In the setting we consider here it is not obvious how to split d into signal and
noise parts. The x and y represent physical quantities, and so it may be reasonable to classify
variability in d that has its origin in x or y as the signal part. However, our main interest
is to regain x from d, and this makes it natural to include in the signal only the variability
in d that originates from x. We define one signal-to-noise ratio for each of these two views,
starting with the first.

Let d̃ denote the data in the absence of observation noise so that (13) becomes

d̃ij =

k∑

u=−k

w(u, θj) · ri−u,j. (57)
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Parameter set P1 P2 P3 P4 P5

SN 2.82 8.35 0.92 6.15 3.10
SN⋆ 1.33 2.47 0.64 0.45 1.10

Table 1: Signal-to-noise ratios for the various parameter sets.

It is natural to define the strength of the signal by Var(d̃ij). However, this quantity is a
function of angle j and, due to border effects, node number i. To get one number we average
over i and j,

S =
1

ns

n∑

i=1

s∑

j=1

Var(d̃ij). (58)

This can not be calculated analytically, but is easily estimated via simulation. The strength
of the noise is correspondingly defined by

N =
1

ns

n∑

i=1

s∑

j=1

Var(εij). (59)

The resulting signal-to-noise ratio we denote by SN = S/N.
Let S⋆ and N⋆ denote the strength of the signal and noise, respectively, when only the

variation that results from x is considered as signal. S⋆ is then again given by (58) if d̃ij is
replaced by

d⋆
ij =

k∑

u=−k

w(u, θj) · r
⋆
i−u,j, (60)

where r⋆
ij is given from (11) by substituting yi−1 and yi+1 by their mean values,

r⋆
i = (r⋆

i1, . . . , r
⋆
is)

T = ΓT ·
µ(xi+1) − µ(xi−1)

2
. (61)

N⋆ can then be expressed as

N⋆ =
1

ns

n∑

i=1

s∑

j=1

Var(dij − d⋆
ij) (62)

and the corresponding signal-to-noise ratio is SN⋆ = S⋆/N⋆. Again the quantities that are not
analytically available can easily be found via simulation.

The resulting signal-to-noise ratios for parameter sets P1 to P5 are given in Table 1. We
see that P4 has higher SN than P1, even if retrieving x from d is clearly harder in P4 than in
P1. We find SN⋆ to be a better measure for the difficulty of the inverse problem, but signal-
to-noise ratio definitions similar to SN are most common in the seismic inversion literature,
probably because the objective often is inversion to y only.

5.3 Evaluation of approximate forward-backward algorithm

In this section we evaluate the performance of the proposed approximate forward-backward
algorithm in a simulation exercise for each of the parameter sets P1 to P5. The length of the

15



Parameter set P1 P2 P3 P4 P5

ε 10−4 10−4 10−3 10−3 10−4

acceptance rate 0.83 0.91 0.55 0.51 0.63

Table 2: Threshold values ε used in (46) and resulting Metropolis–Hastings acceptance rates
for each of the parameter sets P1 to P5.

lattice is n = 100 for P1 to P4 and n = 400 for P5. In each case we first simulate x, y, z
and d according to the model specified in Sections 2 and 3 and thereafter use the proposed
algorithms to simulate from the resulting posterior distributions. We consider both simulating
x and y given z by the algorithm discussed in Section 4.4 and the seismic inversion problem
of simulating x, y and z given d by the algorithm defined in Section 3.1. We evaluate the
quality of the approximate algorithm by the acceptance probability and the convergence and
mixing properties of the Metropolis–Hastings algorithms.

The approximate forward-backward algorithm, and thereby the corresponding Metropolis–
Hastings algorithms, contains one tuning parameter, ε in (46). The quality of the approx-
imation and effectiveness of the algorithm clearly depends on this value. If ε is too small
the number of terms that needs to be computed and stored becomes large and the algorithm
becomes infeasible. If ε is too large the quality of the approximation deteriorates with very
low Metropolis–Hastings acceptance probabilities as a result. For each of the parameter sets
we found a reasonable value for ε by trial and error, the values are reported in Table 2. As
expected ε must be higher when the signal-to-noise-ratios SN⋆ is low, and for the same value
of ε the acceptance rate decreases when SN⋆ decreases. The acceptance rates for P3 and P4
can easily be increased by using a smaller ε, but then the number of Gaussian terms to store
quickly becomes too large for the memory of typical computers. Our experience is that it is
mainly the available memory that limits the possible value of ε and thereby the quality of the
approximation, not the computation time. The acceptance rates reported in Table 2 is when
simulating x, y and z given d, but simulating x and y given z produced essentially the same
rates.

