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Abstract

We consider a Bayesian model for doing lithology–fluid prediction from prestack (am-
plitude versus offset) seismic data. Related to the Bayesian model, we look at two inversion
algorithms. The first algorithm simulates from the posterior distribution with no approxi-
mations, but the algorithm is quite computer demanding. The second inversion algorithm
introduces an approximation in the likelihood model and is in this way able to evaluate
the resulting approximate posterior distribution very rapidly. The consequences of the
approximation for the inversion result are not clear. The objective of this paper is to
evaluate the consequences of the approximation in a synthetic but realistic empirical case
study. The consequences are evaluated by comparing the inversion results from the two
inversion algorithms. In the case study we observe that, dependent on the parameters in
the model, typically the approximate likelihood model preserves between 55% and 80% of
the information in the original likelihood model. The consequences of the approximation
increase when the amount of noise in the model increases. The approximation works bet-
ter when most of the variability is in the rock physics model and it is little seismic noise,
compared to the opposite.

Keywords: amplitude versus offset seismic data, Bayesian model, empirical comparison,
forward–backward algorithm, lithology–fluid prediction, seismic inversion

1 Introduction

In lithology–fluid (LF) prediction we want to determine the lithology and fluid properties of a
reservoir using inversion techniques on seismic data. For an introduction to and presentation
of several techniques for doing LF prediction we recommend Avseth et al. (2005) and references
therein. We focus on LF prediction based on amplitude-versus-offset (AVO) seismic data in
one vertical profile. Before the data are used for inversion, noise effects like moveout, multiples
and the effect of geometrical spreading and absorption are removed. The data are also pre-
stack migrated such that any dip related effects are removed. We focus on the Bayesian model
presented in Larsen et al. (2006) and Hammer and Tjelmeland (2008). As a prior model
for the LF properties a stationary Markov chain is used. Further, the model consists of a
likelihood model that relates the LF properties to a set of elastic material properties and the
AVO seismic data. The model is closely related to Buland and Omre (2003) and Buland et al.
(2003).

To evaluate the model given in Larsen et al. (2006) and Hammer and Tjelmeland (2008) is
a challenging task. Direct sampling from the posterior distribution is infeasible and single site
Metropolis–Hastings algorithms give extremely slow convergence. Hammer and Tjelmeland
(2008) simulate from the model using a more sophisticated block Metropolis–Hastings (MH)
algorithm that proposes changes for all the variables in the model in each iteration. Larsen
et al. (2006) introduce an approximation in the likelihood model and evaluate the resulting



approximate posterior exactly and rapidly. For example, the algorithm needs about a second
to compute the approximate posterior distribution by recursion and generates therefore in-
dependent realizations every half millisecond. In comparison, the algorithm in Hammer and
Tjelmeland (2008) needs hours to estimate properties like marginal distributions or maximum
posterior value and generates independent realizations about every minute.

Central in both of the inversion algorithms is a Hidden Markov model (HMM). In a HMM
we suppose that the observations are a noisy function of an underlying and unknown Markov
process. In traditional HMM the underlying process is a Markov chain. Then the posterior is in
fact a non-stationary Markov chain and can be evaluated analytically, exact and very efficiently
using the Forward-backward (FB) algorithm (Scott, 2002). The FB algorithm consists of two
parts. In the first part we iterate forward computing all the transition propabilities in the
non-stationary Markov chain. In the second part we iterate backward evaluating the posterior
distribution.

What consequences the approximation in Larsen et al. (2006) have on the inversion results
are not clear. The objective of this paper is to evaluate these consequences in an empirical
case study. Since the MH algorithm in Hammer and Tjelmeland (2008) simulates from the
posterior distribution without approximations, we are able to analyse the consequence of
the approximations by comparing the approximate inversion results with the exact inversion
results.

The paper is organised as follows. In Section 2 we present the Bayesian model from
Larsen et al. (2006) and Hammer and Tjelmeland (2008). In Section 3 we give a review of the
inversion methods in the same two papers. Further, in Section 4 we discuss criteria to compare
the inversion results and finally in Section 5 we analyse the consequence of the approximation
in Larsen et al. (2006) in a synthetic but realistic case study.

2 Bayesian seismic model

The Bayesian seismic model relates the LF properties along a vertical profile with elastic
material properties and observed AVO seismic data. The Bayesian model presented is identical
to the one used in Hammer and Tjelmeland (2008) and only differs from Larsen et al. (2006)
in the formulation of the rock physics model. We follow the notation in Larsen et al. (2006).
We define a discretised Bayesian formulation. We use i = 1, . . . , n to denote n travel times
along the vertical profile. Let πi denote LF classes and let αi, βi and γi denote P-wave velocity,
S-wave velocity and density, respectively, at position i. Further define mi = (mi1,mi2,mi3) =
(ln(αi), ln(βi), ln(γi)). We consider s offset values θ1, . . . , θs and let ci = (ci1, . . . , cis)

T ∈ R
s

and di = (di1, . . . , dis)
T ∈ R

s denote reflection coefficients and seismic data, respectively, at
position i for the s different offsets.

