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SUMMARY

Within the field of diagnostic tests, the positive predietivalue is the probability of being
diseased given that the diagnostic test is positive. Twordiatic tests are applied to each subject
in a study and in this report we look at statistical hypothéssts for large samples to compare
the positive predictive values of the two diagnostic te¥te propose a likelihood ratio test and
a restricted difference test, and we perform simulatioreeixpents to compare these tests with
existing tests. For comparing the negative predictiveesbf the diagnostic tests, i.e. the proba-
bility of not being diseased given that the test is negatirgeepropose negative predictive versions
of the same tests. The simulation experiments show thatesteated difference test performs
well in terms of test size.

1 INTRODUCTION

Diagnostic tests are used in medicine to e.g. detect disems® give prognoses. Diagnostic tests
can for example be based on blood samples, X-ray scans, mgiraphy, ultrasound or computed
tomography (CT). Mammography is used for detecting breaster, a blood sample may show if
an individual has an infection, fractures may be detectenh fK-ray images, gallstones in the gall-
bladder can be found using ultrasound, and CT scans arel isefdentifying tumours in the liver.

A diagnostic test can have several outcomes or the outcongebmaontinuous, but it can often be
dichotomized in terms of presence or absence of a diseaseewndll only consider diagnostic tests
for which the disease status is binary.

When evaluating the performance of diagnostic tests, theitbgty, specificity and positive and neg-
ative predictive values are the common accuracy measutessdnsitivity and specificity are proba-
bilities of the test outcomes given the disease status. di&tsyity is the probability of a positive test
outcome given that the disease is present and the specifiditg probability of a negative outcome
given no disease. These measures tell us the degree to Wkitbst reflects the true disease status.

The predictive values are probabilities of disease giventéist result. The positive predictive value
(PPV) is the probability that a subject who has a positivedascome has the disease and the negative



predictive value (NPV) is the probability that a subject wias a negative test outcome does not have
the disease. The predictive values give information aldmptediction capabilities of the test. For a
perfect test both the PPV and NPV are 1, the test result vah thive the true disease status for each
subject.

When there are several diagnostic tests available for time shsease, we are interested in knowing
which test is the best to use, but depending on what we mearedty thhere are different methods
available. If we want to find the best test regarding the t§hib give a correct test outcome given
the disease status then e.g. McNemar’s test, see Alan A@28R), can be used for comparing the
sensitivity or specificity of two tests evaluated on the sauoigects.

A test that has a high sensitivity and specificity will be midsgly to give the patient the correct test
result. However, for the patient it is utterly important te torrectly diagnosed and thereby getting
the right treatment. We need to take into account the pregelef the disease. If the prevalence
is low, the probability that the patient does have the disedsen the test result is positive, will be
small even if the sensitivity of the applied test is high. fidiere, comparing the positive or negative
predictive values is often more relevant in clinical preetas discussed by Guggenmoos-Holzmann
and van Houwelingen (2000).

In the remainder of this work, we wish to test if the positivenegative predictive values of two
diagnostic tests are equal. In this report we apply exigésts by Leisenring, Alonzo and Pepe (2000)
and Wang, Davis and Soong (2006), we propose a likelihodal tett, and suggest improvements for
some of the already existing tests in the large sample case.

In Section 2 we describe the model and the structure of thee aladl define the predictive values.
The null hypothesis, along with our proposed methods am@dir existing methods are presented in
Section 3. A simulation study is conducted to compare thénatst in Section 4. In Section 5 the
methods are applied to data from the literature. We alsceptes alternative model and test statistic
for the likelihood ratio test in Section 6. The results ammmarised in the conclusions in Section 7.

2 MODEL AND DATA

Next we define the random variables and the model used toibeske situation when comparing the
predictive values.

2.1 DEeFINITIONS

Two tests, test A and test B, are evaluated on each subjecstudg. Each test can have a positive
or negative outcome, i.e. indicating whether the subjesttha disease under study or not. The true
disease status for each subject is assumed to be known. ¢foselgject, we define three events:

e D: The subject has the disease.
e A: Test Ais positive.

e B: Test B is positive.

Let D*, A* and B* denote the complementary events. The situation can thdlubedted by a Venn
diagram as in Figure 1. There are eight mutually exclusients/and we define the random variable
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N;, i = 1,...,8, to be the number of times evenbccurs. In total there ar& = Ny + ... + Ng
subjects in the study. Table 1 gives an overview of the rmidtr the eight random variables in terms
of the events4, B, D and their complements.

Notation | Alternative notation| Explanation

Ny NanBnD* number of non-diseased subjects with positive tests A and B

No N AnB*AD* number of non-diseased subjects with positive test A andthegtest B
N3 Na+ABAD* number of non-diseased subjects with negative test A anityeotest B
Ny N A«AB*AD* number of non-diseased subjects with negative tests A and B

N5y NaAnBnD number of diseased subjects with positive tests A and B

Ng NanBnD number of diseased subjects with positive test A and negjtdst B

N7 Na«ABAD number of diseased subjects with negative test A and pesést B

Ng N A«AB*AD number of diseased subjects with negative tests A and B

TABLE 1: Notation for the random variables defined by the event8 and D and their complements.

N

'y

FIGURE 1: Venn diagram for the event®, A and B showing which events the random variables
N1, ..., Ng correspond to.

To each of the eight mutually exclusive events there coomde an unknown probability;,

1 =1,...,8, wherezlepi = 1, which is the probability that everitoccurs for a randomly cho-
sen subject. The positive predictive values of test A antilBesan be expressed in terms of these
probabilities and are given as

P(DnN A) P5 + D6
PPV, = P(D|A) = —
4 (D14) P(A) P1+ P2+ D5+ e

and P(DﬂB)
Ps + D7
PPVs = P(D|B) = = :
b (DIB) P(B) DP1+ p3+ s+ D7




Similarly, the negative predictive values of test A and B are

P(D* N A*
NPV, = P(D|47) = ) Patps
P(A¥) p3 +pa+pr+ps
and P(D* N B*
NPV, = (DB = D08 patp
P(B*) P2+ P4+ D6 + P8

The predictive values are dependent on the prevalence aigkase (D), which is the probability
that a randomly chosen subject has the disease. For thevpgsitdictive value,
P(DNA) P(A|D) - P(D)

PPV4 = P(D|A) = P(4) = P(A|D)- P(D)+ (1 — P(A*|D*))- (1 — P(D))’

where P(A|D) is the sensitivity andP(A*|D*) is the specificity of test A. Whe(A) = P(B)
testing if PP\y = PPVg is equivalent to testing iP(A|D) = P(B|D), i.e. testing whether the
sensitivities of the two tests are equal. We assume thatréwalence among the subjects in the study
is the same as the prevalence in the population, and thisecantbeved with a cohort study in which
the subjects are randomly selected.

2.2 THE MULTINOMIAL MODEL

Given the total number of subject€ in the study, the random variablég,, N-, ..., Ng can be seen
to be multinomially distributed with parametets = (p1, p2, ps, p4, P5, D6, 7, ps) and N, where
Zlepi = 1. The joint probability distribution ofVy, Ns, ..., Ng is

: S p™
Pl ((Ni=n;) | =N -
!

i=1 i=1

The expectation oiV; is
E(N:) = i = Np;

fori=1,...,8, and the variance is
Var(N;) = Np;(1 — p;).
The covariance betweel; and N is
Cov(Ni, Nj) = —Npip;
fori # j. This leads to the covariance matrix
¥ = Cov(N) = N(Diag(p) — p' p),

for the multinomial distribution, Johnson, Kotz and Balakan (1997). The general unrestricted
maximum likelihood estimator gf; is

pi =ni/N (1)

fori=1,...,8.



2.3 Darta

For a number of subjects under study, we observe for ¢achl, ..., 8, the number of times event

i occurs among théV subjects,n;. Table 2 shows the observed data id®acontingency table. In
the following, letn = (n1, ne, ns3, n4, ns, ng, n7, ng) be the vector of the observed data. Using the
unrestricted maximum likelihood estimators fpy we can then estimate the positive and negative
predictive values of test A and B as follows:

PPV — — 16 ppy, - T
ni + ng +ns + ng ni +ns+ns +ny
I\TP\\/A: n3 + ng I\I/'P\\/B _ Nno + Ny

ns +ng + ny +ng’ Ng + Ny +neg +ng

Subjects without diseasg Subjects with disease
TestB TestB
+ - + -
TestA + | mp no ns Ne
— | n3 N4 ny ng

TABLE 2: Observed data, ..., ng presented in &% contingency table.

