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Abstract

Volatility in financial time series is mainly analysed through two classes of mod-
els; the Generalised Autoregressive Conditional Heteroscedasticity (GARCH) mod-
els and the Stochastic Volatility (SV) ones. GARCH models are straight-forward to
estimate using maximum likelihood techniques, while SV models require more com-
plex inferential and computational tools, like Markov Chains Monte Carlo (MCMC).
Hence, although provided with a series of theoretical advantages, SV models are in
practice much less popular than GARCH ones.

In this paper we solve the problem of inference for some SV models by applying
a new inferential tool, Integrated Nested Laplace Approximations (INLA), which
substitutes MCMC simulations with accurate deterministic approximations, making
a full Bayesian analysis of many kinds of SV models extremely fast and accurate.
Our hope is that the use of INLA will help SV models to become more appealing
to the financial industry where, due to their complexity, they are rarely used in
practice.

Keywords
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1 Introduction

Time varying volatility is one of the main features of financial time series, like asset prices
and exchange rates. It is mainly analysed through two classes of models; the Gener-
alised Autoregressive Conditional Heteroscedasticity (GARCH) models and the Stochastic
Volatility (SV) ones. The GARCH models were introduced by Engle (1982) and Bollerslev
(1986). In these models, the conditional variance is assumed to be a function of previous
observations and variances. Several different versions of the GARCH model have been
proposed in order to accommodate for observed features like heavy tails and leverage ef-
fects (see for example Glosten et al. (1993); Nelson (1990); Engle et al. (1987) and Franses
et al. (2008)).

In the SV models, the variance is specified to follow some latent stochastic process.
SV models were introduced in their basic form by Taylor (1982). They can be written as

rt = exp(ht/2)εt, (1)

ht = ν + φ(ht−1 − ν) + σηt, (2)

where εt and ηt are i.i.d. N (0, 1), rt is the return and ht is the logarithm of the variance
on day t. Several extensions to the original SV model can be found. For example, heavier
tails in the returns have been allowed by using the Student-t distribution (Ruiz, 1994;
Harvey et al., 1994) or the Generalised Error Distribution (Liesenfeld and Jung, 2000)
to model the random noise, εt, in Equation (1). Eraker et al. (2003) introduce jumps in
both the return and the log-variance process. Harvey et al. (1994) model leverage effects
by letting the two noise processes, εt and ηt, be correlated.

At present, GARCH models are by far the most popular in terms of real life appli-
cations. However, this seems mostly to be due to computational convenience (Fleming
and Kirby, 2003). The superior performance of SV models over GARCH-type models in
terms of in-sample fitting is generally accepted in the literature (Danielsson, 1994; Geweke,
1994; Kim et al., 1998), while there seems to be some debate about out-of-sample perfor-
mance (see for example Bluhm and Yu (2001), Yu (2002), Sadorsky (2004), and Pederzoli
(2006)). It should be noticed, however, that because of the computational complexity
of SV models, it is often only the basic SV model that is compared to the GARCH al-
ternatives. In general, SV models are recognised to be more flexible and realistic than
GARCH models (Kim et al., 1998). Moreover, they represent the natural discrete time
version of the continuous time models upon which much of modern finance theory has
been developed.

The main difficulty related to SV models is computational. In fact, while GARCH-type
models, even in their most complex form, are relatively straightforward to estimate using
maximum likelihood optimisation techniques, SV models require a much more involved
statistical and computational implementation. In fact, because of the unobserved condi-
tional variance, the likelihood function in SV models does not have a closed form. The
challenge is even bigger if we leave the basic SV model for more complex versions. Several
estimation methods have been proposed in the literature, ranging from the less efficient
generalised methods of moments (Andersen and Sorensen, 1996), and quasi-likelihood
methods (Harvey et al., 1994) to more efficient methods such as simulated maximum
likelihood (Danielsson, 1994) and Markov Chain Monte Carlo (MCMC) (Andersen et al.,
1999). For a complete review over estimation methods for stochastic volatility models
proposed until now, see Broto and Puiz (2004).

Since MCMC is considered one of the most efficient estimation tools (Andersen et al.,
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1999), much attention has been devoted to the development of efficient MCMC algorithms
for SV models, e.g. Chib et al. (2002), and Shephard and Pitt (1997). However, creating
fast and efficient MCMC algorithms is far from easy. In fact, the large dimension of the
latent log-variance vector and the strong correlation structures which are often found in
SV models, make even well constructed MCMC algorithms slow, and their convergence
dubious to assure (see for example Rue and Held (2005)).

In this we paper solve the inferential problem for SV models by Integrated Nested
Laplace Approximations (INLA). INLA was introduced by Rue et al. (2009). It is a new
approach for inference on latent Gaussian models (which most SV models can be thought
to be part of). It substitutes MCMC sampling with a series of numerical approximations,
providing very accurate estimates for the posterior marginals and the parameters of the
model in only a fraction of the time needed by MCMC algorithms. We show that, using
INLA, a complete Bayesian analysis of SV models is possible with largely reduced com-
putational costs, even when we depart from the basic model. In particular, the model for
ǫt in Equation (1) can be changed without large impacts on the estimation procedure.