Figures 3 to 6 present the simulation results for parameter sets P1 to P4, respectively.
To upper rows show the simulated “true” values. Note that we use the same realisation of
x in all four cases to make comparison easier. The middle and lower rows contain posterior
simulation results when conditioning on z and d, respectively. The two lower rows consist of
three parts. To the left the “true” x is replotted for easier comparison, in the middle each
state of the Metropolis–Hastings algorithm is plotted side by side, and the plots to the right
show resulting marginal probabilities for each xi. The Markov runs shown in Figures 3 to 6
are all initiated by setting all xi = 1 and drawing y (and z when conditioning on d) values
from the corresponding full conditional. In all the runs the initial state is left within very
few iterations, so the burn-in phases of the Markov chains are not visible in the figures. We
have also tried starting with all xi = 4, and other initial values, without experiencing burn-in
problems. The results clearly show that the approximate forward-backward algorithm gives
a very good approximation to the distribution of interest and produces thereby very good
mixing properties when used as a proposal distribution in a Metropolis–Hastings setting.

Figure 7 presents simulation results for parameter set P5. As mentioned above, this is for
n = 400 and then the memory requirements for the approximate algorithm made it impossible
to update all of x and y jointly. In stead we adopted the block Metropolis–Hastings algorithm
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Figure 3: Simulation results for parameter set P1: The upper row gives, from left to right, the
simulated “true” x, the simulated “true” elastic parameters, z and d. The middle and lower
rows contain posterior simulation results when condition on z and d, respectively. From left
to right, the two rows give the true x (for easier comparison), each state of the Metropolis–
Hastings algorithm plotted side by side, and resulting marginal posterior probabilities for each
xi. Red, green, blue and black represent gas-, oil- and brine-saturated sandstone and shale,
respectively.
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Figure 4: Simulation results for parameter set P2: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 5: Simulation results for parameter set P3: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 6: Simulation results for parameter set P4: See Figure 3 for an explanation of the
different parts of the figure.
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Figure 7: Simulation results for parameter set P5: The upper row gives, from left to right,
the simulated “true” x, the simulated “true” elastic parameters and d. The two lower rows
contain posterior simulation results when condition on d. The middle and lower rows show
runs initiated with all xi = 1 and xi = 4, respectively. From left to right, the two rows give
the true x (for easier comparison), each state of the Metropolis–Hastings algorithm plotted
side by side, and resulting marginal posterior probabilities for each xi. Red, green, blue and
black represent gas-, oil- and brine-saturated sandstone and shale, respectively.
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discussed in Remark 2. We use blocks of 100 nodes and in each iteration randomly choose one
of the intervals [1, 100], [51, 150], . . . , [301, 400] to update. Again we run with the two initial
states mentioned above. Figure 7 corresponds to Figures 3 to 6, except that the two lower
rows both show simulation results when condition in d, one for each of the two initial states
mentioned. We see that the convergence is much slower in this case, we can easily see the
burn-in phase in the plots. The mixing of the chain is also somewhat less favourable in this
case.

5.4 Inversion results

In this section we summarise the inversion results for the simulation exercises introduced
above. We limit the attention to the runs where we condition on the simulated seismic data
d. Comparing the marginal posterior probabilities in the bottom right corner in Figures 3
to 7 with the corresponding “true” x-values we see how the inversion results, as expected,
depend on the signal-to-noise ratio SN⋆. For each of the parameter sets P1 to P4 we repeat
the analysis for ten different realisations of y, z and d, still keeping the same realisation for
x to allow easier comparison. Figure 8 shows the resulting marginal posterior probabilities
for three cases with parameter set P1. Using the maximum marginal posterior probability
classifier this figure also gives the resulting confusion matrices. As one should expect, the
prediction ability varies somewhat between the different simulated data sets. Figure 9 shows
corresponding results for each of P1 to P4 averaged over the ten runs. Again we see how the
prediction ability deteriorates as SN⋆ becomes lower. Still, we find the results quite impressive
given that the data is as shown in the upper right corners of Figures 3 to 6. It is close to
impossible to identify the true x-values by just looking at the data. Studying the confusion
matrices more in detail we see shale (black) are best identified, that gas-saturated sandstone
(red) are mostly confused with oil-saturated sandstone (green), and oil-saturated sandstone
(green) mostly confused with brine-saturated sandstone (blue). This is all as one should expect
from Figure 2, the cloud of shale is well separated from the others and the clouds of gas- and
oil-saturated sandstone are closer then the clouds of gas- and brine-saturated sandstone.