3 METHOD

Assume that we would like to test the null hypothesis thaipibstive predictive values are equal for
test A and B, i.e. PPY = PPVg. The null hypothesis can be written as

Ps5 + D6 ps + pr
2)

HY : P(D|A) = P(D|B), i.e. H. : = .
0 (D14) (DIB) Hg p1+p2+Dps5s+ps  p1+p3+ps+Dpr

Alternatively, if we would like to test whether the negatmedictive values are equal for test A and
B, i.e. if NPV, = NPVp, the null hypothesis is

HY . P(D*|A%) = P(D*|B*),ie. HY : — 3P4 P2ps (g
D3 +pa+p7r+ps P2+ Da+De+ D8

Our alternative hypotheses will be that the predictive @alare not equal, i.e.
HFP : P(D|A) # P(D|B) andHY : P(D*|A*) # P(D*|B*).
3.1 LIKELIHOOD RATIO TEST

One possibility to test the null hypothesis in (2) is to usé&alihood ratio test. We first write down
the test statistic and then describe how to find the maximkefiliood estimates of parameters.



3.1.1 TEST STATISTIC

In a general setting, if we want to tesfy : 8 € ©( versusH; : 8 € O where®, U ;5 = ©
and® denotes the entire parameter space, we may use a likelilatiodest. This approach was also
suggested by Leisenring et al. (2000), who faced numeriffédudties trying to implement it. The
likelihood ratio test statistic is in general defined as

A — SPo, L(OIn)

supg L(6|n)
wheren is the observed data, Casella and Berger (2002). The deatomiof A(n) is the max-
imum likelihood of the observed sample over the entire patamspace and the numerator is the
maximum likelihood of the observed sample over the parameiatisfying the null hypothesis. Let
N = (N1, Ny, N3, N4, N5, Ng, N7, Ng) be the vector of the random variables. When the sample size
is large,

—2-log\(N) ~ X3

i.e. —2 - log\(IN) is x? distributed withk degrees of freedom wheteis the difference between the
number of free parameters in the unrestricted case and timelaull hypothesis.

Let® = p = (p1,...,ps) be the parameters in the multinomial distribution ane- (ny, ..., ng) the
observed data. The log-likelihood to be maximized for thdtimomial distribution is

8
I(p) =logL(p|n) = c+ Y n;-log(p;) 4)

=1
wherec is a constant.

The sum ofpy, po, ..., ps Must equal 1,
8
> pi=1 (5)
i=1

Under the null hypothesis that the positive predictive galfor the two tests are equal, their difference
dp is zero, i.e.

o Ps5 + Pe D5 + 7 B
6p = - =0. (6)
p1+p2+ps+ps  p1+Dp3+Dps+ D7
In the unrestricted case (i.eH, U H7), the maximum likelihood estimates fo#, ..., pg are the
estimates given by (1), which satisfy (5). Under the null ¢iyyesis, the estimates cannot be given in

closed form and we will need to use an optimization routinestimatep, . . . , ps by maximizing the
log-likelihood (4) under the constraints (5) and (6).

Letp = (p1, P2, D3, P4, P5, D6, D7, Ps) be the unconstrained maximum likelihood estimates and
p = (p1, P2, D3, P4, D5, P, D7, D) the maximum likelihood estimates under the null hypotheBigen,
in our model, asymptotically as N is large,

8
—2-log(A(n)) = —2 <Z n; - (log(pi) — |09(15i))> ~ X7 (1)
i=1

We have one less free parameter in the restricted case leechil® constraint (6).



For testing whether the negative predictive values for Weetests are equal, the constradit (6) is
replaced by, where

_ D3 + P4 D2 + D4 .
oy = — = 0. (8)
P3+ps+pr+ps  p2+ps+ps+ps

3.1.2 HNDING MAXIMUM LIKELIHOOD ESTIMATES UNDER THE NULL HYPOTHE SES

To find the maximum likelihood estimates under the null hizests, we can either maximize the
likelihood function under the given constraints using a etigal optimization routine or find the esti-
mates analytically by solving a system of equations. In lagibroaches we use Lagrange multipliers
and in either case we have two constraints.

NUMERICAL MAXIMIZATION OF THE LOG -LIKELIHOOD If we want to find the maximum likeli-
hood estimates using an optimization routine, the goalfisitbthe valuegp under the null hypothesis
such that lod.(p) > logL(p) for all p that satisfies the two constraints (5) and (6).

To maximize the log-likelihood (4) under the null hypothgseve use the R interface version of
TANGO (Trustable Algorithms for Nonlinear General Optimiion), see Andreani, Birgin E. G.,
Martinez and Schuverdt (2007) and Andreani, Birgin, Maziand Schuverdt (2008), which is a set of
Fortran routines for optimization. In order to run the pogr one must specify the objective function
and the constraint and their corresponding first order devies. We reparametrize the problem by
setting

1
PL= Tren . e
eyl
P2 = )
1+ eyt +e¥2 4 ... 4 e¥7
€y2
p3 = )
1+ evr +ev2 + ... + ev7
€y7
ps =
1+ evr +ev2 + ... + ev7
where—oco < y; < oo, 4 = 1,...,7. This reparametrization ensures that the constraint (5) is

satisfied, in addition to restricting the estimated prolitgs to be0 < p, < 1,7 =1,...,8. Let
y = (1,2, Y3, Y4, Ys, Y6, Y7). The constraint under the null hypothesis (2) is then

eY4 + eYs eY4 + eY6
5P,y - - =0 (9)
1+ eYt 4 e¥Y4 4+ e¥s 1+ eY2 4 e¥4 4+ eYe
and the constraint under the null hypothesis (3) is
Y2 Y3 Y1 Y3
Oy = —C € S — 0. (10)

eY2 + e¥3 + e¥Y6 + e¥7 eYl + e¥3 + e¥5 + eY7

These constraints are both non-linear equality consgraiftte TANGO program uses an augmented
Lagrangian algorithm to find the minimum of the negative lidglihood while ensuring that thé/,,
constraints (9) and (10) are satisfied when testing the iyplbtheses (2) and (3) respectively. The

7



Lagrangian multiplier is updated successively startingabyinitial value that must be set. We also
set the initial value oty and its lower and upper bounds. The valueyait the optimum is returned.
Some computational remarks are given in Appendix D.

ANALYTICAL MAXIMIZATION OF THE LOG -LIKELIHOOD Another approach is to find the esti-
mates analytically by solving a system of equations arifiog the method of Lagrange multipliers,
for an introduction see Edwards and Penney (1998). The raanistinder the null hypothesis can be
rewritten as

k(p) = p1p7 + p2p7 + p2ps — P16 — P3ps — Pape = 0. (11)

In addition, leth(p) be the constraint that;, ..., ps must sum to one,

8
h(p) => pi=1, (12)
=1

and leti(p) be the log-likelihood function given in (4).
The system of equations to be solved then consists of

Vi =yVh + kVk (13)

wherey andx are Lagrangian multipliers, together with the above cemsts.

The partial derivatives of the log-likelihoddand the constraintsd andk with respect tq+, p2, ps,
P4, Ps, D6, P7 andpg are given by

Vl — <ﬂ7@7E7E7E7@7E7@>7 (14)
pP1 P2 P3 P4 P5 P6 P7 P8
Vk = (p7 — ps, ps + p7, —P5 — P6,0,p2 — P3, —pP1 — P3,P1 + P2, 0), (15)
and
Vh=(1,1,1,1,1,1,1,1). (16)

From Equations (11) — (16) we obtain the following systemapfaions, which consists of ten equa-



tions and ten unknown variables

n1 = pi(y+ K(p7 — pe))
ny = pa(y+ K(ps + pr))
ng = p3(y+ K(=ps —ps))
ng = P47y
ns = ps5(y+K(p2 —p3)) (17)
ng = pe(y+ K(—p1 —p3))
ny = pr(y+Kp1+p2))
ng = psgvy
8
Zpi = 1
=1
p1p7 + P2p7 + P2ps — P1be — P3ps — p3pe = 0.

The denominators of (14) have been multiplied over to thietifigind side in order to allow for; = 0

as a possible solution fot; = 0. Obviously,! cannot have a maximum valge = 0 if n; # 0, as
l(p) would be—oc in this case. The solutions of this system of equations wevobots of third degree
polynomials, and we have used the Maple 12 command $olfiad solutions. Among its solutions,
the one that maximize§p) and where alp; > 0 yields the likelihood estimateg; under the null
hypothesis. We can show that when = 0, the corresponding likelihood estimate under the null
hypothesigj; is 0 fori = 1,4, 5, 8, but that this is not necessarily true fioe= 2, 3,6, 7. Forp, andps

we have the more general result that= n,/N andps = ng/N, see Appendix A for the proofs.

A gradient based optimization routine searches for the ajlobinimum across the negative log-
likelihood surface and it can get stuck in a local minimumoum experience this especially happens
when some of the cell counts in the contingency table arelsifiaé analytical maximization might
yield more accurate estimates in these cases, see Appendix D

3.2 DIFFERENCE BASED TESTS

Other possible test statistics start out by looking at tiferince of the PPVs, and then these test
statistics can be standardized by using Taylor series siganWe also suggest some improvement
to these tests.

3.2.1 TEST STATISTICS

Based on the differenc&e given in Equation (6), which equals zero under the null hgpsis, we
may suggest a variety of possible test statistics.