Moreover, INLA makes it possible to compute routinely, and at a very low additional
cost, other quantities of interest, such as marginal likelihoods. These can be used as a
tool for model comparison. Many different models can then be tested against each other,
without waiting for long computations.

A thorough comparison between results from INLA and MCMC has been performed
in Rue et al. (2009). They show that INLA outperforms even smart MCMC schemes in
terms of accuracy. Even extremely long MCMC runs could not detect any error in the
approximation produced by INLA, despite the computational time for INLA being only
a small fraction of the time needed by MCMC.

The aim of this paper is not to introduce new SV models or to assess which model
best fits a certain data set, but to show how existing models, which are considered ’hard’
to solve can be computed quickly and in a user friendly way using INLA. Our hope is that
the use of INLA will help SV models to exit the academic world and reach the financial
industry, where, due to the estimation complexity, few actors use them in practice. With
almost instant inference, the estimation can be done in real time by an active trader or
risk manager operating in the market.

The rest of the paper is organised as follows. In Section 2, we introduce the basic SV
model and the extensions that are examined in this paper. Section 3 describes the basics
of INLA and how it can be applied to SV models. In Section 4, INLA is applied to fit
different SV models to two different data sets, while Section 5 discusses how INLA could
be applied to generalisations of the basic SV model. Finally, we end with a discussion in
Section 6.

2 Stochastic Volatility Models

2.1 Model description

The basic SV model, given by Equations (1) and (2), assumes that the latent log-variance
vector h = {h1, . . . , hn} follows a stationary autoregressive model of order 1 (AR1) with
a common mean ν, a persistence parameter φ ∈ (0, 1) and a Gaussian noise ηt. The
conditional distribution of the returns rt, given ht, is Gaussian with time varying variance.

In many real data applications, a Gaussian distribution for ǫt seems to be too restric-
tive. Financial time series, in fact, tend to show heavier tails than those of a Gaussian
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distribution. In this paper, we consider three different models for ǫt: the Gaussian, the
Student-t and the normal inverse Gaussian (NIG) distribution. All three distributions
are standardised in order to have zero mean and unit variance. The standardised NIG
density is defined as

f(y; θ1) =
γψ

π

√
β2 + ψ2

(γx+ β)2 + ψ2
exp

(
ψ2 + β(γx+ β)

)
K1

(√
(β2 + ψ2) ((γx+ β)2 + ψ2)

)
,

where K1(·) is the modified Bessel function of the third kind of order 1 and γ2 = 1+β2/ψ2.
The parameter β controls the skewness of the density, while ψ is a shape parameter. The
NIG model is widely used in finance. In the context of SV models it has been used to define
a model, alternative to that in Equations (1) and (2), in which an explicit formulation for
the likelihood function exists, see for example Barndorff-Nielsen (1997) and Andersson
(2001). However, to our knowledge, the NIG distribution has never been used to model
the random noise ǫt in Equation (1). The Student-t distribution, on the other hand, is a
quite popular choice for modelling ǫt, see for example Chib et al. (2002).

The model specification is completed with the definition of prior distributions for
all the parameters of the model. For the common mean ν in Equation (2) we assume
a Gaussian prior with a large known variance and mean 0. The joint density for the
vector x = {h1, h2, . . . , ν}, with length |x| = n, will then be Gaussian with mean 0 and
covariance matrix Σ governed by the parameters θ1 = {φ, σ2}. To the variance σ2, we
assign a vague inverse Gamma prior. As for the persistence parameter, φ, we assign the
parameter

φ∗ = logit
φ+ 1

2

a Gaussian distribution whose precision parameter is chosen such that the corresponding
prior for φ is roughly uniform in (0, 1). This is done to have all parameters defined over the
whole real line, which gives computational simplifications. However, other priors could be
defined without much influence on the estimation procedure. Finally, we need to assign
priors to the parameters in the distribution for ǫt. We indicate these generically with θ2:
the Gaussian model has no parameters (θ2 = ∅), the Student-t model has one parameter
ξ (θ2 = ξ), and the NIG model has two parameters (θ2 = (β, ψ)). We assign vague priors
to all these parameters. Let θ = (θ1, θ2) be the vector of all model parameters, its lenght
M then varies from a minimum of 2 (Gaussian model for ǫt) to a maximum of 4 (NIG
model for ǫt).