5.5 A small sensitivity study

Clearly the inversion results above are better than what one can expect for real seismic data.
In the simulation exercises we know, and use, the correct model and parameter values that
generated the data. It is beyond the scope of this paper to do inversion of real seismic data,
our focus is the algorithms for handling the hidden Markov chain with two hidden layers.
However, as a first small test of the consequences of using a wrong model in the inversion we
have done a simulation exercise where the data is generated according to our forward model
with parameter set P1, whereas parameter set P4 is used in the inversion. Our interest is both
how this influences the inversion results and what the consequences are for the convergence
and mixing of the Metropolis–Hastings algorithm. After a little try and error, as discussed
above, we settled on a value ε = 2 · 10−3 for the algorithm tuning parameter, which resulted
in an acceptance rate of 0.49. Again we made two Markov chain runs, one initiated with all
xi = 1 and one with with all xi = 4. Convergence seems to occur after very few iterations and
the mixing is good, see one of the simulated chains in Figure 10. Corresponding to Figure 9,
Figure 11 gives inversion results averaged over ten realisations of y, z and d. The shale (black)
and brine-saturated sandstone are still well identified, whereas this is no longer true for gas-
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Figure 8: For different simulated data sets d in each row, the figure shows, from left to right, the
“true” x, resulting marginal probabilities and confusion matrix using the maximum marginal
probability classifier. Red, green, blue and black represent gas-, oil- and brine-saturated
sandstone and shale, respectively.
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Figure 9: Inversion results for each of the parameter sets P1 to P4: ‘ From left to right,
the figures shows the “true” x-values, marginal posterior probabilities and confusion matrix,
averaged over ten realisations of y, z and d. Red, green, blue and black represent gas-, oil-
and brine-saturated sandstone and shale, respectively.
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Figure 10: Sensitivity study: In the first row from left to right, the truth x, the true elastic
parameters and the synthetic seismic data d. In the second row from left to right, the truth
x, all the samples of x from a simulation x, y and z given d, with initial state x = [0, . . . , 0]T

and the resulting marginal probabilities from the simulation.

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

gas oil brine shale

gas 0.3216 0.4169 0.2378 0.0237
oil 0.0793 0.4304 0.4722 0.0181

brine 0.0017 0.0317 0.8120 0.1546
shale 0.0030 0.0109 0.0584 0.9277

Figure 11: Inversion results for the sensitivity study. We have the average result for all the
ten inversions. Red, green, blue and black represent gas-, oil-, brine-saturated sandstone and
shale, respectively.
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and oil-saturated sandstone.

6 Closing remarks

We have revisited the seismic inversion problem as a hidden Markov model with both continu-
ous and discrete hidden variables. We split the model into a switching linear Gaussian model
and a Gaussian linear model. To handle the first part computationally we propose an approx-
imate forward-backward algorithm. In a number of simulation exercises we demonstrate the
effectiveness of the approximation and how this makes inversion of the seismic model compu-
tationally feasible. The approximate algorithm includes a tuning parameter ε. To choose a
value for ε one must compromise between memory usage and computation time on one side
and approximation accuracy on the other. We have found no automatic way to set the value
of ε, but our experience is that it is relatively easy to find a reasonable value by try and error.
What makes the choice of ε non-trivial is that it is used to decide what terms to drop in
the forward recursions when information from the data is available from one side only. The
correct importance of the various terms becomes available first after the following backward
recursions.