Wang et al. (2006) suggested the test statistics

N5 + Ng N5 + N7

N) = -
gl( ) N1+N2+N5—|-N6 N1+N3+N5—|—N7

(18)

and



(N5 + Ng)(N1 + N3 + N5 + Ny)
(N5 + N7)(N1 + No + N5 + Ng)’
For a more detailed description of their work, see Appendik. BMoskowitz and Pepe (2006) also
suggest a similar test statistic go(IV ), see Appendix B.2.

92(IN) = log (19)

Since the null hypothesis can be written

p.P1tps _ P1Ltpe
O ps+pr ps+ps

another test statistic to be used may be

_N1+N3_N1+N2
N5 + Ny N5+ Ng~

g3(IN)

Another possibility is to use the log ratio of the terms, @ast of their difference,

(N1 + N3)(N5 + Ng)

94(N) = log = N T )

or we may rewrite the null hypothesis in order to obtain

_N5+N6_N5+N7
N1+ Ny Ni+ N3

g5(IN)

3.2.2 SANDARDIZATION BY TAYLOR SERIES EXPANSION

For a general test statistig(INV), we may construct a standardized test statistic by subtcatte
expectation of the test statistic(¢V)), and dividing by its standard deviatiogy Var(g(IN)). In
the large sample case the square of the standardized tésticstanay then be assumed to be approx-
imately x?-distributed,

(V) ~ E(g(N)) } o 20)

)49
N3 = { Varig(V))

The expectation and variance of the test statistic can b@ziopated with the aid of Taylor series ex-
pansion as suggested by Wang et al. (2006). L& E= p be the point around which the expansion
is centered. As befor@; = Cov(IV). A second order Taylor expansion in matrix notation is gigsn

g(N) =~ g(p) + G () (N — p) + %(N — )" H(p)(N — p) (21)

whereG is a vector containing the first order partial derivativeg/@V ) with respect to the compo-
nents of N andG7 is the transpose af. FurtherH is a matrix with second order partial derivatives
of g(IN') with respect to the components B, i.e. the Hessian matrix.

The expectation of(IN) can then be approximated as



for the first order Taylor expansion and as

E(g(N)) ~ (1) + Str(H()%) 22)
for the second order Taylor expansion, since
E(3(N — )" H(p)(N —p
— E(tr (JH(u)(N - )" (N
= Itr (H(WE(N - )" (N

~—
~—

where we have used the resuft Ax = tr(z” Az) = tr(Azx”) wherex = N — p and A is the

Hessian matrixt . E((N — p)(IN — )7 is the covariance matri¥ of V.
The variance of(IN') can be approximated as

Var(g(N)) ~ G" (W)= G(n)

for the first order Taylor expansion. Using a second ordetofaxpansion for the variance requires
finding the third and fourth order moments M.

Using the first order Taylor approximation of¢£ NV )) and Vafg(IV)) in the standardized test statistic
of (20) yields

_ N —g)*
TN = Gz~ )

Under the null hypothesig;(i) = 0. G(u) andX are functions of the unknown parametgreind
needs to be estimated. We can either insert the general maxiikelihood estimateg; = n;/N

or the maximum likelihood estimatgs under H?’, as found in Section 3.1.2. When we use the
standardized test statistic (23) wigh(INV) and estimate the variance using the maximum likelihood
estimates undef, we refer to it as theestricted difference test. If we instead use the unrestricted
maximum likelihood estimates to estimate the variance, afer to it as thaunrestricted difference
test.

We have investigated two possible improvements of the araiwbd test statistics. In addition to
using the restricted maximum likelihood estimates to estinthe variance of (23), we have looked
at the effect of using a second order Taylor series apprdiom#o E(g(IN)) as an attempt to arrive
at a more accurate approximation to/&a distributed test statistic. The expectation and variance i
the standardized test statistic given in (20) is found usifigst order Taylor series expansion and the
difference between using the first order and the second @ejdor series approximation to(lINV))

is the term1/2 - tr(H (p)X). For the simulation experiment in Section 4 this turned oute very
small as compared to the denominator of (23).

3.3 TEST BY LEISENRING, ALONZO AND PEPE (LAP)

Leisenring et al. (2000) present a test for the null hypaghgisen in (2). We will denote this the LAP
test. They define three binary random variabl®s; that denotes disease statug, that indicates
which test was used anll;; that describes the outcome of the diagnostic test forjtest= 1, 2, for
subjecti, i =1,...,N.

11



Do — 0, non-diseased
Y] 1, diseased

0, testA
Zii _{ 1, testB

P 0, negative
Y] 1, positive

The PPV of test A can be written as PRV= P(D;; =1 | Z;; = 0, X;; = 1) and the PPV of test B
as PP\ = P(D;; =1 Z;; =1, X;; = 1). Based on generalized estimation equations Leisenring
et al. (2000) fit the generalized linear model

|Og|t(P( ij = =1 | zg» = 1)) = Qap +ﬁpZZ‘j.

Testing the null hypothesif: PPV4y = PPVg is equivalent to testing the null hypothesis
Hy : Bp = 0. To derive the generalized score statistic, an independgeriting correlation structure
is assumed for the score function and the correspondingn@ifunction is;; = 1;;(1 — p;;) where

pij = E(D; ) The score function is thefip = Zf.vjl T Zij(Dyj — D) which also can be written
asSp = Zl L >y Dig(Zi 7). HereN,, is the number of subjects with at least one positive test
outcome andn; is the number of positive test results for subject
N,
Z o Zl—pl miZzDz
- N,
Zi:pl my

is the proportion of positive tests for the diseased subjactong all the positive tests.

The resulting test statistic for testing the null hypotkéd$j : Gp = 0 is obtained by taking the square
of the score function divided by its variance:

(S s, Dz - 2))
S {Z}Z(Dij — D)(Zij - Z)}2

Under the null hypothesis, this test statistic is asymp#diy x2-distributed. It is worth noting that
only the subjects with at least one positive test outcomdritore to the test statistic (24).

Tppv = (24)

The test statistic in (24) is general and can be used evee ififease status is not constant within a
subject. Usually the disease status will be constant witiersubject and the test statistic can be then
simplified. By definingZ; = > ", Z;;, the number of positive B tests subjeéctontributes to the
analysis, the statistic can be written

[S0 Dt~ miz))
SN (Di — D)X(T; — m; Z)?

Tppy =

12



We derived the test statistic by using our notation of théteigutually exclusive events in Figure 1.
The numerator can be separated into six terms, in three afhvthe disease statu3 = 0 and three
whereD = 1, by noting that7; = 0 andm; = 1 when only test A is positive]; = 1 andm,; = 1
when only test B is positive ariti = 1 andm; = 2 when both tests are positive. Then

((N1 + N2 + N5 + Ng)(Ns 4+ N7) — (N1 4+ N3 + N5 + N7)(Ns + Ng))?

Tepy = f(N1, N, N3, N5, Ng, N7) >
where
f(N1, No, N3, N5, Ng, N7)
= Ni(Ny — N3 + Ng — Ny)? < 2N1 + N224]Y5-7\?:': fﬁQ—;];\i Ne + N7>2
+ Na(N1 + N + N5 + Ny)? <2N1 + N22f5]\;; fzx;ﬁ Ne + N7>2
+ N3(Ny + N3 + N5 + Ng)? <2N1 + N22-|A-75]\;?: %]\-[62;5]\;i Ne + N7>2
+ N5(Ny — N3 + Ng — N7)? <1 2N; + N:fg}\—fz 4]\-[62;5]\i Ne + N7>2
+ Ng(N1 + N3 + N5 + Np)? <1 2N; + N22f5]\—fz —Ij\-[62—i]\_f5]\‘[ii Ne + N7>2
+ N7 (N1 + Ny + N5 + Np)? <1 T 2N, + N22T5NJ; f;;i: Ne + N7>2

To compare the NPVs for test A and test B, Leisenring et aD@2(it the generalized linear model

logit(P(D;; = 1|Z;;, X35 = 0)) = an + Oy Zij.

by using the generalized estimating equations method. Tihéypothesis in this case is
Hy : By = 0. Under the assumption that disease status is constanhwithiibject, this leads to the
test statistic

{S¥ Dt - 12}
S0 (Di = D)A(T, = ki Z)?

Inpy =

where N, is the number of subjects with at least one negative tesbmecandk; is the number of
negative test results for subjectOnly the subjects with at least one negative test outcomtibate
to this test statistic.

Leisenring et al. (2000) also propose a Wald test based ogstitaates of the regression coefficients,
but their simulation studies show that the score test pmgdretter.

4 SIMULATION STUDY

In order to compare the test size under the null hypothesithéotests presented in Section 3 and to
assess the power of the tests under the alternative hypmties perform a simulation experiment.
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All the tests are asymptotic tests, but it is not clear howdahe sample size has to be for the tests
to preserve their test size. Therefore we will consideredéht sample sizes. Two different simula-
tion strategies for generating datasets will be presentéw: maximum likelihood estimates under
the null hypotheses needed for the likelihood ratio test tuedrestricted difference test are found
using TANGO as described in Section 3.1.2. All analyses aréopned using the R language, R
Development Core Team (2008).