2.2 Inferential goals

We assume that, in general, the goal of inference for the models presented in Section 2.1, is
the marginals from the posterior distribution of θ and x given the nd observed returns r.
The posterior distribution is proportional to the product of the priors and the likelihood,
i.e.:

π(x, θ | r) ∝ π(θ) π(x | θ)

nd∏

t=1

π(rt | ht, θ). (3)

The marginals π(hnd+i|r) and π(ht|r) from the posterior density in Equation (3) can
be used for prediction and smoothing of the latent log-volatility vector. Further, the
marginals π(θj |r) and π(ν|r) can be used for parameter estimation.
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One is often also interested in predicting future returns through the density π(rnd+i|r).
If we can compute marginals for the latent volatility vector, the predictive densities for
the returns can be found as

π(rnd+i|r) =

∫
π(rnd+i|hnd+i)π(hnd+i|r)dhnd+i. (4)

This is a one dimensional integral, which is not difficult to solve numerically. If the
likelihood density π(rnd+i|hnd+i) depends on some parameters θ2 (e.g. in the case of ǫt
being Student-t or NIG-distributed), a common practice is to fix the parameters at some
convenient value; for example the posterior mean, and consider π(rnd+i|r, θ̂2). ¿From the
density in Equation (4) it is possible to numerically compute the Value at Risk (VaR).
The VaR is essentially a quantile of the return distribution, widely used as a measure of
risk in the financial industry.

3 Integrated Nested Laplace Approximation

The main problem with inference about Equation (3) is that it is not available in closed
form, since the likelihood (as a function of x) is far from Gaussian. Although it is
possible to implement MCMC algorithms to explore π(x, θ | r), they are often very slow.
We introduce a new tool for inference about marginals from π(x, θ | r), named Integrated
Nested Laplace Approximations (INLA), which provide very accurate approximations to
π(ht | r), π(ν | r), and π(θj | r) in only a fraction of the time used by clever MCMC
algorithms. Before describing the INLA scheme in details in Section 3.2, we present the
main building blocks of this approach in Section 3.1. Section 3.3 discusses the speed-up
of INLA using an Empirical Bayes approach, while Sections 3.4 and 3.5 describe how
prediction and model comparison may be conducted using INLA.

3.1 Fundamentals of the INLA approach

3.1.1 Sparse matrix computations

The Gaussian vector x exhibits a particular conditional dependence (or Markov) structure
which is reflected in its precision matrix (the inverse of the covariance matrix) Q = Σ−1.
In particular, it is easy to show that, for the SV models presented here, Q is a tridiagonal
matrix, where in addition also the last row and column are non-zero (this row and column
are due to the common mean term). Most of the entries in the precision matrix are zero,
which means that Q is sparse. The computational efficiency of the INLA approach relies
on the sparseness of the precision matrix. All matrix operations, like solving systems and
determinant computations, can be solved much faster for sparse matrices than for dense
ones, see Rue and Held (2005).

3.1.2 The Gaussian approximation

The core of the INLA procedure is a Gaussian approximation to densities of the form

π(x|r, θ) ∝ exp

{
−1

2
xT Qx +

∑
gt(ht)

}
, (5)

where x = {h, ν} as previously stated, and gt(ht) = log π(rt|ht, θ). The Gaussian approx-
imation, π̃G(x|r, θ), is found by matching the mode and the curvature at the mode. The
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mode is computed iteratively using a Newton-Raphson algorithm. The approximation is

π̃G(x|r, θ) = K1 exp

{
−1

2
(x − µ)T (Q + diag(c))(x − µ)

}
, (6)

where K1 is a normalising constant, µ is the modal value of π(x|r, θ) and the vector c

is given by second order terms in the Taylor expansion of
∑
gt(ht) at the modal value

µ. Note that the new precision matrix, Q + diag(c), will have exactly the same non-zero
structure as the precision matrix Q.

3.2 The INLA scheme

The INLA algorithm builds approximations to π(xt|r), t = 1, . . . , n using the following
scheme:

1. Build an approximation to π(θ|r).

2. Build an approximation to π(xt|θ, r).

3. Compute an approximation to π(xt|r) using the approximations from steps 1 and
2.

In Sections 3.2.1-3.2.3 each of the three steps are described in more details.

3.2.1 Approximating π(θ|r)

An approximation to π(θ|r) is built starting from the identity

π(θ|r) =
π(x, θ|r)

π(x|θ, r)
∝ π(x, θ, r)

π(x|θ, r)
, (7)

and then approximating the denominator of the rightmost part of Equation (7) via the
Gaussian approximation described in Section 3.1.2. Hence, the approximation to π(θ|r)
is:

π̃(θ|r) = K2
π(x, r, θ)

π̃G(x|θ, r)

∣∣∣∣∣
x=x∗(θ)

, (8)

whereK2 is the normalising constant, π̃G(x|θ, r) is the Gaussian approximation to π(x|θ, r),
and x∗(θ) is the mode of π(x|θ, r). Equation (8) is equivalent to Tierney and Kadane
(1986)’s Laplace approximation of a marginal posterior distribution, suggesting that the

approximation error is of order O(n
−3/2
d ).