2.1 Prior model

As a prior model for the LF classes along the vertical profile, π = (π1, . . . , πn)T , we assume a
stationary Markov chain

P = [p(πi|πi−1)]
L
πi−1,πi=1. (1)

Further, let p(π1) denote the marginal distribution for π1.
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2.2 Likelihood model

The distribution for m = (mT
1 , . . . ,mT

n )T given π is related to a rock physics model (Mavko
et al., 1998). We assume the relation to be Gaussian distributed

[mi|πi] ∼ N(mi|µ(πi),Σ(πi)), (2)

where N(x|µ,Σ) denotes a multivariate Gaussian distribution evaluated in x, with expectation
µ and covariance matrix Σ. We assume µ(πi) and Σ(πi) to be known and that m1, . . . ,mn

are conditionally independent given π.
Further, we assume that the reflection coefficients, c = (cT

1 , . . . , cT
n )T , to be related to m

through a weak contrast approximation of the Zoeppritz equations (Aki and Richards, 1980;
Buland and Omre, 2003)

ci = ΛT ·

(

mi+1 − mi−1

2

)

for i = 2, . . . , n − 1, (3)

where

Λ =





aα(θ1) aα(θ2) · · · aα(θs)
aβ(θ1) aβ(θ2) · · · aβ(θs)
aρ(θ1) aρ(θ2) · · · aρ(θs)



 (4)

and

aα(θ) =
1

2
(1 + tan2(θ)) (5)

aβ(θ) = −4β/α
2
sin2(θ) (6)

aρ(θ) = −4
(

β/α
2
sin2(θ)

)

. (7)

The differences in (3) represent approximations to derivatives originating from the continous
version of the model. To avoid boundary problems for i = 1 and i = n in (3), we use forward
and backward differences, respectively. The relation between m and c may be written on a
linear matrix form. Let A = In � ΛT , where In is the n × n identity matrix and � represent
the Kronecker product. Moreover, let D be a matrix representing the approximations to the
derivatives in (3). We then may write (3) on a linear form as c = ADm.

The seismic data d = (dT
1 , . . . , dT

n )T are related to the reflection coefficients through a
wavelet convolution

dij =
k
∑

u=−k

w(u, θj) · ci−u,j + εij , (8)

where w(·, ·) is a wavelet function. We assume εij to be coloured Gaussian noise, given as

εij =

k
∑

u=−k

w(u, θj)ε
1
i−u,j + ε2

i,j (9)

where ε1
i,j and ε2

i,j are independent Gaussian white noise with Var(ε1
i,j) = σ2

1 and Var(ε1
i,j) =

σ2
2 . We see that the first part of the noise has the same waveform as the wavelet while the

second part is white nose. The relation in (8) may also be written on linear matrix form

d = Wc + Wε1 + ε2 = Wc + ε. (10)
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Finally, by defining G = WAD, we get

d = WADm + Wε1 + ε2 = Gm + ε. (11)

Remark 1. As mentioned above, the Bayesian model in Larsen et al. (2006) only differs from
the model presented above in the rock physics formulation. Larsen et al. (2006) assume
p(mi|πi) to be an empirical distribution in stead of the Gaussian assumption in (2) and are
in this way able to model more general rock physics models. In this paper we only consider
the rock physics model in (2).

2.3 Posterior distribution

The posterior distribution resulting from the prior and likelihood models presented above can
be written as

p(π|d) ∝

∫

. . .

∫

p(d|m)

n
∏

i=1

p(mi|πi)dm

n
∏

i=1

p(πi|πi−1). (12)

Here p(d|m) and p(mi|πi), refer to the relations in (11) and (2), respectively. In p(π|d)
and below, we let p(π1) = p(π1|π0) for notational convenience. We integrate out the elastic
parameters, m, from the posterior distribution to emphasise that our focus is on the LF
classes, π, in the posterior distribution. Larsen et al. (2006) introduce an approximation in
the likelihood which makes it possible to evaluate the approximate posterior analytically and
fast. The resulting approximate posterior distribution can be written on the form

p̂(π|d) ∝

n
∏

i=1

l(d|πi)p(πi|πi−1). (13)

In the next section we give the details in the approximation which results in p̂(π|d) and discuss
how to simulate from p(π|d) and p̂(π|d).

3 Inversion algorithms

In Sections 3.1 and 3.2 we give a review of the inversion methods in Larsen et al. (2006) and
Hammer and Tjelmeland (2008), respectively.

3.1 Fast and approximate inversion

In this section we present the fast and approximate inversion method of Larsen et al. (2006).
From (12), we may write

p(π|d) ∝

∫

. . .

∫

p(m|d)

p(m)

n
∏

i=1

p(mi|πi)dm
n
∏

i=1

p(πi|πi−1). (14)

The distribution p(m) is a mixture of Ln Gaussian components. We are not able to evaluate
this distribution or p(m|d) analytically. Instead we substitute p(m) and p(m|d) with distri-
butions p⋆(m) and p⋆(m|d), respectively, but in such a way that the distribution p(π|d) is not
changed. We acheve this by letting p⋆(m) and p⋆(m|d) satisfy the relation

p⋆(m|d) ∝ p(d|m)p⋆(m). (15)
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Here p(d|m) denotes (11) in the likelihood model. Based on (15) we can then write (14) as

p(π|d) ∝

∫

. . .

∫

p⋆(m|d)

p⋆(m)

n
∏

i=1

p(mi|πi)dm
n
∏

i=1

p(πi|πi−1). (16)

We observe that if let p⋆(m) be Gaussian, then also p⋆(d|m) becomes Gaussian based on (15).
We therefore let p⋆(m) be Gaussian with the possibility of spatial dependencies

p⋆(m) = N(m;µ⋆
m,Σ⋆

m), (17)

where Σ⋆
m = c(δ)�Σ⋆

m0. Here c(δ) is a correlation function to model spatial dependencies along
the vertical profile and Σ⋆

m0 is a 3 × 3 matrix representing intervariable covariance structure
for the elastic parameters.

