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SUMMARY

Within the field of diagnostic tests, the positive predictive value is the probability of being
diseased given that the diagnostic test is positive. Two diagnostic tests are applied to each subject
in a study and in this report we look at statistical hypothesis tests for large samples to compare
the positive predictive values of the two diagnostic tests.We propose a likelihood ratio test and
a restricted difference test, and we perform simulation experiments to compare these tests with
existing tests. For comparing the negative predictive values of the diagnostic tests, i.e. the proba-
bility of not being diseased given that the test is negative,we propose negative predictive versions
of the same tests. The simulation experiments show that the restricted difference test performs
well in terms of test size.

1 INTRODUCTION

Diagnostic tests are used in medicine to e.g. detect diseases and give prognoses. Diagnostic tests
can for example be based on blood samples, X-ray scans, mammography, ultrasound or computed
tomography (CT). Mammography is used for detecting breast cancer, a blood sample may show if
an individual has an infection, fractures may be detected from X-ray images, gallstones in the gall-
bladder can be found using ultrasound, and CT scans are useful for identifying tumours in the liver.
A diagnostic test can have several outcomes or the outcome may be continuous, but it can often be
dichotomized in terms of presence or absence of a disease andwe will only consider diagnostic tests
for which the disease status is binary.

When evaluating the performance of diagnostic tests, the sensitivity, specificity and positive and neg-
ative predictive values are the common accuracy measures. The sensitivity and specificity are proba-
bilities of the test outcomes given the disease status. The sensitivity is the probability of a positive test
outcome given that the disease is present and the specificityis the probability of a negative outcome
given no disease. These measures tell us the degree to which the test reflects the true disease status.

The predictive values are probabilities of disease given the test result. The positive predictive value
(PPV) is the probability that a subject who has a positive test outcome has the disease and the negative
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predictive value (NPV) is the probability that a subject whohas a negative test outcome does not have
the disease. The predictive values give information about the prediction capabilities of the test. For a
perfect test both the PPV and NPV are 1, the test result will then give the true disease status for each
subject.

When there are several diagnostic tests available for the same disease, we are interested in knowing
which test is the best to use, but depending on what we mean by best, there are different methods
available. If we want to find the best test regarding the ability to give a correct test outcome given
the disease status then e.g. McNemar’s test, see Alan Agresti (2002), can be used for comparing the
sensitivity or specificity of two tests evaluated on the samesubjects.

A test that has a high sensitivity and specificity will be mostlikely to give the patient the correct test
result. However, for the patient it is utterly important to be correctly diagnosed and thereby getting
the right treatment. We need to take into account the prevalence of the disease. If the prevalence
is low, the probability that the patient does have the disease when the test result is positive, will be
small even if the sensitivity of the applied test is high. Therefore, comparing the positive or negative
predictive values is often more relevant in clinical practise as discussed by Guggenmoos-Holzmann
and van Houwelingen (2000).

In the remainder of this work, we wish to test if the positive or negative predictive values of two
diagnostic tests are equal. In this report we apply existingtests by Leisenring, Alonzo and Pepe (2000)
and Wang, Davis and Soong (2006), we propose a likelihood ratio test, and suggest improvements for
some of the already existing tests in the large sample case.

In Section 2 we describe the model and the structure of the data and define the predictive values.
The null hypothesis, along with our proposed methods and already existing methods are presented in
Section 3. A simulation study is conducted to compare the methods in Section 4. In Section 5 the
methods are applied to data from the literature. We also present an alternative model and test statistic
for the likelihood ratio test in Section 6. The results are summarised in the conclusions in Section 7.

2 MODEL AND DATA

Next we define the random variables and the model used to describe the situation when comparing the
predictive values.

2.1 DEFINITIONS

Two tests, test A and test B, are evaluated on each subject in astudy. Each test can have a positive
or negative outcome, i.e. indicating whether the subject has the disease under study or not. The true
disease status for each subject is assumed to be known. For each subject, we define three events:

• D: The subject has the disease.

• A: Test A is positive.

• B: Test B is positive.

Let D∗, A∗ andB∗ denote the complementary events. The situation can then be illustrated by a Venn
diagram as in Figure 1. There are eight mutually exclusive events and we define the random variable
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Ni, i = 1, ..., 8, to be the number of times eventi occurs. In total there areN = N1 + . . . + N8

subjects in the study. Table 1 gives an overview of the notation for the eight random variables in terms
of the eventsA, B, D and their complements.

Notation Alternative notation Explanation
N1 NA∩B∩D∗ number of non-diseased subjects with positive tests A and B
N2 NA∩B∗∩D∗ number of non-diseased subjects with positive test A and negative test B
N3 NA∗∩B∩D∗ number of non-diseased subjects with negative test A and positive test B
N4 NA∗∩B∗∩D∗ number of non-diseased subjects with negative tests A and B
N5 NA∩B∩D number of diseased subjects with positive tests A and B
N6 NA∩B∗∩D number of diseased subjects with positive test A and negative test B
N7 NA∗∩B∩D number of diseased subjects with negative test A and positive test B
N8 NA∗∩B∗∩D number of diseased subjects with negative tests A and B

TABLE 1: Notation for the random variables defined by the eventsA, B andD and their complements.

A

N2 N3

N8

N4

N7

N5

N1

N6

D

B

N

FIGURE 1: Venn diagram for the eventsD, A andB showing which events the random variables
N1, ..., N8 correspond to.