3.2.2 Approximating π(xt|θ, r)

Approximating π(xt|θ, r) is the most challenging part of the INLA procedure. The start-
ing point is the identity

π(xt|θ, r) =
π(x|θ, r)

π(x−t|xt, θ, r)
∝ π(x, θ, r)

π(x−t|xt, θ, r)
, (9)
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where x−t indicates that element t of the vector has been removed. The denominator of
the rightmost fraction is approximated using the results from Section 3.1.2, giving the
following approximation to π(xt|θ, r):

π̃(xt|θ, r) ∝ π(x, θ, r)

π̃GG(x−t|xt, θ, r)

∣∣∣∣∣
x−t=x∗

−t
(xt,θ)

. (10)

This approximation can be quite heavy from a computational point of view, and is there-
fore not convenient in practice. The solution in Rue et al. (2009) is to compute a simplified
version π̃S(xt|θ, r) of π̃(xt|θ, r), using a series expansion of the logarithm of π̃(xt|θ, r):

log π̃S(xt|θ, r) = constant − 1

2
x2

t + γ
(1)
t (θ)xt +

1

6
x3

tγ
(3)
t (θ) + · · · . (11)

Here γ
(1)
t and γ

(3)
t are the terms in the Taylor expansion, which can be derived re-using

already performed computations, resulting in a very fast algorithm.

Since the third order term is unbounded, Equation (11) does not define a proper
density. We therefore fit the logarithm of a Skew-Normal distribution (Azzalini and
Capitanio, 1999) to the Taylor Expansion. The fit is done such that the third derivative

at the mode is γ
(3)
t , the mean is γ

(1)
t and the variance is 1. In this way, γ

(3)
t only contributes

to the skewness, whereas the adjustment in the mean comes from γ
(1)
t . For details on how

to derive the series expansion in Equation (11) and on how to fit the Skew-Normal density
to Equation (11), see Rue et al. (2009).

3.2.3 Approximating π(xt|r)

Once approximations to π(θ|r) and π(xt|θ, r) are available, we compute an approximation
to π(xt|r) using the numerical integration scheme:

π̃(xt|r) =
∑

k

π̃(xt|θk, r)π̃(θk|r)∆k, (12)

for some selected values θk of θ. An easy way to select the points θk, is to create a grid
of points covering the area of high density for π̃(θ|r). In order to correctly locate the
interesting area, we compute the mode θ∗ of π̃(θ|r), and its Hessian H(θ∗) at the mode,
and use those as guidelines. It turns out that as long as the points are well located in
the θ-space, the number of points necessary to obtain a good accuracy of Equation (12),
does not need to be high. For more details about the grid construction and alternative
ways to select points in the θ-space, see Rue et al. (2009).

3.3 Empirical Bayes scheme

The scheme described in Section 3.2 performs a full Bayesian analysis. A faster alter-
native would be to assume an Empirical Bayes approach and approximate π(xt|r) with
π̃(xt|r, θ∗) where θ∗ is the mode of π̃(θ|r). One then avoids the numerical integration de-
scribed in Section 3.2.3. The Empirical Bayes is very accurate in cases where the posterior
distribution of θ|r is reasonably regular.
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3.4 Predicting future return values

As stated in Section 2.2 it is often of interest to predict future return values, rnd+i.
The INLA approach does not compute the marginals, π(rnd+i|r), directly. However, an
approximation for such densities can easily be found via numerical approximation of the
integral in Equation (4) as

π̃(rnd+i|r) ≈
∑

j

π(rnd+i|hj
nd+i)π̃(hj

nd+i|r)∆j , (13)

where π̃(hj
nd+i|r) is the approximation of the posterior marginal for hj

nd+i|r computed
by INLA. For likelihood models which depend on additional parameters, e.g. where the
error distribution is Student-t or NIG, we have chosen to fix the parameter values at the
posterior mode computed during the INLA process.

3.5 Model comparison

While the main focus of the INLA approach is to compute posterior marginals, it is also
possible to compute other interesting quantities with low additional costs. In particular,
marginal likelihoods π(r) are useful quantities for model comparison. For instance, two
competing and apriori equiprobable models M1 and M2 may be compared using the
Bayes factor, defined as the ratio between the corresponding marginal likelihoods:

B(1, 2) =
π(r|M1)

π(r|M2)
.

Jeffreys (1961) provides a scale for the interpretation of logB(1, 2). Model comparison be-
comes particularly interesting when a fast inference procedure like INLA makes it possible
to fit more models to the same data set.

In the INLA framework, the marginal likelihood, π(r), can be approximated as the
normalising constant of π̃(θ|r):

π̃(r) =

∫
π(x, θ, r)

π̃G(x|θ, r)

∣∣∣∣∣
x=x⋆(θ)

dθ. (14)

We propose two approximations for the marginal likelihood π(r). The first, cruder
one, π̃1(r), is based on approximating the density of θ|r with a Gaussian distribution

π̃G(θ|r) = N (θ∗,H−1).