As a basis for a fast inversion we introduce an approximation by removing the spatial
dependence in p⋆(m) and p⋆(m|d) in (16). This means that the covariance matrices in p⋆(m)
and p⋆(m|d) are 3 × 3 block diagonal, only containing the intervariable dependencies. Note
that we use p⋆(m) with spatial dependencies when we calculate p⋆(m|d) in (15) before we
remove the spatial dependencies. An approximate posterior can then be written as

p̂(π|d) ∝

n
∏

i=1

[

p(πi|πi−1)

∫

p⋆(mi|d)

p⋆(mi)
p(mi|πi)dmi

]

. (18)

Since we assume that the rock-physics model p(mi|πi) is Gaussian distributed, the integrals in
(18) are analytically available. The approximate posterior p̂(π|d) can then be written as given
in (13). The posterior p̂(π|d) is in fact a first order hidden Markov model. The approximate
posterior can therefore be exactly assessed very rapidly using the Forward-backward (FB)
algorithm (Scott, 2002) shortly described in the introduction. Realizations can be generated
extremely fast from p̂(π|d) of course.

3.2 MCMC simulation: Inversion with no approximations

In this section we summarise the Markov chain Monte Carlo (MCMC) simulation algorithm
presented in Hammer and Tjelmeland (2008). The algorithm simulates from p(π|d) with no
approximations. To define an effective MCMC algorithm, we introduce z = (z1, . . . , zn)T ,
where zi = (zi1, . . . , zis)

T ∈ R
s for i = 1, . . . , n,

zi = ci + ε1
i (19)

and ε1
i = (ε1

i1, . . . , ε
1
is)

T as presented in the model in Section 2. Combining (8), (9) and (19)
we get the relation between z and d,

dij|z ∼ N

(

dij ;
k
∑

u=−k

w(u, θj)zi−u,j , σ2
2

)

. (20)

The posterior of interest is then

p(π,m, z|d) ∝ p(π)p(m|π)p(z|m)p(d|z) =
n
∏

i=1

p(πi|πi−1) ·

n
∏

i=1

N (mi|µ(πi),Σ(πi)) · (21)

n
∏

i=1

N

(

zi|Λ
T

(

mi+1 − mi−1

2

)

, σ2
1Is

)

· N(d|Wz, σ2
2Ins),
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where W is the wavelet matrix introduced in Section 2. To simulate effectively from (21) we
construct an MCMC algorithm consisting of two steps in each iteration. The first step is a
Gibbs step (Liu, 2001) where we jointly update m and z conditioned on π and d. We are able to
do this efficiently since the resulting distribution is Gaussian. The second step is a Metropolis–
Hastings step where we propose new values for π and m conditioned on z from a proposal
distribution, q(π,m|z). Then the states of π from each iteration of the MCMC algorithm
are (dependent) realizations from the posterior distribution in p(π|d) after convergence of the
Markov chain.

The key part in the MCMC algorithm is the proposal distribution q(π,m|z). If we where
able to generate proposals from p(π,m|z, d) ∝ p(π,m|z) it would be a Gibbs step and we
would always get acceptance for our proposals. Our goal is therefore to generate proposals
from a distribution close to p(π,m|z). We start by giving an overview of an algorithm that
generate realizations from p(π,m|z), but this algorithm is not feasible to implement on a
computer. Secondly we describe how we introduce approximations which result in the proposal
distribution q(π,m|d). For a detailed description of the proposal distribution, we refer to the
original paper Hammer and Tjelmeland (2008). Here we only give a short review.

So ideally we would like to generate samples from p(π,m|z) which is, using (1), (2) and
(20),

p(π,m|z) ∝ p(π)p(m|π)p(z|m) =
n
∏

i=1

p(πi|πi−1) ·
n
∏

i=1

N (mi|µ(πi),Σ(πi)) ·
n
∏

i=1

N

(

zi|Λ
T

(

mi+1 − mi−1

2

)

, σ2
1I

)

.
(22)

This is a Hidden Markov model of order two with two hidden layers, π and m, and one
observed layer, z. The FB procedure described for the traditional HMMs in Section 1 can also
be used for this model, but the computational efficiency will be much reduced.

The forward part of a forward-backward algorithm for p(π,m|z) sequentially integrates
out mi and πi for i = 1, . . . , n. Because of the Markovian structure of p(π,m|z) and that the
πi’s are discrete and the mi’s are Gaussian these integrals are analytically available. However,
the result after having integrated over (πi,mi), i = 1, . . . , k is a mixture of Lk Gaussian
densities. Thus, the number of mixture terms grows exponentially and the exact algorithm is
computationally feasible only for very small values of n. A corresponding approximate forward
integration algorithm is defined by ignoring the less important Gaussian terms, keeping a
number of mixture terms that makes the algorithm feasible. Thereafter to do the backward
simulation is computationally straight forward. We use the probability distribution defined
by this approximate forward-backward algorithm as proposal distribution in a Metropolis–
Hastings scheme.

Remark 2. In MCMC simulation one always needs to be careful when it comes to the analysis of
the convergence and mixing properties of the Markov chain. The MCMC algorithm described
above converges fast and mixes very well, which makes the results reliable. For an analysis of
the convergence and mixing properties of the MCMC algorithm, see Hammer and Tjelmeland
(2008).