4.1 SMULATION EXPERIMENT FROM LEISENRING, ALONZO AND PEPE

The first simulation experiment is based on the simulatiqgregrment of Leisenring et al. (2000) and
we use their algorithm to generate the data. Therefore wetdehis simulation experiment the LAP
simulation experiment.

4.1.1 ALGORITHM

We generate datasets by using the algorithm presented ian&ippB in Leisenring et al. (2000). Let

Ip denote the disease status,
I — 1, diseased
P~ 0, non-diseased

andl4 andIpg the test results of test A and B,

[ 1, test A positive
A7 0, testA negative

I 1, testB positive
B~ 0, testB negative

In order to generate the datasets, the number of subjetdsl {85 the positive and negative predictive
values for both tests, the prevalence of the dis¢ag®) and the variance? for the random effect
for each subject must be set. The random effect introducegslation between the test outcomes for
each subject. Our interpretation of the simulation algoniis as follows:

1. SetN, P(D), PPV4, NPVy, PPV, NPV ando.

2. Calculate the true positive rate TP and the false pogititeeFP for test A and test B defined by
the equations
(1= P(D)—NPV) - PPV

= (1— PPV—NPV) - P(D)

and
B 1— P(D) — NPV

P= .
(1 — P(D))(1 — NPV — EP¥IEY)

3. Given TP and FP, the parametersand 5;, i = 1,2, for each test are calculated from the

following equations,
a; = O HFP)y/1 + 0?2

Bi =& HTP)V1 + 02,

where®(-) is the cumulative distribution function of the standardmalr distribution.
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Caseno] N [ P(D) | o | PPV4 | PPVg [ NPV, | NPVj |
100] 025 ]0.1] 0.75 | 0.75 | 0.85 | 0.85
500| 0.25 | 0.1 0.75 | 0.75 | 0.85 | 0.85
100| 050 | 0.1] 0.75 | 0.75 | 0.85 | 0.85
500| 050 |0.1] 0.75 | 0.75 | 0.85 | 0.85
100| 0.25 [1.0| 0.75 | 0.75 | 0.85 | 0.85
500| 0.25 | 1.0| 0.75 | 0.75 | 0.85 | 0.85
100| 050 [ 1.0| 0.75 | 0.75 | 0.85 | 0.85
500| 050 | 1.0| 0.75 | 0.75 | 0.85 | 0.85

QO NO O BW N

TABLE 3: Specifications of the cases under the null hypothese®ibAlP simulation experiment.

4. For each subject the disease stdiyiss drawn independently with probabilit}? (D).
5. Arandom effect ~ N(0, 0?) is generated for each subject.

6. Given the disease status and the random effettte probability of a positive test outcome for
each subject is given by

P(Io=1|Ip,r)=®(an(1—Ip)+ Gilp+7)

for test A and by
P(Ip =1|Ip,r) = ®(az(l — Ip) + B2Ip + 1)

for test B. The test outcomes are drawn with these probiaiilior each subject.

7. Findng, ..., ng by counting the number of subjects that belongs to each oéigiie events
described in Section 2, e.g. is the number of subjects for whidp = 0, I, = 1 andip=1,
the number of subjects that are not diseased and have pdsitits A and B.

The algorithm is repeatedll times, providingM datasets ofiq, ..., ns.

4.1.2 CASES UNDER STUDY

In the simulation experiment, we suggest eight cases byingihe input paramete®d’, P(D) and

o in the LAP simulation algorithm. The setup of the experimiera 23 factorial experiment, i.e. we
have three factorsy, P(D) ando, and each factor has two levels. The low level féris 100 and
the high level is 500, while the low level fdpP(D) is 0.25 and the high level is 0.50. Ferthe low
level is 0.1 and the high level is 1.0. The response in thigempent is the estimated test size for each
test. The cases that are under the null hypothégsBsand /¥ in equations (2) and (3) are given in
Table 3. For cases not under the null hypotheses, the paesnét P(D) ando are the same, but
the remaining parameters are changed and will be descrdded.bFor each of these eight cases we
simulateM = 5000 datasets.

We generate data under the null hypotheses (2) and (3), bpgé&PV, = PPV = 0.75 and
NPV, = NPV, = 0.85. These datasets are used to estimate the test size ffydfer both the
PPV and NPV tests. To estimate the power of the tests, we nelededs undef/,, and for PPV
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we generate datasets where PP¥ 0.85 and PP\ = 0.75 and NPV{ = NPV, = 0.85. To
compare the power for the NPV tests, we generate datasete Wi/, = 0.85 and NPV, = 0.80
and PPV, = PPV = 0.75.

To compare the positive predictive values of test A and B, aleulate the test statistics for the
LAP test, the likelihood ratio test and the unrestricted seudricted difference tests. To compare the
negative predictive values for test A and B we use the negatigdictive value versions of these test
statistics. We calculatg-values based on the? distribution. We also assess the performance of the
four other difference based tests as proposed in Sectioh. 3.2

4.1.3 RESULTS

A summary of the results of the simulation experiment willdov. For each case and selected value of
the nominal significance level, let W be a random variable counting the numbepofalues smaller
than or equal tev. ThenW is binomially distributed with sizé/, the number op-values generated,
and probabilitya.. An estimate of the true significance level of the tésis then

w
V= —. 26
&= (26)
Let
W = W42
M = M+4
. W
o = .
M

A 100 - (1 — )% confidence interval fof with limits &, andég, according to Agresti and Coull
(1998) is given as

o i (1-a

1=y | T 27)
and

N a-(1-a)

ay = a+ 2y T (28)

wherez, ; is they/2-quantile in the standard normal distribution. When thegasare drawn under
Hj, a will be an estimate of the test size, i.e. the probability aking a type | errorP(reject Hy | Hy).

A p-value is valid, as defined by Lloyd and Moldovan (2008), & tctual probability of rejecting the
null hypothesis never exceeds the nominal significancd.lé choose the nominal significance
level to be 0.05 and we say that the test preserves its tesifdize lower confidence limit is less
than or equal to 0.05, i.e. #; < 0.05. If &y < 0.05, the test is said to be conservative, while if
ar, > 0.05 it does not keep its test size and it is then optimistic. Ifshenples are drawn under the
alternativeHy, & is an estimate of the power of the test, iB(rejectH, | H;), the probability to
correctly reject the null hypothesis when it is not true.

Table 4 shows the estimated test size with 95% confidenceslfor the LAP test, the likelihood ratio
test and the restricted and unrestricted difference testase 1-8 where the data is generated under
the null hypothesis that PRV= PPV3.
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| Caseltest | & | ar | au |
Case 1 LAP test 0.058| 0.052| 0.065
Case 1 Likelihood ratio test 0.065| 0.059| 0.072
Case 1 Restricted difference test] 0.051 | 0.046 | 0.058
Case 1 Unrestricted difference tgs0.067 | 0.060 | 0.074

Case 2 LAP test 0.056 | 0.050| 0.063
Case 2 Likelihood ratio test 0.056 | 0.050| 0.063
Case 2 Restricted difference test 0.055| 0.049| 0.062
Case 2 Unrestricted difference tgs0.058 | 0.051 | 0.064

Case 3 LAP test 0.051| 0.046 | 0.058
Case 3 Likelihood ratio test 0.050| 0.044 | 0.056
Case 3 Restricted difference test] 0.048 | 0.043 | 0.055
Case 3 Unrestricted difference tgs0.051 | 0.045 | 0.058

Case 4 LAP test 0.057| 0.051| 0.064
Case 4 Likelihood ratio test 0.057| 0.051| 0.064
Case 4 Restricted difference test 0.057 | 0.051| 0.064
Case 4 Unrestricted difference tgs0.057 | 0.051| 0.064

Case 5 LAP test 0.058| 0.052 | 0.065
Case 5 Likelihood ratio test 0.070| 0.063| 0.077
Case 5 Restricted difference test 0.053 | 0.047 | 0.059
Case 5 Unrestricted difference tgs0.065 | 0.058 | 0.072

Case 6 LAP test 0.054| 0.048 | 0.060
Case 6 Likelihood ratio test 0.053| 0.048 | 0.060
Case 6 Restricted difference test] 0.052 | 0.046 | 0.058
Case 6 Unrestricted difference tgs0.055 | 0.049 | 0.061

Case 7 LAP test 0.053| 0.047 | 0.060
Case 7 Likelihood ratio test 0.055| 0.049| 0.061
Case 7 Restricted difference test 0.049 | 0.044 | 0.056
Case 7 Unrestricted difference tgs0.054 | 0.048 | 0.060

Case 8 LAP test 0.055| 0.049| 0.062
Case 8 Likelihood ratio test 0.055| 0.049 | 0.062
Case 8 Restricted difference test] 0.054 | 0.048 | 0.061
Case 8 Unrestricted difference tgs0.055 | 0.049 | 0.062

TABLE 4: Estimated test size with 95% confidence limits when tgsB®V, = PPVp for data
generated under the null hypothesis using the LAP-sinarialgorithm.
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In Case 3, 6, 7 and 8 all four test preserve the test size. la Z#te unrestricted difference test is too
optimistic, while the other tests preserve the test size.