Here θ∗ is the modal configuration of π(θ|r) and H is the negative Hessian matrix
computed at the mode. This gives

π̃1(r) = (2π)M/2|H|−1/2. (15)

The second approximation, π̃2(r), is more precise, but also more expensive to compute.
It assumes no parametric form of the density of θ|r. Instead it is computed by solving the
integral in Equation (14) numerically using selected values θk of θ. This approximation
allows departures from Gaussianity, a feature often encountered in real applications.

Note that when computing an approximation to the marginal likelihood π(r), aim-
ing to use it for model comparison, it is important to include all normalising constants
that appear in the priors for the hyperparameters, π(θ), and the latent vector, π(x|θ).
Moreover, one has to include the constants in the likelihood term, π(r|x, θ).
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Figure 1: SP500 index: Logarithmic returns from 02.01.2003 to 31.10.2006.

4 Examples

In this section we apply the INLA approach to fit the models presented in Section 2.1 to
two different data sets. We will emphasize that the aim of this paper is rather to present
some of the possibilities offered by the INLA approach than to claim which model is the
best for each data set.

All algorithms necessary for the INLA approach are efficiently implemented in the
inla program, built upon the GMRFLib-library (Rue and Held, 2005, Appendix), open-
source and freely available from http://www.math.ntnu.no/∼hrue/. Both the GMRFLib-
library and the inla program use the Open-MP API (see www.openmp.org) to speed up
computation on multi-core processors. A user friendly interface to the GMRFLib-library
and inla program, the R package INLA, is also available from the same web page. All
examples in this paper have been implemented using the R interface.

Detailed comparisons between INLA and MCMC results can be found in Rue et al.
(2009). In this paper, we have compared the results and computing times using INLA
to those using a Gibbs sampler, as implemented in WinBUGS/OpenBUGS (Spiegelhalter
et al., 2003).Our choice of WinBUGS/OpenBUGS is due to two reasons. First, it has
been proposed as a tool to implement MCMC algorithms on SV models by Mayer and Yu
(2000). Second, the programming effort the user has to put in WinBUGS/OpenBUGS is
similar to that he has to put in the R package INLA.

4.1 SP500 index data

Our first data set consists of 1217 daily closing quotations of the SP500 index from
02.01.2003 to 31.10.2006. Figure 1 shows the logarithmic returns for the SP500 index
data. We fit the models described in Section 2.1 to the data set. The main benefit of the
INLA approach is its speed. The computing time goes from 5 seconds for the Gaussian
model, to 10 seconds for the NIG one on a quad core 2.6GHz CPU. Table 1 shows the
estimated posterior mean and standard deviation for the parameters as computed from the
approximated posterior marginals. In Table 2 the same parameters for the Gaussian and
Student-t models are estimated based on 106 samples using WinBUGS/OpenBUGS (the
NIG model is not implemented in WinBUGS/OpenBUGS). Despite the large number of
samples, trace plots (not included here) still show signs of the “stickiness” of the MCMC
algorithm. The time used by WinBUGS/OpenBUGS to produce 106 samples was close
to two hours.

10



Table 1: SP500: Posterior means and standard deviations for the parameters in the SV
models obtained using INLA.

Model ν φ τ = 1/σ2 d.o.f. β ψ
Gaussian -0.52(0.23) 0.98(0.006) 95.15(35.66) - - -
Student-t -0.50(0.25) 0.98(0.005) 123.44(50.75) 17.14(8.58) - -
NIG -0.48(0.25) 0.99(0.005) 135.11(56.14) - -0.32(0.19) 2.39(0.64)

Table 2: SP500: Posterior means and standard deviations for the parameters in the SV
models fit to the SP500 index data set obtained using WinBUGS/OpenBUGS.

Model ν φ τ = 1/σ2 d.o.f.
Gaussian -0.52(0.25) 0.98(0.007) 96.6(41.09) -
Student-t -0.48(0.29) 0.98(0.005) 142.0(57.6) 19.6(15.17)

The three models may be compared using marginal likelihoods. We compute both
approximations described in Section 3.5. The results, shown in Table 3 indicate that the
Gaussian distribution for ǫt is preferable. This is not strange if we study the estimated
parameters in Table 1. The degrees of freedom parameter in the Student-t model is quite
large, and the parameters of the NIG distribution correspond to a density which is quite
similar to the Gaussian.

Figure 2 shows the posterior mean and the 25 and 97,5% quantiles for the estimated
latent historical volatility, exp(ht/2), in percent, as well as for the predicted volatility
during the 60 day-period starting in 01.11.2006. Figure 3 displays the Gaussian, Student-
t and NIG densities for the predicted return (in percent) at 01.11.2006, and Table 4 shows
the 95 and 99% VaRs corresponding to these densities. Both the figures and the values
in the table indicate that the differences between the models is small.

4.2 Microsoft data

Our second example consists of 1292 daily closing prices of the Microsoft stock from
03.01.2003 to 21.02.2008. The log-returns are shown in Figure 4. They are much more
volatile than the SP500 index returns, and also contain some extreme values.