Remark 3. Our main focus will, in the rest of the paper, be on the marginal distribution for
the LF classes. The fast and approximate algorithm in Section 3.1 calculates the marginal
probabilities by the FB algorithm, while the MCMC algorithm in Section 3.2 estimates these
quantities through simulation. This makes the approximate algorithm a much faster alterna-
tive.
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4 Comparison criteria

We seek for ways to quantify the differences between the true posterior p(π|d) and the ap-
proximate posterior p̂(π|d). As mentioned above, we evaluate p̂(π|d) and p(π|d) using the
algorithms in Sections 3.1 and 3.2, respectively. Our focus will be on the posterior marginal
distributions for the LF classes along the vertical profile for the two methods. This is typically
the quantities from the inversions (posterior distributions) of main interest. We may observe
differences by e.g. inspecting the marginal probabilities visually, but to really quantify the
differences, we use univariate measures.

A natural quantity to measure, is the ability the posterior distributions have in regaining
the true π. This does not cover all the aspects of the posterior marginal distributions but at
least a very important one. A technique to archive this is the use of confusion matrices. We
construct L×L confusion matrices, C(p) = [ci,j] such that row i give the posterior probabilities
for the different LF classes when LF class i is the truth. More specifically we define

ci,j =

∑n
k=1 I(π0

k = i)P (πk = j|d),
∑n

k=1 I(π0
k = i)

(23)

where I(·) represent the indicator function and π0
k the true LF class at node k. The posterior

marginal probabilities P (πk = j|d) can either be calculated from p(π|d) or p̂(π|d). Clearly, we
want the diagonals in the confusion matrices to be close to one.

Now we want to measure to what extent a posterior distribution do wrong classifications
related to the true π, and define

∆(p) =
1

n

n
∑

k=1

∑

i6=π0

k

P (πk = i|d) =
1

n

n
∑

k=1

[

1 − P (πk = π0
k|d)

]

. (24)

We see that for each node in (24) we have the posterior probability for all the LF classes except
the true LF class π0

k. Naturally we want ∆(p) to be small. We may calculate (24) based on
either p(π|d) or p̂(π|d) and denote this ∆(p) and ∆(p̂), respectively. We may also want to
calculate (24) based on the prior marginal probabilities, p(πk), and denote the measure ∆(pr).

It is natural to assume that in a practical situation some wrong classifications have more
consequences then others. For example confusing oil with gas may not be as dramatic as
confusing oil with some other rock type, for example shale. We incorporate this by defining
an L×L loss matrix Γ = [γi,j ], where γi,j quantify the consequence of classifying to the class
j if i is the true LF class. A natural generalisation of (24) is then

∆Γ(p) =
1

n

n
∑

k=1

L
∑

i=1

γπ0

k
,i P (πk = i|d). (25)

Similar to (24) we also want (25) to be small. Similar to above we may calculate (25) based
on prior probabilities, p(π|d) or p̂(π|d) and denote the resulting measures ∆Γ(pr), ∆Γ(p) and
∆Γ(p̂), respectively.

We also introduce a metric to quantify the difference between discrete distributions. The
metric is inspired by Endres and Schindelin (2003), but we multiply by the factor 1/(2 ln(2))
so that the maximal distance between the two distributions will be 1. Let p = (p1, . . . , pL)
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and q = (q1, . . . , qL) represent two discrete distributions. We quantify the difference between
p and q with

d(p, q) =

√

√

√

√

1

2 ln(2)

L
∑

i=1

(

pi ln

(

2pi

pi + qi

)

+ qi ln

(

2qi

pi + qi

))

. (26)

We then have that d(p, q)2 satisfies the requirement of being a metric. At an arbitrary node k,
we are typically interested in measuring differences between the marginal prior probabilities
p(πk), posterior marginal probabilities p(πk|d) and approximate posterior marginal probabil-
ities p̂(πk|d). We also want to compare these marginal probabilities against the true π by
defining a “probability distribution” for the true π at a node being 1 for the true LF class and
0 for the others. More specifically, at an arbitrary node k we denote this “probability distri-
bution” p0

k = (p0
k1, . . . , p

0
kL) with p0

ki = I(π0
k = i) for i = 1, . . . , L. It is natural to evaluate the

differences between the distribution above for the whole profile. We compute the difference
by taking the average of the differences for each node. For example for the difference between
the true π and the prior distribution we compute and denote this as follows

d(p0, pr) =
1

n

n
∑

k=1

d(p0
k, p(πk)). (27)

We denote the difference from the true π to p(π|d) and p̂(π|d) with d(p0, p) and d(p0, p̂),
respectively. We denote other combinations of differences similarly.

The posterior distribution is a result of both the prior distribution and the likelihood
model. The approximation introduced to get p̂(π|d) is done in the likelihood. A natural
quantification of the consequences of the approximations is then to see how much the likelihood
models correct on the prior information. We then define based on (24), (25) and (26)

ρ∆ =
∆(pr) − ∆(p̂)

∆(pr) − ∆(p)
(28)

ρ∆Γ
=

∆Γ(pr) − ∆Γ(p̂)

∆(pr) − ∆Γ(p)
(29)

ρd =
d(p0, pr) − d(p0, p̂)

d(p0, pr) − d(p0, p)
. (30)

If the approximations introduced in the likelihood work well, we will expect the numerator
to be almost as large as the denominator in ρ∆, ρ∆Γ

and ρd. If the approximations works
poorly, the approximate likelihood adds little information to the posterior distribution and the
numerator will be small compared to the denominator. This means that ρ∆, ρ∆Γ

and ρd can
be interpreted as quantifying the portion of the information in the true likelihood preserved
by the approximate likelihood.