We think the inversion problem in the switching linear Gaussian model for seismic inversion
is harder than the problems previously considered for switching linear dynamical systems
(Zoeter and Heskes, 2006; Bar-Shalom and Li, 1998) and switching state space models (Barber,
2006). Within an interval with the same value for x, the seismic data does not depend on the
mean value of the continuous variable. By the difference taken in (11) the mean value of the
continuous variable influences the data only when the value of x is changing. Otherwise the
data only depends on x via the covariance matrix of the continuous variable. This induces
larger posterior uncertainty in x and it becomes correspondingly more important to have an
approximate forward-backward algorithm that realistically represents this uncertainty. Thus,
we think the importance of including more Gaussian terms in the forward recursion is larger
for the seismic model than for the cases previously considered in Zoeter and Heskes (2006),
Bar-Shalom and Li (1998) and Barber (2006).

We define an approximate forward recursion by dropping Gaussian terms with small
weights. In the references mentioned above an approximation is obtained by taking a single
Gaussian density that (approximately) represents the whole Gaussian mixture. It is clearly
also possible to define an approximate forward recursion by following an intermediate strategy,
finding groups of terms in the Gaussian mixture that have similar mean and covariance and
approximate these by a single Gaussian term. However, the computational cost of finding
what terms to merge is quadratic in the number of terms, whereas the cost of finding what
terms to drop is linear in the number of terms. Thus, unless the number of Gaussian terms
necessary to obtain a sufficient good approximation is dramatically reduced when using the
merging strategy, our simple dropping strategy is preferable. We have done a little experi-
mentation with the merging strategy for our seismic inversion model, but without any success.
However, we think the merging strategy may have a potential if the continuous variable y is
univariate.

The focus of this paper is the computational problem associated with the hidden Markov
seismic model. We have not considered inversion of real seismic data. To answer a real inver-
sion problem one must also solve the associated parameter estimation problem. Preliminary
experimentation with maximum likelihood estimation from simulated data indicates that it
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is not possible to estimate all the model parameters from available seismic data. Either one
must adopt a Bayesian view with informative priors, or information about (at least some of)
the parameters must be obtained from other sources.

References

Aki, K. and Richards, P. G. (1980). Quantitative seismology: Theory and methods, W. H.
Freeman and Company.

Bar-Shalom, Y. and Li, X.-R. (1998). Estimation and Tracking: Principles, Techniques and

Software, Artech House, Norwood, MA.

Barber, D. (2006). Expectation correction for smoothed inference in switching linear dynamical
systems, Journal of machine learning research 7: 2515 – 2540.

Berryman, J. (1995). Mixture theories for rock properties, in T. J. Ahrens (ed.), Rock Physics

and Phase Relations, A Handbook of Physical Constants, Am. Geophys. Union, Washington,
D.C., pp. 205–228.

Buland, A., Kolbjørnsen, O. and Omre, H. (2003). Rapid spatially coupled AVO inversion in
the Fourier domain, Geophysics 68: 824–836.

Buland, A. and Omre, H. (2003). Bayesian linearized AVO inversion, Geophysics 68: 185–198.

Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in Hidden Markov Models, Springer.

Han, X. L. and Green, P. J. (1992). Metropolis methods, Gaussian proposals, and antithetic
variables in P. Barone, A. Frigessi and M. Piccioni (eds), Stochastic Models, Statistical Meth-

ods and Algorithms in Image Analysis, number 74 in Lecture Notes in Statistics, Springer,

Berlin, pp. 142–164.

Hastings, W. (1970). Monte Carlo sampling using Markov chains and their applications,
Biometrica 57: 97–109.

Künsch, H. (2000). State space models and hidden Markov models, in O. Barndorff-Nielsen,
D. Cox and C. Klüppelberg (eds), Complex Stochastic Systems, number 87 in Monographs

on Statsitics and Applied Probability, Chapman & Hall/CRC.

Larsen, A. L., Ulvmoen, M., Omre, H. and Buland, A. (2006). Bayesian lithology/fluid
prediction and simulation on the basis of a Markov-chain prior model, Geophysics 71 issue

5: R69–R78.

MacDonald, I. and Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued

Time Series, Chapman and Hall.

Scott, A. L. (2002). Bayesian methods for hidden Markov models: Recursive compution in
the 21st century, Journal of the American Statistical Association 97: 337–351.

Sheriff, R. E. and Geldart, L. P. (1995). Exploration Seismology, Cambridge university press.

Zoeter, O. and Heskes, T. (2006). Deterministic approximate inference techniques for condi-
tionally Gaussian state space models, Statistics and Computing 16: 279–292.

27