Table 5 shows the estimated posterior mean and standard deviation for the parameters
estimated using INLA, and Table 6 reports the WinBUGS/OpenBUGS estimates for the
parameters in the Gaussian and Student-t models. It can be noticed that, both for INLA
and WinBUGS, the estimated precision for the latent vector is considerably lower for the
Gaussian model than for the two others.

Table 3: SP500: Approximated values for the log marginal likelihood obtained using
INLA. The the preferred model is indicated by a (∗).

Model Marg. Likelihood Marg. Likelihood
log π̃1(r) log π̃2(r)

Gaussian -1391.47(*) -1391.49(*)
Student-t -1393.28 -1393.34
NIG -1396.87 -1396.87
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Figure 2: SP500 index: Posterior mean and the 25 and 97,5% quantiles for the estimated
latent historical volatility, exp(ht/2), in percent, as well as for the predicted volatility
during the 60 day-period starting in 01.11.2006 for the three different models. The solid
line corresponds to the Gaussian model, the broken line to the Student-t model and the
dotted line to the NIG model. The vertical line corresponds to the end of the estimation
period.
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Figure 3: SP500 index: The Gaussian, Student-t and NIG densities for the predicted
return (in percent) at 01.11.2006. The solid line corresponds to the Gaussian model, the
broken line to the Student-t model, and the dotted line to the NIG model.

Table 4: SP500: VaR at 01.11.2006 for the return in percent assuming zero mean.

Model VaR0.95 VaR0.99

Gaussian 1.405 2.113
Student-t 1.436 2.216
NIG 1.407 2.143

12



Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1
2003 2004 2005 2006 2007 2008

-0.1
2

-0.1
0

-0.0
8

-0.0
6

-0.0
4

-0.0
2

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

Figure 4: Microsoft stock: Logarithmic returns from 03.01.2003 to 21.02.2008.

Table 5: Microsoft:Posterior means and standard deviations for the parameters in the
SV models obtained using INLA.

Model ν φ τ = 1/σ2 d.o.f. β ψ
Gaussian 0.21(0.14) 0.92(0.02) 8.98(2.44) - - -
Student-t 0.45(0.25) 0.98(0.01) 61.55(27.61) 5.48(0.89) - -
NIG 0.41(0.23) 0.98(0.01) 48.33(20.89) - 0.11(0.08) 1.28(0.15)

Table 6: Microsoft: Posterior means and standard deviations for the parameters in the
SV models obtained using WinBUGS/OpenBUGS.

Model ν φ τ = 1/σ2 d.o.f.
AR-1 Gaussian 0.20(0.14) 0.92(0.02) 9.1(3.1) -
AR-1 Student-t 0.45(0.28) 0.98(0.01) 67.4(40.4) 5.4(0.9)
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Table 7: Microsoft: Approximated values for the log marginal likelihood obtained using
INLA. The the preferred model is indicated by a (∗).

Model Marg. Likelihood Marg. Likelihood
log π̃1(r) logπ̃2(r)

Gaussian -2083.33 -2083.39
Student-t -2065.74(*) -2065.87(*)
NIG -2073.86 -2074.06

Table 8: Microsoft: VaR at 22.02.08 for the return in percent assuming zero mean.

Model VaR0.95 VaR0.99

Gaussian 1.842 3.054
Student-t 2.593 4.315
NIG 2.532 4.172

As in the SP500 example, we use the estimated marginal likelihoods to compare the
models. The results are reported in Table 7.

The preferred model is the one with Student-t distribution for ǫt. This agrees well with
the fact that the Microsoft data presents extreme values that would not be allowed under
a Gaussian model. The results for the NIG distribution are very similar to those obtained
under the Student-t model. Hence, it is reasonable that the model choice criteria prefers
the Student-t model with only one parameter in favour of the NIG model with two.

Figure 5(a) displays the posterior mean, and Figure 5(b) the 25 and 97,5% quantiles,
for the estimated latent historical volatility in percent, as well as for the predicted volatility
during the 60 day-period starting in 22.02.2008. On the contrary to the SP500 example,
for which all models gave similar results, the Gaussian model now differs quite much from
the other two. This is especially the case for the volatility prediction. The posterior mean
appears to be shifted, and the inter-quantile range wider, compared to the two other
models. The difference is also apparent looking at the characteristics of the distributions
for the predicted return (in percent), shown in Figure 6 and Table 8.

5 Extensions

The INLA approximation may, without much additional effort, deal with some of the
extensions of the SV model most commonly proposed in the literature. In this section we
describe how non-stationarity, leverage effects and several dimensions may be modelled
using INLA.

5.1 Non-stationary models

For real financial time series, the mean-reverting parameter φ in Equation (2) is often
estimated to be very close to one, indicating an almost non-stationary model. This might
create problems in the estimation of the model parameters, since the stationary AR1
model assumes a constant mean level for the volatility, while the actual mean could be
slowly changing over time.