5 Simulation example

We are now interested in evaluating the approximate posterior p̂(π|d) against the correct
posterior p(π|d) in a synthetic but realistic seismic inversion simulation example. We evaluate
p̂(π|d) using the fast FB algorithm in Section 3.1 and simulate from p(π|d) using the MCMC
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Figure 1: 3000 realizations from the rock physics model considered in the cases BC, NN, NL,
MN and NZ. Red, green, blue and black represent gas, oil and brine saturated sandstone, and
shale, respectively.

algorithm in Section 3.2. The general test design is to generate data from the forward model in
Section 2 and secondly perform inversions using the two algorithms in Section 3. We evaluate
the inversion results based on the criteria described in Section 4.

5.1 Model parameter values

We will evaluate the posteriors p(π|d) and p̂(π|d) for seven different choices for the parameters
in the model. The parameters we choose are closely related to the choices in Larsen et al.
(2006) and Hammer and Tjelmeland (2008). We start by presenting one case, which we
characterise as the base case and denote with BC. Secondly we present how the other six cases
are different from BC. We use a length of the profile equal to n = 100. We consider L = 4 LF
classes, representing gas, oil and brine saturated sandstone, and shale. We use the following
prior transition matrix

P =









0.9441 0 0 0.0559
0.0431 0.9146 0 0.0424
0.0063 0.0230 0.9422 0.0284
0.0201 0.0202 0.1006 0.8591









(31)

defined upward along the vertical profile. The resulting marginal probabilities are p(πi) =
[0.2419, 0.1552, 0.3830, 0.2199]. The transition matrix is the same used in Hammer and Tjelme-
land (2008) and closely related to the one in Larsen et al. (2006). The first row are the proba-
bilities going from gas, the second row going from oil, the third brine saturated sandstone and
the forth going from shale. We observe that we have zero probabilities for transitions from
gas saturated sandstone to oil saturated sandstone, from gas saturated sandstone to brine
saturated sandstone and from oil saturated sandstone to brine saturated sandstone, which
seems reasonable due to gravity.

To illustrate the rock physics model, we generate 3000 realizations from p(mi|πi) in (2)
for each of the four LF classes and secondly calculate the resulting P-wave velocity, S-wave
velocity and density, see Figure 1. In this figure and in the figures below, we let red, green,
blue and black represent gas, oil and brine saturated sandstone, and shale, respectively. We

9



2000 2500 3000 3500 4000 4500
1000

1200

1400

1600

1800

2000

2200

2400

2600

V
P
, P−wave velocity

V
S
, 

S
−

w
a

v
e

 v
e

lo
c
it
y

2000 2500 3000 3500 4000 4500
1800

2000

2200

2400

2600

2800

V
P
, P−wave velocity

D
e

n
s
it
y

1800 2000 2200 2400 2600 2800
1000

1200

1400

1600

1800

2000

2200

2400

2600

Density

V
S
, 
S

−
w

a
v
e

 v
e

lo
c
it
y

2000 2500 3000 3500 4000 4500
1000

1200

1400

1600

1800

2000

2200

2400

2600

V
P
, P−wave velocity

V
S
, 

S
−

w
a

v
e

 v
e

lo
c
it
y

2000 2500 3000 3500 4000 4500
1800

2000

2200

2400

2600

2800

V
P
, P−wave velocity

D
e

n
s
it
y

1800 2000 2200 2400 2600 2800
1000

1200

1400

1600

1800

2000

2200

2400

2600

Density

V
S
, 
S

−
w

a
v
e

 v
e

lo
c
it
y

Figure 2: In row one and two we have 3000 realizations from the rock physics models considered
in the cases RL and RM, respectively. Red, green, blue and black represent gas, oil, brine
saturated sandstone and shale, respectively.

consider s = 5 angles [0◦, 10◦, 20◦, 30◦, 40◦] and use an angle independent Ricker wavelet

w(u) = (1 − 2(π φu)2) exp (−(π φu)2), u = {−k, . . . , k} (32)

in (20), where we let φ = 0.11 and k = 10.
In the base case BC, we set σ1 = 1.5 · 10−2 and σ2 = 0.01σ1. This results in a reasonable

Signal-to-noise ratio in the model. We return to this below. We consider six other cases. In
the first case different from the BC, we change σ1 to 5.0 · 10−4 which can be interpreted as a
case where we have essentially no noise added and denote the case NN. For the next two cases
we change σ1 to 0.85 · 10−2 and 2.6 · 10−2, which can be interpreted as cases with little and
much noise and we denote the cases LN and MN, respectively. Similar to BC, we let in all the
cases σ2 = 0.01σ1. For the next two cases we change the variability in the rock physics model.
In the fifth case we divide the covariance matrices in (2) for the BC with two and in the sixth
case we multiply the covariance matrices with two. The rock physics models are illustrated in
Figure 2. We denote the cases RL and RM respectively, meaning rock physics models with less
and more variability. For RL and RM we choose σ1 = 1.7 · 10−2, σ1 = 0.95 · 10−2, respectively
and σ2 = 0.01σ1. We return to a motivation for these choices below. In the last case we
change the prior transition matrix. We want to see if using a prior distribution with no zero
elements, in contrast to (31), effects the difference between the posteriors p(π|d) and p̂(π|d).
In stead of (31) we use a transition matrix with 0.91 on the diagonal and 0.03 in all the other
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Case Description

BC Base case
NN No noise
LN Little noise
MN Much noise
RL Rock physics model with less variability
RM Rock physics model with more variability
NZ Transition matrix with no zeros

Table 1: Description of the cases considered.