In Case 1 and 5 the restricted difference test is the onlypresterving the test size. The other tests
are too optimistic. These cases have small cell counts,tandht be that the restricted difference
test is more robust towards small cell counts than the ot#sts.t Table 5 shows the mean observed
cell counts in Case 1-8 for the data generated under the ypdithesis that PPY = PPVz. We see
that in Case 1 and 5;,; is 0.2 and 1.1 respectively, and thereby= 0 in many of the datasets, and
also some of the other cell counts are small.

In Case 4 none of the four tests preserve the test size, lithedests are slightly optimistic. As all the
cell counts are high in this case it is not surprising thatasgmated test size is the same for all the
tests, however we see no apparent reason why the test satpieserved, and thus this may perhaps
be a purely random event.

For the likelihood ratio test we analysed thifactorial experiment using as the response and found
that the interaction between the factd¥sand P(D) is the most significant effect on the the test size
with a p-value of 0.012. WhenV is at its high level,N = 500, the test size is less affected by
P(D) which makes sense, since the high valu&voénsures that all the cells will have large expected
values unless the corresponding cell probabilities ang sexall. There is also a significant interaction
betweenV ando, whenN = 100, the estimated test size is higher tor= 1.0 than forc = 0.01 and
when/N = 500, the estimated test size is lower for= 1.0 than foro = 0.01.

Table 12 (see Appendix C) shows the estimated test size Bi¥h @nfidence limits for the NPV
versions of the LAP test, the likelihood ratio test and th&trieted and unrestricted difference tests
in Case 1-8 where the data is generated under the null hygietthat NP\ = NPV,. In Case 1,

2, 4 and 8, all the cases preserve the test size. In Case ® aa#ies except the likelihood ratio test
preserve the test size too. In Case 3 and 7 however, only strécted difference test preserves the
test size, none of the other tests do. It may be because itris rabust to the small cell counts in the
eight cell,ng, which is 0.8 and 2.2 respectively in these two cases.

Table 13 and 14 (see Appendix C) show the estimated power9&#kh confidence intervals for the
PPV and NPV versions respectively of the LAP test, the Iii@d ratio test and the restricted and
unrestricted difference tests in Case 1-8 for the data gateunder the two alternative hypotheses.
The power of the restricted difference test is generallyelotlian the power of the other tests, which is
not surprising since it preserves its test size when the ¢éisés do not. The power increases with the
number of subjectsV as we would expect. For the PPV tests, it also increases wieeprévalence
P(D)increases. When the prevalence increases it is more likatyatrandom subject has the disease,
therefore more subjects will have the disease and theréowithore positive testsP?(D) = 0.50 in
Case 4 and 8 where the tests have higher power than in Case @ whdre P(D) = 0.25. We
also note that in general the test power is higher wiea 1 compared to whea = 0.1. For the
NPV tests, the power increases wh¥nncreases and wheR(D) decreases. WheR(D) = 0.25,
P(D*) = 1— P(D) = 0.75, and the higher this probability is the more likely it is tratandom
subject does not have the disease. The number of subjettddha@ot have the disease are then
expected to be higher than whél{D) = 0.50 and P(D*) = 0.50. As for the PPV tests, the power
increases whea increases.

Table 6 shows the estimated test size with 95% confidencevaisein Case 1-8 for the four other
difference based test statistics from Section 3.2.1. Wiadtulating the observed value of the stan-
dardized test statistics the unrestricted maximum lika&lth estimates in the variance are inserted
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| Caseno| ny | nis | g | na | ns | wg | nr | nig |
1 02| 39| 39| 67.0 6.3 6.2 | 6.2 | 6.3
1.2 | 19.7|19.6| 334.6| 314 | 31.1| 31.0| 315
43 |10.3| 10.2| 251 | 384 | 54 | 55| 0.8
21.4|51.5| 51.3| 125.7| 191.8| 27.1| 27.1| 4.0
11| 31| 3.1 | 67.8 8.3 42 | 42| 84
53 | 15.6| 15.5| 338.6| 41.7 | 20.9| 20.8| 41.6
75| 70| 70| 283 | 398 | 41 | 40| 2.2
37.6| 35.3| 35.2| 141.9| 198.7| 20.1| 20.0| 11.2

QO N[O O BlWN

TABLE 5: Mean cell counts for the cases in the LAP simulation stunyenH.

since in the LAP simulation experiment, the test size forrésricted difference test was lower than
the test size for the unrestricted difference test. If we para these results with the results for the
unrestricted difference test, we see that the estimatedsites depend highly on the choice of test
statistic. The test based gn(IV) preserves its test size in all the cases except Case 4. lvisvieo
conservative in Case 1 and 5. The test baseds;0iV) preserves its test size in all the cases, but it
is conservative in all except Case 4 and 8. In Case 1 and 5 @rjsconservative with an estimated
test size of just 0.008 and 0.007 respectively. For the fodifference based test statistig,(IV ), the
test size is preserved in all the cases except Case 4. It #eoa@iive in Case 1, 3 and 5. The test
based ory;(IV) is conservative in all the cases, and more conservativettieather tests. In Case
1 and 5 the estimated test size is 0 and 0.001 which showdhibaest statistic almost never rejects
the null hypothesis. The tests basedg@(V) andg4(IN) can be used as their estimated test size is
reasonable, although conservative in some of the cases.oWetdecommend using the tests based
ongs(IN) andgs(IN) as these are even more conservative than the other tests.

4.2 MULTINOMIAL SIMULATION EXPERIMENT

In the LAP-simulation algorithmy, . . . , ng are not drawn from a particular probability distribution,
but obtained from the disease status and test results wrectirawn with the specified probabilities
in Section 4.1.1. However, in our model for the likelihoodioaest we assume that, ..., Ng are
multinomially distributed. This can be used in the samp$irgtegy and we simulate data by sampling
ni, ..., ng from the multinomial distribution given the total numbersafbjectsV and the parameters
p1, ..., ps. Thisis less challenging to implement than the LAP-simafaglgorithm and when using
the likelihood ratio test it is natural to sample data frora thistribution assumed when deriving the
test statistic.

4.2.1 ALGORITHM

Givenp = (p1,p2, p3, P4, P5, D6, P7, ps) @nd the total number of subject$, we can generate datasets
by drawingny, ns, ..., ng from a multinomial distribution with parametegsand N. We first need
to setp and if we want to sample under the null hypotheses, we needdore thatp satisfy the
constraintsip in Equation (6) and/oé in Equation (8). In additioms, ..., ps must sum to 1.

Our simulation algorithm is as follows:
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| Caseftest | & | ar | ay |

Case 1yp(IN) | 0.042| 0.037| 0.048
Case 1y3(IN) | 0.008| 0.006 | 0.011
Case 1g4(IN) | 0.021| 0.017| 0.025
Case 1g5(IV) | 0.000 | 0.000| 0.001
Case 2j(IN) | 0.056 | 0.050| 0.063
Case 2j3(IN) | 0.043| 0.038| 0.049
Case 2,(IN) | 0.051| 0.045| 0.058
Case 2;(INV) | 0.008 | 0.006 | 0.011
Case 3j3(IN) | 0.045| 0.040| 0.051
Case J3(IN) | 0.037| 0.032| 0.042
Case Jj4(IN) | 0.043| 0.038| 0.049
Case 35(INV) | 0.001| 0.000| 0.002
Case 4y2(IN) | 0.057| 0.051| 0.063
Case 43(IN) | 0.056 | 0.050| 0.063
Case 4y4(IN) | 0.057| 0.051| 0.064
Case 45(IN) | 0.042| 0.036| 0.048
Case 5p2(INV) | 0.039| 0.034| 0.044
Case &y3(INV) | 0.007| 0.005| 0.010
Case 5y4(IN) | 0.027| 0.023| 0.032
Case 55(INV) | 0.000| 0.000| 0.001
Case 6y2(IN) | 0.049| 0.043| 0.055
Case 6y3(IN) | 0.040| 0.035| 0.046
Case 64(IN) | 0.047| 0.042| 0.054
Case 6y5(IV) | 0.007 | 0.005| 0.010
Case 7g2(IN) | 0.047 | 0.042| 0.053
Case 7g3(IN) | 0.035| 0.031| 0.041
Case 794(IN) | 0.047| 0.042| 0.054
Case 7g5(IN) | 0.001| 0.000| 0.003
Case 8j,(IN) | 0.054| 0.048| 0.061
Case &3(IN) | 0.052| 0.046 | 0.058
Case &4(IN) | 0.054| 0.048| 0.061
Case &;(IV) | 0.042| 0.036| 0.048

TABLE 6: Estimated test size with 95% confidence limits when tgsBPV, = PPVp using the
difference based tests.
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| Case | N [ pi [ po | ps | pa | s | w6 | pr | s |
Case 3MN| 100 | 0.05| 0.10| 0.10| 0.25| 0.39| 0.05| 0.05| 0.01
Case 5MN| 100 | 0.01| 0.03| 0.03| 0.68| 0.08| 0.04 | 0.04 | 0.09

TABLE 7: Specification of the parameters in the multinomial sirtiafaexperiment.