The non-stationary random walk model of order 1 (RW1) is an alternative to the
AR1 model for the latent log-variance. Non-stationary SV models have been used as
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Figure 5: Microsoft stock: The upper panel shows posterior mean for the estimated
latent historical volatility, exp(ht/2), in percent, as well as for the predicted volatility
during the 60 day-period starting in 22.02.2008 for the three different models. The lower
panel shows the 25 and 97,5% quantiles for the same quantities. The solid line corresponds
to the Gaussian model, the broken line to the Student-t model and the dotted line to the
NIG model. The vertical line corresponds to the end of the estimation period.
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Figure 6: Microsoft stock: The Gaussian, Student-t and NIG densities for the predicted
return (in percent) at 22.02.2008. The solid line corresponds to the Gaussian model, the
broken line to the Student-t model and the dotted line to the NIG model.
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alternatives to the integrated GARCH (or IGARCH) model, see Harvey et al. (1994)
and Andersson (2001). In a non-stationary SV model, Equation (1) is unchanged, while
Equation (2) becomes

ht = ht−1 + σηt, (16)

where ηt is standardised Gaussian noise.
Estimating this kind of models using the INLA approach is straightforward. The

only change from the stationary model is the zero structure of the prior precision matrix
Q for the latent vector x, which now includes only the log-variances {h1, h2, . . . }. All
computations remain exactly the same. Non-stationary SV models can be implemented
using the current version of the R package INLA.

5.2 Asymmetric SV models

One feature often observed in financial studies is that volatility responds asymmetrically
to positive and negative return shocks. Several explanations have been proposed in the
literature to explain the presence of such an asymmetric relationship between volatility
and returns. Two of the most widely cited, Black (1976) and Christie (1982), suggest
that the asymmetry reflects a change in financial leverage. In particular, the argument is
that, when an asset experiences a positive (negative) return, it becomes less (more) risky,
thus decreasing (increasing) its volatility. In other words, there is a negative correlation
between returns and volatility. This is known as the leverage effect.

A univariate SV model with leverage effects was first introduced by Harvey and
Shephard (1996), letting the two error processes in Equations (1) and (2) be negatively
correlated. Formally, Corr(ǫt, ηt+1) = ρ, with ρ < 0. Note that we prefer to model
Corr(ǫt, ηt+1), and not Corr(ǫt, ηt), because the former is more logically appealing both
from a theoretical and a empirical point of view, see Yu (2005).

The SV model with leverage effects is estimated by the quasi-likelihood method in
Harvey and Shephard (1996), and by MCMC in Mayer and Yu (2000). We have not yet
implemented the algorithms for this kind of models in the R package INLA. However, it
can be done, and in this section we describe how we can perform approximate inference
using INLA for SV models with correlated errors.

The core of the INLA approach is the Gaussian approximation to π(x|θ, r). In order
determine this approximation for models with leverage effects, we need to have an expres-
sion for the likelihood of each data point, π(rt|x, θ). With some algebra, it can be shown
that

π(rt|x, θ) = π(rt|ht, ht+1, θ) = N
{ρ
σ
eht/2[ht+1 − ν + φ(ht − ν)], eht(1 − ρ2)

}
. (17)

Note that, unlike for the models analysed before, each data point, rt, depends on three
nodes of the latent vector, namely, ht, ht+1 and the common mean ν. The prior distribu-
tion for the vector x is unchanged. Hence, the full conditional reads

π(x|r, θ) ∝ exp

{
−1

2
xT Qx +

nd∑

t=1

ft(ht, ht+1, ν)

}
, (18)

where ft(ht, ht+1, ν) = log π(rt|ht, ht+1, ν, θ). We can expand ft(ht, ht+1, ν) around the
point (h0

t , h
0
t+1, ν

0) obtaining

ft(ht, ht+1, ν) ≈ Const + (ht, ht+1, ν)bt −
1

2
(ht, ht+1, ν)Ct(ht, ht+1, ν)

T ,
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where Ct is a 3 × 3 symmetric matrix and bt a column vector of dimension 3. Both bt

and Ct are functions of the gradient and the Hessian matrix of ft(ht, ht+1, ν), computed
at (h0

t , h
0
t+1, ν

0), and depend on the value of the hyperparameter vector θ. Let ctij indicate
element i, j of the matrix Ct and bti indicate the ith element of vector bt, where i, j =
1, 2, 3. Moreover, let

C =




c111 c112 0 . . . 0 c113
c121 c122 + c211 c212 . . . 0 c123 + c213
0 c221 c222 + c311 . . . 0 c223 + c313
...

. . . 0
...

0 . . . cnd−1
22 + cnd

11 cnd−1
23 + cnd

13

c131 c132 + c231 c232 + c331 . . . cnd−1
32 + cnd

31

∑nd

j=1 c
j
33




,

and

bT =

[
b11, b

1
2 + b21, b

2
2 + b31, . . . ,

nd∑

j=1

bj3

]
.