Case Trans. matrix Rock phys. model σ1 σ2 SN SN⋆

BC (31) Figure 1 1.5 · 10−2 0.01σ1 2.91 1.27
NN (31) Figure 1 5.0 · 10−4 0.01σ1 2350 3.49
LN (31) Figure 1 0.85 · 10−2 0.01σ1 8.44 2.17
MN (31) Figure 1 2.6 · 10−2 0.01σ1 0.95 0.64
RL (31) Row one Figure 2 1.7 · 10−2 0.01σ1 1.90 1.28
RM (31) Row two Figure 2 0.95 · 10−2 0.01σ1 8.44 1.31
NZ (33) Figure 1 1.5 · 10−2 0.01σ1 3.02 1.32

Table 2: Parameter values and resulting Signal-to-noise ratios for the different cases consid-
ered.

elements

PNZ =









0.91 0.03 0.03 0.03
0.03 0.91 0.03 0.03
0.03 0.03 0.91 0.03
0.03 0.03 0.03 0.91









. (33)

We denote this case NZ. For this case we use the same noise levels σ1 and σ2 as in BC, which
result in a Signal-to-noise ratio equal to that in BC. All the cases are summarised in Tables 1
and 2.

The parameter sets in Table 2 are chosen to get reasonable Signal-to-noise ratios in the
model. Similar to Hammer and Tjelmeland (2008) we find it natural to introduce two different
interpretations of the Signal-to-noise ratio denoted with SN and SN⋆. For a more detailed
description of the Signal-to-noise ratios, see Hammer and Tjelmeland (2008). For SN we
consider m as the origin for the seismic signal and ε in (10) as the noise part. This is the
way the Signal-to-noise ratio normally is defined in the seismic inversion literature, probably
because the objective there is an inversion back to m and not all the way back to π. Typical
values for SN in the literature are between 1.0 and 5.0. For SN⋆ we consider π as the origin
for the seismic signal and both the variability in the rock physics model in (2) and ε as noise
parts. The Signal-to-noise values for the seven situations are given in Table 2. We see that
SN⋆ is approximately the same for the cases BC, RL, RM and NZ. It is easier to observe the
effect of other changes in the model by holding SN⋆ constant. The effect of changes in SN and
SN⋆ are studied by comparing the cases BC, NN, LN and MN.

In addition to the parameter choices in the model, we need to find a suitable correlation
function c(δ) for the inversion method in Section 3.1. By generating samples of m from the
stochastic model and inspecting the spatial correlations in the samples, we find a correlation
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function of the form
c(δ) = exp (−δ1/2/3) (34)

suitable.

5.2 Results with discussion

In this section we analyse the difference between the posteriors p̂(π|d) and p(π|d) through
several simulations using the algorithms in Sections 3.1 and 3.2. For each of the seven cases in
Table 1 we generate ten independent realizations of π from the prior (1) and resulting seismic
data d using the forward model in Section 2. Secondly we run both of the inversion algorithms
for all the resulting 70 sets of data d.

We start by visually inspecting realizations from the ten inversions in each of the cases
given in Table 1. Figures 3 and 4 shows a few samples from one of the ten inversions for
each of the cases given in Table 1. In the figures, the first column shows the seismic data
d, the second column the truth π, the next four columns independent samples from the fast
and approximate algorithm in Section 3.1 and in the final four columns four independent
samples from the MCMC algorithm in Section 3.2. We see that for both inversion algorithms
the amount of variability in the realisations increases when the noise level increases. We see
that in all the cases considered the realizations have similarities with the truth π. For the
cases NN and LN there are little difference between the realizations from the same inversion
algorithm, while for MN there are large differences, as one would expect. It also seems like
the realizations from p̂(π|d) have some systematic differences compared to the true π while
we do not see the same effect for p(π|d). Except from these observations, it is hard to say
anything more precise about the differences between the posteriors p(π|d) and p̂(π|d).

A step further is to look at marginal probabilities for one set of seismic data for each case.
This is given in Figures 5 and 6. In the two figures, in the first column we have the truth
π. In the second and the fourth columns we have the marginal probabilities for the posteriors
p̂(π|d) and p(π|d), respectively. The first can be computed by the FB recursive algorithm
while the latter must be assessed by sampling. In the third and the fifth columns we have the
distance the marginal probabilities in each node are from the truth using the metric in (26).
In the last column we have the difference between the marginal probabilities in columns two
and four. It seems like the true posterior p(π|d) over all are closer to the true π compared to
the approximate posterior p̂(π|d) as one would expect.

To be able to draw more definite conclusions we need to summarise the results for all the
ten inversions for each of the seven cases. In Table 3 we present confusion matrices for all
the seven cases given in Table 1. We have calculated the elements in the confusion matrix
according to (23). We have in addition, for each case taken the average of the calculated
confusion matrix for each of the ten inversions. We see that the true posterior p(π|d) regains
the truth better then p̂(π|d), as one would expect. However the probabilities along the diagonal
is also mostly large for the approximate posterior p̂(π|d), which means that also this posterior
contains valuable information about the true π.