1. Setp = (p1,p2,p3, P4, Ps, P6, P7, Pg) andN.

2. Drawny,na,...,ng ~ multinom(p, N). Repeat\/ times.

4.2.2 (CASES UNDER STUDY

We performed a small simulation study by drawing data fromutimomial distribution. Under the
null hypothesis (2) we defined two cases called Case 3MN asd BIN. The parameters for these
cases are given in Table 7.

The parameterg,, ..., ps for each of the cases sum to one anddpheconstraint (6) and -constraint
(8) are both satisfied. The parameters were set in order tesept Case 3 and 5 from the LAP-
simulation experiment. In both of these ca$és= 100, while P(D) is 0.5 in Case 3MN and 0.25 in
Case 5MN as in Case 3 and 5 in the LAP-simulation experimemtbbth Case 3MN and 5MN the
PPVs are equal and approximately 0.75, the NPVs are equamrdximately 0.85. However, since
the datasets in the LAP simulation experiment were not drfmam a multinomial distribution, the
mean and the variance afwill not be exactly the same in Case 3MN and 5MN as in Case 3 and 5

The parameters, ..., ps were found by setting the value &f(D), the values of PPV= PP\, and
NPV; = NPV, and by considering the mean observed values for Case 3 anddbia 5. These
two cases were chosen because we would like to test the omltih sampling strategy for one case
where the likelihood ratio test did not preserve its test §2zase 5) as well as one case where the test
size was preserved (Case 3) in the LAP simulation experinvaeh testing if the positive predictive
values are equal.

For each of the cases we draw = 5000 samples from the multinomial distribution with parameters
as given in Table 7.

4.2.3 RESULTS

The estimated test size and 95% confidence limits for the L&d®, the likelihood ratio test and
the restricted and unrestricted difference tests for the ¢ases in the simulation study using the
multinomial simulation algorithm are given in Table 8.

In Case 3MN all the tests preserve the test size. We notehlbastimated test size is lower for the
restricted difference test than for the other tests. In Gadl only the restricted difference test and
the LAP test preserve their test size.

If we compare the results to Case 3 in the LAP simulation expent we see that is higher in Case
3MN than in Case 3 for all the tests. In Case 5MNs higher for the likelihood ratio test and lower
for the other tests compared to Case 5 in the LAP simulatigperxent. The datasets in the two
simulation experiments are not identical, but since theyganerated with approximately the same
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Caseltest | & | ap | av |
Case 3MN LAP 0.054 | 0.048| 0.060
Case 3MN Likelihood ratio test 0.054| 0.048| 0.060
Case 3MN Restricted difference test| 0.052 | 0.046 | 0.058
Case 3MN Unrestricted difference tgs0.054 | 0.048 | 0.061

Case 5MN LAP 0.056 | 0.050| 0.063
Case 5MN Likelihood ratio test 0.072| 0.065| 0.079
Case 5MN Restricted difference test| 0.050| 0.044 | 0.057
Case 5MN Unrestricted difference tes0.064 | 0.058 | 0.071

TABLE 8: Estimated test size with 95% confidence limits for tesii®); = PPV, under the null
hypothesis using the multinomial simulation algorithm.

values for PPY, PP\, NPV;, NPV, and P(D) we find it surprising that the estimated test size for
the likelihood ratio test is higher in the multinomial siratibn experiment than in the LAP simulation
experiment. We would expect the likelihood ratio test td@en better, i.e. have a lower test size, on
datasets that are drawn from the model on which the tesstitait based, nhamely the multinomial
model.

| Caseltest | & | ap | av |
Case 3MN LAP 0.059| 0.053| 0.066
Case 3MN Likelihood ratio test 0.061| 0.054 | 0.068

Case 3MN Restricted difference test| 0.052| 0.046 | 0.058
Case 3MN Unrestricted difference tes0.060| 0.054 | 0.067

Case 5MN LAP 0.049| 0.044| 0.056
Case 5MN Likelihood ratio test 0.062 | 0.056 | 0.069
Case 5MN Restricted difference test| 0.051| 0.045| 0.057
Case 5MN Unrestricted difference tes0.049 | 0.044 | 0.056

TABLE 9: Estimated test size with 95% confidence limits for testitiy; = NPV, under the null
hypothesis using the multinomial simulation algorithm.

The estimated test size with 95% confidence limits for tggfithe NPVs are equal in the same cases
are shown in Table 9. In Case 3MN only the restricted diffeestest preserves its test size, while in
Case 5MN the LAP test and the unrestricted difference testmeserve their test size. The likelihood
ratio test does not preserve its test size in any of theses.case

5 DATA FROM LITERATURE

We will use the dataset from Weiner, Ryan, McCabe, KennedildSs, Tristani and Fisher (1979)
which is the same dataset as used in Leisenring et al. (20@)\&ang et al. (2006). There were
871 subjects of which 608 subjects had coronary artery sks@@AD) and 263 subjects did not have
CAD. For all the subjects the results of clinical historys{t&) and exercise stress testing (EST) (test
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B) were registered. The dataset is shown in Table 10.

Coronary artery disease|- Coronary artery disease
Result of EST Result of EST
+ - + -
Result of clinical history +| 22 44 473 81
- | 46 151 29 25

TABLE 10: Data from the coronary artery disease study.

Table 11 shows the resultingvalues for comparing the positive and negative predicialees using
the LAP-test, the likelihood ratio test and the restrictad anrestricted difference test.

Test PPV NPV
LAP 0.3706| <0.0001
Likelihood ratio test 0.3710| <0.0001

Restricted difference test | 0.3696| <0.0001
Unrestricted difference test0.3705| <0.0001

TABLE 11: Comparison op-values for the tests using data from the coronary artegagis study.

We see that all the tests yield the same results. We do nat tb null hypothesis that the PPVs are
equal, but we reject the null hypothesis that the NPVs araledine estimated NPVs are 0.78 for the
clinical history and 0.65 for EST. Therefore the clinicadtiory is more likely to reflect the true disease
status for subjects without CAD than without EST. Sinceladl tell counts in Table 10 are large, it is
to be expected that thevalues are equal for all the tests, as seen in our simulaiperiments.

6 ALTERNATIVE MODEL

When deriving the test statistic for comparing the posifivedictive values for two tests, Leisenring
et al. (2000) only consider the subjects that have at leaspositive test result. The subjects that do
not have any positive tests do not contribute to the tessstati.e. there is no information in how
many subjects have two negative test results. Our multiabseiting with eight probabilities is useful
because the null hypothesis for both the PPV and NPV carydasiéxpressed using the same model.
However, for testing the equivalence of the PPVs, it is ggéng to consider only using the subjects
with at least one positive test result also for our likelidoatio test as this will reduce the number of
parameters and thereby reducing the dimension of the ggation problem. Similarly, for testing the
equivalence of the NPVs for test A and test B, we only need & kt the subjects with at least one
negative test.

This situation is illustrated in Figure 2. We still have tieee main eventd, B and D, but we only
consider the data contained ihand/or B. The sample space is divided into six mutually exclusive
events, to each of which a random variabl¢, i = 1,...,6, corresponds. We defin¥ to be the
number of subjects for which evenbccurs and:; to be the observed value of'. There areN*
subjects in total, i.er:1 N} = N*. Letg; be the probability that everit: = 1, ...,6, occurs.q;

is then the probability that a subject has a positive testltrésr both testA and B and has the dis-
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ease.N;y, Ny, ..., Ng are multinomially distributed with paramete’s andq = (g1, 2. ¢3, ¢4, 95, g6)
where}>%_ ¢; = 1.

The null hypothesis that the positive predictive value &sttA is equal to the positive predictive value
for test B can be written

44 + G5 B 44 + go —0 (29)

HP’6:
O T gtetutes at+atate

The likelihood ratio test statistic in this case is then
—2-log\(n*) = —2 (Zn (log(q;) Iog((jl-)> (30)

wheren* = (n},nb,ni,nj, nk,ng), ¢ is the maximum likelihood estimate f@r under the null
hypothesis (29) ang; = n}/N* is the general maximum likelihood estimate.

FIGURE 2: Venn diagram for the event®, A and B showing which events the random variables
N7, ..., Ng correspond to.

If there is no information in the number of subjects not hgvaleast one positive rest result, then
andng should not affect the value of the likelihood ratio testistat. From the Lagrangian system
of equations in Section 3.1.2, we can show that the estinmtesandps underH, areps = 5 and

Ps = &, see Appendix A.

Maximizing the multinomial likelihood with six parameteyglds the same test statistic and thereby
the samep-value as when maximizing the multinomial likelihood witiglet parameters as both the
restricted and unrestricted maximum likelihood estimafes, ¢», g3, ¢4, g5, gs are obtained from the
restricted and unrestricted estimate®0fp2, ps, ps, s, 7, ps respectively by scaling the estimates
so they sum to one (see Appendix A).