Here C is a n × n matrix, where n is the dimension of x, and b is a vector of length n.
We can build a Gaussian approximation to π(x|r, θ) with precision matrix Q + C, and
mean given by the solution of (Q + C)x∗ = b, where x∗ is the modal configuration of
π(x|r, θ). Note that since ht, ht+1 and ν are neighbours in the prior model for x, the
Gaussian approximation is a Gaussian Markov random vector with respect to the same
graph, and therefore preserves the Markov properties of the prior distribution of x.

Starting from the Gaussian approximation described above, it is possible to derive all
the other algorithms necessary to implement the INLA approach also for SV models with
correlated errors.

5.3 Multivariate SV models

Multivariate extensions of the SV models have lately been given much attention (see for
example Vol. 25 of Econometric Review) There are several reasons, both economical
and econometric, why multivariate volatility models are important. Financial assets are
clearly correlated. Hence, the knowledge of the correlation structures is vital in many
financial applications such as asset pricing, optimal portfolio risk management, and asset
allocation. Compared to their univariate counterparts, multivariate models for financial
assets have to be able to capture more features of the data: both returns and volatility
may be cross-dependent. Moreover, volatility can spill over from one market to another,
such that the knowledge about one asset can help predicting another. Here, we describe
how INLA can be applied to bivariate SV models. The same ideas can be applied to
higher dimensions.

A quite generic bivariate SV model can be written as

rt = Ωtǫt, ǫt ∼ N (0,Σǫ),
ht = ν + Φ(ht−1 − ν) + ηt, ηt ∼ N (0,Ση),

(19)

where rt = {rt1, rt2} are the observed log-returns at time t, ǫt = {ǫt1, ǫt2} and ηt =
{ηt1, ηt2} are two independent bivariate noise terms, and ht = {ht1, ht2} the latent volatil-
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ity. Moreover,

Φ =

(
φ11 φ12

φ21 φ22

)
, Σǫ =

(
1 ρǫ

ρǫ 1

)
,

Ση =

(
1/τη1

ρη/
√
τη1
τη2

ρη/
√
τη1
τη2

1/τη2

)
, Ωt =

(
exp(h1t/2) 0

0 exp(h2t/2)

)
.

By specialising the different matrices in the model, different features of the data can be
captured (see for example Yu and Mayer (2006)).

The core of the INLA approach is the Gaussian approximation to the full conditional
of the latent vector, presented in Section 3.1.2. For the model in Equation (19), the full
conditional reads

π(x|r, θ) ∝ exp

{
−1

2
xT Qx +

nd∑

t=1

gt(ht)

}
, (20)

where x = (hT ,νT ) and gt(ht) = log π(rt|ht, ρǫ). We can derive the Gaussian approxima-
tion to Equation (20) using the procedure described in Section 3.1.2. The only difference
is that the likelihood term, gt(ht), depends on a bivariate vector instead of a scalar. The
Gaussian approximation then reads

π̃G(x) ∝ exp{−1

2
(x − µ)T (Q + diag(C))(x − µ)}, (21)

where diag(C) is a matrix of the form




C1 0 . . . 0
0 C2 0 . . . 0
...
0 . . . Cn 0
0 . . . 0



. (22)

Each term Ct is defined as

Ct = −
[

∂2gt(xt)

∂x2

t1

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)
∂xt1∂xt2

∂2gt(xt)
∂x2

t2

]

xt=ν

.

Starting from the Gaussian approximation above, it is possible to derive all other al-
gorithms necessary to implement the INLA approach also for the bivariate SV models.
For a comparison between the performance of the INLA approach and a Gibbs sampler
algorithm applied to some bivariate SV models, see Martino (2007).

The main difficulty with performing a full Bayesian analysis on multivariate SV models
using the INLA approach (but also with respect to most other estimation procedures) is
the number of hyperparameters in the model. Remember, in fact, that in order to compute
an approximation to π(xt|r), we have to numerically integrate out the hyperparameters,
an operation which heavily suffers from the curse of dimensionality. The Empirical Bayes
approach described in Section 3.3 might be sufficient in practice. The investigation of this
will be the scope of further research.
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6 Discussion

In this paper we have presented a new approach to do inference on SV models named
Integrated Nested Laplace Approximations (INLA). INLA computes extremely accurate
approximations to the posterior marginals of latent log-variances and parameters in SV
models. Such posterior marginals constitute the basis for inference on the model param-
eters and for prediction of future volatility and returns.

The main advantage of INLA is its speed: it provides answers in only a small fraction
of the time used by a well designed MCMC algorithm. Near instant inference makes it
possible for the user to fit several models to the same data set, or to analyse a large
number of data sets in a reasonable time.

An additional advantage of INLA is that it can be used almost as a black box so that
the programming effort of the final user is reduced to minimum. The GMRFLib-library and
the inla program provide efficient implementation of all the algorithms needed, while the
R package INLA makes these tools easily available for the final user.

Our hope is that almost instant inference, together with user-friendly implementation
tools, will help SV models to exit the academic world and make them more appealing for
the financial industry.
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