Now we want to quantify the difference in p(π|d) and p̂(π|d) using (24) and (25). As
mentioned in Section 4 it is natural to expect that some wrong classifications have more
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Figure 3: Row 1 to 4 give results for the cases BC, NN, LN and MN, respectively. In the first
column we have the seismic data d, the second column the truth π, the next four columns
independent samples from the fast and approximate algorithm in Section 3.1 and in the final
four columns four independent samples from the MCMC algorithm in Section 3.2.
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Figure 4: Row 1 to 3 give results for the cases RL, RM and NZ, respectively. In the first
column we have the seismic data d, the second column the truth π, the next four columns
independent samples from the fast and approximate algorithm in Section 3.1 and in the final
four columns four independent samples from the MCMC algorithm in Section 3.2.
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Figure 5: Row 1 to 4 give results for the cases BC, NN, LN and MN, respectively. In the
first column we have the truth π. In the second and the fourth columns we have the marginal
probabilities for the posteriors p̂(π|d) and p(π|d), respectively. In the third and the fifth
columns we have the distance the marginal probabilities in each node are from the truth using
the metric in (26). In the last column we have the difference between the marginal probabilities
in column two and four.
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Figure 6: Row 1 to 3 give results for the cases RL, RM and NZ, respectively. In the first column
we have the truth π. In the second and the fourth columns we have the marginal probabilities
for the posteriors p̂(π|d) and p(π|d), respectively. In the third and the fifth columns we have
the distance the marginal probabilities in each node are from the truth using the metric in
(26). In the last column we have the difference between the marginal probabilities in column
two and four.
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Approximate posterior Posterior

BC

gas oil brine shale

gas 0.459 0.372 0.159 0.001
oil 0.488 0.451 0.061 0.000

brine 0.035 0.196 0.639 0.130
shale 0.013 0.002 0.047 0.939

gas oil brine shale

gas 0.794 0.168 0.035 0.003
oil 0.410 0.495 0.092 0.003

brine 0.003 0.053 0.874 0.069
shale 0.001 0.002 0.078 0.920

NN

gas oil brine shale

gas 0.881 0.118 0.000 0.000
oil 0.542 0.447 0.010 0.000

brine 0.002 0.044 0.936 0.018
shale 0.001 0.001 0.038 0.961

gas oil brine shale

gas 0.996 0.004 0 0
oil 0.018 0.976 0.007 0.000

brine 0 0.000 0.997 0.003
shale 0 0.000 0.006 0.994

LN

gas oil brine shale

gas 0.959 0.041 0.000 0.000
oil 0.224 0.595 0.171 0.010

brine 0.014 0.250 0.600 0.136
shale 0.006 0.032 0.214 0.748

gas oil brine shale

gas 0.983 0.017 0 0.000
oil 0.278 0.614 0.108 0.001

brine 0.001 0.014 0.953 0.032
shale 0.000 0.000 0.081 0.919

MN

gas oil brine shale

gas 0.253 0.458 0.232 0.057
oil 0.429 0.280 0.213 0.078

brine 0.115 0.218 0.474 0.194
shale 0.057 0.048 0.141 0.754

gas oil brine shale

gas 0.623 0.200 0.141 0.037
oil 0.413 0.313 0.253 0.021

brine 0.047 0.137 0.741 0.072
shale 0.013 0.029 0.222 0.735

RL

gas oil brine shale

gas 0.759 0.237 0.002 0.002
oil 0.190 0.333 0.471 0.006

brine 0.049 0.311 0.542 0.098
shale 0.003 0.012 0.134 0.850

gas oil brine shale

gas 0.888 0.111 0.000 0.000
oil 0.113 0.585 0.298 0.003

brine 0.003 0.079 0.900 0.018
shale 0.001 0.004 0.092 0.903

RM

gas oil brine shale

gas 0.716 0.214 0.061 0.010
oil 0.635 0.286 0.071 0.008

brine 0.014 0.186 0.689 0.112
shale 0.019 0.031 0.062 0.888

gas oil brine shale

gas 0.751 0.234 0.009 0.005
oil 0.416 0.542 0.035 0.007

brine 0.002 0.043 0.892 0.063
shale 0.001 0.007 0.073 0.919

NZ

gas oil brine shale

gas 0.539 0.319 0.140 0.002
oil 0.308 0.332 0.336 0.024

brine 0.090 0.294 0.407 0.209
shale 0.016 0.054 0.137 0.794

gas oil brine shale

gas 0.764 0.206 0.028 0.002
oil 0.258 0.632 0.096 0.014

brine 0.039 0.287 0.644 0.031
shale 0.003 0.025 0.101 0.872

Table 3: Confusion matrices. Row 1 to 7 give results for the cases given in Table 1.
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∆(pr) ∆(p̂) ∆(p) ∆Γ(pr) ∆Γ(p̂) ∆Γ(p) ρ∆ ρ∆Γ

BC 0.722 0.391 0.177 0.503 0.178 0.056 0.605 0.733
NN 0.722 0.162 0.008 0.503 0.031 0.002 0.789 0.942
LN 0.722 0.320 0.120 0.503 0.168 0.034 0.671 0.703
MN 0.722 0.565 0.405 0.503 0.303 0.226 0.500 0.727
RL 0.722 0.388 0.140 0.503 0.261 0.086 0.557 0.562
RM 0.722 0.325 0.198 0.503 0.130 0.044 0.763 0.817
NZ 0.750 0.532 0.286 0.525 0.315 0.152 0.469 0.563

Table 4: Row 1 to 7 give results for the cases given in Table 1. In the columns one to three
we have calculated (24) based on the prior distribution, p̂(π|d) and p(π|d) respectively. In
columns four to six we have the same based on (25). In columns seven and eight we have
calculated ρ∆ and ρ∆Γ

in (28) and (29), respectively.

d(p0, pr) d(p0, p̂) d(p0, p) d(p̂, p) ρd

BC 0.719 0.430 0.249 0.373 0.615
NN 0.719 0.195 0.013 0.191 0.747
LN 0.719 0.368 0.163 0.353 0.637
MN 0.719 0.600 0.463 0.393 0.480
RL 0.719 0.427 0.214 0.340 0.567
RM 0.719 0.366 0.246 0.240 0.752
NZ 0.741 0.568 0.357 0.428 0.450