7 CONCLUSIONS

In this report we have studied large sample tests for comgdhie positive and negative predictive
value of two diagnostic tests in a paired design.
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Based on the simulation experiments in Section 4, we havedftliat our restricted difference test
outperforms the existing methods (Leisenring et al. (2008%) Wang et al. (2006)) as well as our
likelihood ratio test with respect to test size.

A very important prerequisite of our methods is the estioratf the maximum likelihood estimates
for the parameters in the multinomial distribution undex tthull hypothesis, and this has shown to be
a challenging task as is also mentioned in Leisenring e280F). We have found these estimates in
two different ways, by using numerical optimization andvgay a system of equations.

We have seen that when the sample size decreases, the LAlKkédisibod ratio test and unrestricted
difference test do not preserve their test size. In our futmork we will abandon the large sample
assumption and work with small sample versions of our tesissts.
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A PROOFS OF PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMA
TORS UNDER THE NULL HYPOTHESIS

We show some properties of the maximum likelihood estinsatmder the positive predictive value
constraint (6). Similar properties can be shown for maxiniikelihood estimators satisfying the
negative predictive value constraint (8).

We start by showing that ik; = 0, then the maximum likelihood estimate pf under the null hy-
pothesisp, is 0. In the following, lefy, . .., ps denote estimates, not true multinomial probabilities.

First we rewrite the constraint (11) under the null hypoihes

p1 + p2 _ M + 3 (31)
D5 +pP6 D5+ D7

Assume that; = 0, Zlepi = 1, the Hy constraint (31) is satisfied and that > 0. We will prove
that whemn; = 0, the maximum likelihood estimate @f is zero, i.ep; = 0.

Letp] = 0, py = k(p1 + p2), p = k(p1 + p3), P} = pa, 5 = 5, Pg = Pe, Py = pr andpg = pg
Wherek — P1+P2+P3
2p1+p2+ps”

Thenzlep; = 1 andp’ also satisfyH, since

0+py  0+4ph
ps+Dps  DPs+p7

We will show thatp), > p, andpy > ps, implying logL(p’, ..., p5) > logL(p1, ..., ps). We start by
writing down the expression fqr, and check if it is greater tham.

k(p1 + p2) P2
p1+ P2 + D3
—(p1 + P2 D2
2p1 + po +p3( )

(p1 + p1 + P2 + p3)D2
P1 - p2
b2

(p1 4+ p2+p3) - (p1 + p2)
(p1 4+ p2 + p3)P1
p1 + P2 + 3

vV V.V V V

The inequality is satisfied and therefasé > p,. The same argument can be used to show that
/
p3 > p3.
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The non-constant part of the log likelihood functionﬁﬁz1 n; - logp;, and whenn; = 0, the first
term in the sum is 0, regardless of the valugafWhenp/, > p, andp’; > p3 we see that

logL(0, p5, p3, pa, P5, D6, P7, Ps) > 10QL(p1, P2, P3, P4, P5, D6, D7+ P3)-

Thereforep; = 0. The same argument is valid fgg, i.e. p5 = 0 whenn; = 0. Whenn,4 and/orng
is 0, thenp4 and/orpg are also 0, see below.

However, the argument does not hold @t ps, pg andp; whenns, ns, ng or ny is 0. Even though
e.g. p» may sometimes be 0 wheny = 0, this is not always true. If e.go; = 0 andps > 0, then

P2 cannot be equal to 0 eveniif, = 0 because then the null hypothesis constraint (31) will not be
satisfied. One example of this situation is the table- (0,0,6,0,2,6,0,0). The analytic solution

of the Lagrangian system of equationgis= (0,2/7,1/7,0,2/7,2/7,0,0) and we see thai, # 0
even thoughmsy = 0.

We proceed to show that; = nys/N andps = ng/N. If we add the first eight Lagrangian equations
in (18), we get

N = vh(p) + 2kk(p) =7,
whereh(p) = 1 andk(p) = 0 are the two constraints. Thys= N, andps = n4/N andps = ng/N
follow from (18).

So the maximum likelihood estimage under the null hypothesis is among the= (p1,...,ps)
for which py = n4/N andpg = ng/N. For such ap, let s(p) = r - (p1, p2, P3, p5, D6, P7), Where

r = N/(N — ng — ng) so that the sum of the componentssgp) is 1. Let logl. and log.” denote
the log-likelihood of the original multinomial model withgiht parameters and the alternative multi-
nomial model with six parameters in Section 6. ThenZlgg) — logL’(s(p)) is constant, showing
that logL(p) is maximal if and only if lod./(s(p)) is. Furthermorep satisfies the null hypothesis
for the multinomial model with eight parameters if and orfly(ip) does for the multinomial model
with six parameters, showing that the maximum likelihootinestes under the null hypothesis for
the multinomial model with eight and six parameters areiobthfrom the other model by up- and
downscaling, respectively.

There are also other relationships between the restrigeahpeter estimates that can easily be shown
and used in the estimation of the parameters:

ny + ng + N3
p1+p2+p3=—"7"—

N
ns + ng + ny
P5+p6+p7=T
n n n
_1_|_N:_2_|__3
b1 b2 p3
n n n
o oy ™
Ps pPe P71

B EXISTING DIFFERENCE BASED METHODS

The already published difference based tests for compariedictive values will here be described
briefly.
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B.1 TEST BY WANG

Recently Wang et al. (2006) presented two tests, one baséueatifference of the PPVs and one
based on the log ratio of the PPVs for testing the null hypsthim (2). The data are assumed to be
multinomially distributed.

They fit the model PPY — PPV = 3f using the weighted least squares apprdadkesting if the
positive predictive values for test A and B are equal is egjaint to testingd, : 3F = 0.

2
N _
Wf:(JEEmmM—Pm@O, (32)
1

which is asymptoticallyy?-distributed. S’ is the estimated variance 6f* = PPV, — PPVg. To
compare the negative predictive values the same approdolowed by looking at the difference
of the two negative predictive values. They fit the model NPV NPV = 3 and test the null
hypothesisty : 3 = 0 using the following test statistic

2
Wi = (,/%(W/A - I\TFTVB>> (33)

where$Y is the estimated variance 8f = NPV, — NPV. W is asymptoticallyy2-distributed.

The test statistic is

In the second test they consider the log ratio of the PPVseaistést statistic and fit the model

IogEE\\f;} = 3L, Testing if the positive predictive values are equal is is tase equivalent to testing

the null hypothesidd, : 35 = 0. The test statistic is

_— 2
VN, PPV,
¥ PPV

which is asymptoticallyy? distributed. 33" is the estimated variance of = Iog%. The same
B

approach is followed to derive a second test for the negatiedictive values by looking at the log
ratio of the negative predictive values for test A and teshB,model fitted is IoiNPVA) =Y. To

NPV5
test if the negative predictive values are equal, the nudoliyesis isf : 33 = 0 and they use the
following test statistic
— 2
N, NPV
Wi = Yh]og/ﬂ\A (35)
3 TNPVp

where) is the estimated variance of = Iog'l:llf,\\\;f‘. The test statistic in (35) ig2-distributed.
B
They recommend using the tests based on the difference pféléctive values because it performs

better than the tests based on the log ratio of the predictiltees in terms of test size and power.

B.2 TEST BY MOSKOWITZ AND PEPE

Moskowitz and Pepe (2006) look at the relative predictiveies, rPPV= F5A and INPV= {EA.

By using the multivariate central limit theorem and the Beatiethod (which uses Taylor series ex-

The notation in Appendix B.1 differs from the notation usedVang et al. (2006).
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pansions to derive the asymptotic variance), the followio@- (1 — o))% confidence intervals can be
estimated for log rPPV and log rNPV,

>

2
log rPPV+ 21, WP
2
log INPV+ 21, 5 WN

&}l

wherez? anda?; are the estimated variances%log PPV and\/LNIog NPV respectively andv
is the number of subjects under study. Moskowitz and Pep@gj2@do not present a hypothesis test,
but based on the confidence intervals we have the asymplpticadistributed test statistic

2
Zp = (Iog (ﬂrPPV)) (36)
op

for testing the null hypothesis (2) for the positive pregietvalues. When testing the null hypothesis
(3) whether the negative predictive values are equal thestaisstic

2
ZN = (Iog (ﬂrNPV)) , (37)
ON

which has an asymptotig; distribution can be used. The test statistic in (36) onlfediffrom the test
statistic in (32) in the estimated variance. Moskowitz aegpd>(2006) use the multinomial Poisson
transformation to simplify the variances.

C RESULTS FROM THELAP SIMULATION EXPERIMENT

Table 12 shows the estimated test size with 95% confidendés liwhen comparing the negative
predictive values for data generated the null hypothesebleT13 and 14 show the estimated test
power when comparing the positive and negative predictdlees respectively for data generated
under the alternative hypothesis.
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Caseltest | & | ar | au |
Case 1 LAP test 0.052| 0.046 | 0.059
Case 1 Likelihood ratio test 0.056 | 0.050| 0.063
Case 1 Restricted difference test] 0.048 | 0.043 | 0.055
Case 1 Unrestricted difference tgs0.052 | 0.046 | 0.059

Case 2 LAP test 0.050| 0.045| 0.057
Case 2 Likelihood ratio test 0.050| 0.044| 0.057
Case 2 Restricted difference test 0.050| 0.044 | 0.056
Case 2 Unrestricted difference tgs0.050 | 0.045| 0.057

Case 3 LAP test 0.058| 0.052 | 0.065
Case 3 Likelihood ratio test 0.059| 0.053| 0.066
Case 3 Restricted difference test] 0.052 | 0.047 | 0.059
Case 3 Unrestricted difference tgs0.060 | 0.053 | 0.067

Case 4 LAP test 0.046| 0.041| 0.052
Case 4 Likelihood ratio test 0.046| 0.040| 0.052
Case 4 Restricted difference test40.045| 0.039 | 0.051
Case 4 Unrestricted difference tgs0.047 | 0.041| 0.053

Case 5 LAP test 0.050| 0.044 | 0.056
Case 5 Likelihood ratio test 0.061| 0.055| 0.068
Case 5 Restricted difference test 0.049 | 0.044 | 0.056
Case 5 Unrestricted difference tgs0.050 | 0.044 | 0.056

Case 6 LAP test 0.049| 0.044 | 0.056
Case 6 Likelihood ratio test 0.049 | 0.044 | 0.056

Case 6 Restricted difference test 0.049 | 0.043| 0.055
Case 6 Unrestricted difference t€s0.049 | 0.044 | 0.056

Case 7 LAP test 0.060| 0.053| 0.067
Case 7 Likelihood ratio test 0.067| 0.061| 0.074
Case 7 Restricted difference test 0.056 | 0.050| 0.063
Case 7 Unrestricted difference tgs0.060 | 0.054 | 0.067

Case 8 LAP test 0.046 | 0.040| 0.052
Case 8 Likelihood ratio test 0.047| 0.041| 0.053
Case 8 Restricted difference test] 0.044 | 0.039 | 0.050
Case 8 Unrestricted difference tgs0.046 | 0.040 | 0.052

TABLE 12: Estimated test size with 95% confidence limits whenrigstiPV, = NPV for data
generated under the null hypothesis using the LAP simuiatigorithm.
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| Caseltest | & | ar | au |
Case 1 LAP test 0.125] 0.116| 0.135
Case 1 Likelihood ratio test 0.143| 0.134| 0.153
Case 1 Restricted difference test 0.111| 0.102| 0.120
Case 1 Unrestricted difference tgs0.141 | 0.131| 0.151

Case 2 LAP test 0.396| 0.383| 0.410
Case 2 Likelihood ratio test 0.390| 0.376| 0.403

Case 2 Restricted difference testf 0.380| 0.367 | 0.394
Case 2 Unrestricted difference tgs0.400| 0.386 | 0.413

Case 3 LAP test 0.369| 0.356 | 0.383
Case 3 Likelihood ratio test 0.361| 0.348| 0.375
Case 3 Restricted difference test] 0.349 | 0.336 | 0.363
Case 3 Unrestricted difference tgs0.369 | 0.356 | 0.383

Case 4 LAP test 0.945| 0.938| 0.951
Case 4 Likelihood ratio test 0.944 | 0.937 | 0.950
Case 4 Restricted difference test] 0.943 | 0.936 | 0.949
Case 4 Unrestricted difference tgs0.944 | 0.938 | 0.950

Case 5 LAP test 0.146| 0.137 | 0.156
Case 5 Likelihood ratio test 0.174| 0.163| 0.184
Case 5 Restricted difference test 0.124 | 0.116 | 0.134
Case 5 Unrestricted difference tgs0.158 | 0.149 | 0.169

Case 6 LAP test 0.463| 0.450| 0.477
Case 6 Likelihood ratio test 0.458| 0.444| 0.472
Case 6 Restricted difference test] 0.449 | 0.435| 0.463
Case 6 Unrestricted difference tgs0.466 | 0.452 | 0.479

Case 7 LAP test 0.485| 0.471| 0.498
Case 7 Likelihood ratio test 0.484| 0.470| 0.498
Case 7 Restricted difference test 0.468 | 0.454 | 0.482
Case 7 Unrestricted difference tgs0.485| 0.471| 0.498

Case 8 LAP test 0.987| 0.984| 0.990
Case 8 Likelihood ratio test 0.987| 0.984 | 0.990
Case 8 Restricted difference test] 0.987 | 0.983 | 0.990
Case 8 Unrestricted difference tgs0.987 | 0.984 | 0.990

TABLE 13: Estimated power with 95% confidence limits when testiRy P = PPVj for data gen-
erated under the alternative hypothesis.
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| Caseltest | & | ar | av |
Case 1 LAP test 0.324| 0.312| 0.338
Case 1 Likelihood ratio test 0.336| 0.323| 0.349
Case 1 Restricted difference test] 0.048 | 0.043 | 0.055
Case 1 Unrestricted difference tgs0.052 | 0.046 | 0.059

Case 2 LAP test 0.929| 0.921| 0.935
Case 2 Likelihood ratio test 0.929| 0.921| 0.935
Case 2 Restricted difference test 0.050| 0.044 | 0.056
Case 2 Unrestricted difference tgs0.050 | 0.045| 0.057

Case 3 LAP test 0.113] 0.105]| 0.122
Case 3 Likelihood ratio test 0.114] 0.105]| 0.123
Case 3 Restricted difference test] 0.052 | 0.047 | 0.059
Case 3 Unrestricted difference tgs0.060 | 0.053 | 0.067

Case 4 LAP test 0.350| 0.337| 0.364
Case 4 Likelihood ratio test 0.349| 0.336| 0.362

Case 4 Restricted difference testf 0.045| 0.039| 0.051
Case 4 Unrestricted difference tgs0.047 | 0.041 | 0.053

Case 5 LAP test 0.427| 0.413| 0.441
Case 5 Likelihood ratio test 0.458| 0.444| 0.471

Case 5 Restricted difference testf 0.049| 0.044 | 0.056
Case 5 Unrestricted difference tgs0.050 | 0.044 | 0.056

Case 6 LAP test 0.986 | 0.982 | 0.989
Case 6 Likelihood ratio test 0.986| 0.982| 0.989

Case 6 Restricted difference test 0.049 | 0.043| 0.055
Case 6 Unrestricted difference t€s0.049 | 0.044 | 0.056

Case 7 LAP test 0.136| 0.127| 0.146
Case 7 Likelihood ratio test 0.146| 0.136| 0.156

Case 7 Restricted difference testf 0.056 | 0.050| 0.063
Case 7 Unrestricted difference t¢s0.060 | 0.054 | 0.067

Case 8 LAP test 0.465| 0.451| 0.478
Case 8 Likelihood ratio test 0.463| 0.450| 0.477
Case 8 Restricted difference test] 0.044 | 0.039 | 0.050
Case 8 Unrestricted difference tgs0.046 | 0.040 | 0.052

TABLE 14: Estimated power with 95% confidence limits when testirigVi = NPV for data
generated under the alternative hypothesis using the LBlation algorithm.
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D COMPUTATIONAL REMARKS

When using the TANGO program Andreani et al. (2007), Andrearal. (2008), there are several
parameters that can be set or modified by the user. Along Wwélspecification of the objective

function and the constraints, the initial estimates of thgriange multipliers, the initial values of the
variables and their lower and upper bounds must be set. @#rameters have a default value, but
these can be altered by the user. These parameters inclatentte limits and the maximum number
of iterations.

In our simulation studies we have chosen the initial vall@for all the variables with upper and
lower boundst+200000. The initial value for the Lagrangian multiplier was set t0 @s advised in
the program when one does not believe it should have a speaifie. The feasibility and optimality
tolerances ar@é0~* by default. We found that with these tolerances, the resyiiariable values
depend on both the initial value of the Lagrange multiplied @he initial values of the variables.
However, different initial values for the variables give maimilar results than different initial values
of the Lagrange multipliers. The smaller the tolerancehis,hore similar the results will be, so in
order to get results that do not depend on any of the initinlesaone should use smaller values for
the tolerances and in our problems, smaller th@an*. The problem is then that it takes longer for the
algorithm to converge. When performing the likelihood aagst for one or a few datasets this is not
an issue, but when performing simulation experiments watresal thousand datasets this will slow
down the experiment considerably.

Another problem is that of the algorithm converging to a lanaximum. For example, the analytical
restricted likelihood estimates for the table= (0,7,0,69,5,3,11,5) is -115.73 while it is -166.38
using the numerical estimates from TANGO. The differenceaigsed by the fact that = 0 using
the numerical optimization routine, while it is 0.04 usirge tanalytical optimization. For most of
the large sample datasets the difference is less, with &.@f 000 estimates in Case 1 in the LAP
simulation experiment differ by more than 1.0 between thaydical and numerical estimates. We
recommend using the analytical estimates.
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