Table 5: Row 1 to 7 give results for the cases given in Table 1. For columns one to four we
have calculated d(p0, pr), d(p0, p̂), d(p0, p) and d(p̂, p), respectively. In column five we have
calculated ρd in (30). For each value, the result are an average over all the ten inversions.

serious consequences than others. We therefore evaluate (25), where we use

Γ =









0 0.1 1 1
0.1 0 1 1
1 1 0 0.1
1 1 0.1 0









, (35)

where the first row quantifies the negative consequences of classifying to gas, oil, brine sat-
urated sandstone and shale if gas is the truth, the second to the forth row is the same for
oil and brine santurated sandstone and shale respectively. We quantify that the consequence
of confusing the type of hydrocarbon or confusing the non-hydrocarbon classes is not as dra-
matic as confusing hydrocarbon with non-hydrocarbon. The results are summarised in Table
4. Row 1 to 7 give results for the cases given in Table 1. In columns one to three we have
calculated (24) based on the prior distribution, p̂(π|d) and p(π|d), respectively. In columns
four to six we have the same based on (25). In columns seven and eight we have calculated ρ∆

and ρ∆Γ
in (28) and (29), respectively. We now quantify the difference between the posterior

distributions considering the metric in (26). The results are summarised in Table 5. Row 1
to 7 give results for the cases given in Table 1. For columns one to four we have calculated
d(p0, pr), d(p0, p̂), d(p0, p) and d(p̂, p), respectively. In column five we have calculated ρd in
(30). Each value is an average of the result from each of the ten inversions.

From row one to four in Tables 4 and 5 we see that the consequences of the approximations
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increase when the amount of noise in the model increases. From row five and six we see that
the consequence of the approximation are smallest for RM meaning that the approximations
seem to work better when the variability in the model are mostly in the rock physics model
and less in the noise part ε. We get the largest consequences for the case NZ where we have the
prior transition matrix without zeros. Using a transition matrix without zeros may be seen as
a weaker prior distribution and it then becomes more important to have a likelihood without
approximations. From columns seven and eight in Table 4 and column five in Table 5 we see
that the approximate likelihood typically preserves between 55% and 80% of the information
in the true likelihood function.

6 Closing remarks

We have considered a Bayesian model for doing LF prediction from AVO seismic data. The
model contains a Markov chain prior, wavelet convolution and a colored noise term. Related
to the Bayesian model, we have considered two inversion algorithms. The first algorithm, from
Larsen et al. (2006), introduces an approximation in the likelihood model and is in this way able
to evaluate exactly the resulting approximate posterior very efficiently. The other algorithm,
presented in Hammer and Tjelmeland (2008), is a more computer demanding alternative, but
simulate from the posterior model without approximations. The objective of this paper have
been to evaluate the approximations introduced in the efficient algorithm, by comparing the
inversion results from the two algorithms.

We have presented a synthetic but realistic study where several different parameter sets in
the Bayesian model have been considered. The conclusions is that the approximate likelihood
model typically preserves between 55 and 80% of the information in the true likelihood model.
The consequences of the approximations increase when the amount of seismic noise in the
model increases. The approximations work better in a situation where most of the variability
is in the rock physics model and little is seismic noise, compared to the opposite case.

For an inversion problem of the size considered in this paper the algorithm without ap-
proximations seems to be the best alternative. In a real situation, we are normally interested
in inverting a large amount of traces and then the algorithm without approximations can end
up with problems, because it is quite computer demanding. For this situation the approximate
alternative in Larsen et al. (2006) is the best alternative. It is also worth to note that the
Bayesian model considered in this paper contains several assumptions and approximations. It
is an open and relevant question how much the approximations introduced in the approximate
algorithm will have on inversion results from real seismic data compared to the impact of the
assumptions and approximations in the Bayesian model.

19



References

Aki, K. and Richards, P. G. (1980). Quantitative seismology: Theory and methods, W. H.
Freeman and Company.

Avseth, P., Mukerji, T. and Mavko, G. (2005). Quantitative Seismic interpretation : Applying

rock physics tools to reduce interpretation risk, Cambridge University Press.

Buland, A., Kolbjørnsen, O. and Omre, H. (2003). Rapid spatially coupled AVO inversion in
the Fourier domain, Geophysics 68: 824–836.

Buland, A. and Omre, H. (2003). Bayesian linearized AVO inversion, Geophysics 68: 185–198.

Endres, D. M. and Schindelin, J. E. (2003). A New Metric for Probability Distributions, IEEE

Trans. Inform. Theory 49: 1858–1860.

Hammer, H. and Tjelmeland, H. (2008). Approximative forward-backward algorithm for a
three layer hidden Markov model - with applications to seismic inversion, Technical Re-

port S4-2008, Department of Mathematical Sciences, Norwegian University of Science and
Technology.

Larsen, A. L., Ulvmoen, M., Omre, H. and Buland, A. (2006). Bayesian lithology/fluid
prediction and simulation on the basis of a Markov-chain prior model, Geophysics 71 issue

5: R69–R78.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing, Springer, Berlin.

Mavko, G., Mukerji, T. and Dvorkin, J. (1998). The Rock Physics Handbook: Tools for Seismic

Analysis of Porous Media, Cambridge University Press.

Scott, A. L. (2002). Bayesian Methods for Hidden Markov Models: Recursive Compution in
the 21st Century, Journal of the American Statistical Association 97: 337–351.

20