To each of the eight mutually exclusive events there corresponds an unknown probabilitypi,
i = 1, . . . , 8, where

∑
8

i=1
pi = 1, which is the probability that eventi occurs for a randomly cho-

sen subject. The positive predictive values of test A and test B can be expressed in terms of these
probabilities and are given as

PPVA = P (D|A) =
P (D ∩ A)

P (A)
=

p5 + p6

p1 + p2 + p5 + p6

and

PPVB = P (D|B) =
P (D ∩ B)

P (B)
=

p5 + p7

p1 + p3 + p5 + p7

.
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Similarly, the negative predictive values of test A and B are

NPVA = P (D∗|A∗) =
P (D∗ ∩ A∗)

P (A∗)
=

p3 + p4

p3 + p4 + p7 + p8

and

NPVB = P (D∗|B∗) =
P (D∗ ∩ B∗)

P (B∗)
=

p2 + p4

p2 + p4 + p6 + p8

.

The predictive values are dependent on the prevalence of thedisease,P (D), which is the probability
that a randomly chosen subject has the disease. For the positive predictive value,

PPVA = P (D|A) =
P (D ∩ A)

P (A)
=

P (A|D) · P (D)

P (A|D) · P (D) + (1 − P (A∗|D∗)) · (1 − P (D))
,

whereP (A|D) is the sensitivity andP (A∗|D∗) is the specificity of test A. WhenP (A) = P (B)
testing if PPVA = PPVB is equivalent to testing ifP (A|D) = P (B|D), i.e. testing whether the
sensitivities of the two tests are equal. We assume that the prevalence among the subjects in the study
is the same as the prevalence in the population, and this can be achieved with a cohort study in which
the subjects are randomly selected.

2.2 THE MULTINOMIAL MODEL

Given the total number of subjectsN in the study, the random variablesN1, N2, ..., N8 can be seen
to be multinomially distributed with parametersp = (p1, p2, p3, p4, p5, p6, p7, p8) and N , where∑

8

i=1
pi = 1. The joint probability distribution ofN1, N2, ..., N8 is

P

(
8⋂

i=1

(Ni = ni)

)
= N !

8∏

i=1

pi
ni

ni!
.

The expectation ofNi is
E(Ni) = µi = Npi

for i = 1, ..., 8, and the variance is

Var(Ni) = Npi(1 − pi).

The covariance betweenNi andNj is

Cov(Ni, Nj) = −Npipj

for i 6= j. This leads to the covariance matrix

Σ = Cov(N ) = N(Diag(p) − pT p),

for the multinomial distribution, Johnson, Kotz and Balakrishan (1997). The general unrestricted
maximum likelihood estimator ofpi is

p̂i = ni/N (1)

for i = 1, ..., 8.
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2.3 DATA

For a number of subjects under study, we observe for eachi = 1, ..., 8, the number of times event
i occurs among theN subjects,ni. Table 2 shows the observed data in a23 contingency table. In
the following, letn = (n1, n2, n3, n4, n5, n6, n7, n8) be the vector of the observed data. Using the
unrestricted maximum likelihood estimators forp, we can then estimate the positive and negative
predictive values of test A and B as follows:

P̂PVA =
n5 + n6

n1 + n2 + n5 + n6

, P̂PVB =
n5 + n7

n1 + n3 + n5 + n7

N̂PVA =
n3 + n4

n3 + n4 + n7 + n8

, N̂PVB =
n2 + n4

n2 + n4 + n6 + n8

.

Subjects without diseaseSubjects with disease
Test B Test B

+ − + −
Test A + n1 n2 n5 n6

− n3 n4 n7 n8

TABLE 2: Observed datan1, ..., n8 presented in a23 contingency table.

3 METHOD

Assume that we would like to test the null hypothesis that thepositive predictive values are equal for
test A and B, i.e. PPVA = PPVB . The null hypothesis can be written as

HP
0 : P (D|A) = P (D|B), i.e. HP

0 :
p5 + p6

p1 + p2 + p5 + p6

=
p5 + p7

p1 + p3 + p5 + p7

. (2)

Alternatively, if we would like to test whether the negativepredictive values are equal for test A and
B, i.e. if NPVA = NPVB , the null hypothesis is

HN
0 : P (D∗|A∗) = P (D∗|B∗), i.e. HN

0 :
p3 + p4

p3 + p4 + p7 + p8

=
p2 + p4

p2 + p4 + p6 + p8

. (3)

Our alternative hypotheses will be that the predictive values are not equal, i.e.
HP

1 : P (D|A) 6= P (D|B) andHN
1 : P (D∗|A∗) 6= P (D∗|B∗).

3.1 LIKELIHOOD RATIO TEST

One possibility to test the null hypothesis in (2) is to use a likelihood ratio test. We first write down
the test statistic and then describe how to find the maximum likelihood estimates of parameters.
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3.1.1 TEST STATISTIC

In a general setting, if we want to testH0 : θ ∈ Θ0 versusH1 : θ ∈ Θ
c
0 whereΘ0 ∪ Θ

c
0 = Θ

andΘ denotes the entire parameter space, we may use a likelihood ratio test. This approach was also
suggested by Leisenring et al. (2000), who faced numerical difficulties trying to implement it. The
likelihood ratio test statistic is in general defined as

λ(n) =
supΘ0

L(θ|n)

supΘ L(θ|n)

wheren is the observed data, Casella and Berger (2002). The denominator of λ(n) is the max-
imum likelihood of the observed sample over the entire parameter space and the numerator is the
maximum likelihood of the observed sample over the parameters satisfying the null hypothesis. Let
N = (N1, N2, N3, N4, N5, N6, N7, N8) be the vector of the random variables. When the sample size
is large,

−2 · logλ(N ) ≈ χ2
k

i.e. −2 · logλ(N ) is χ2 distributed withk degrees of freedom wherek is the difference between the
number of free parameters in the unrestricted case and underthe null hypothesis.

Let θ = p = (p1, . . . , p8) be the parameters in the multinomial distribution andn = (n1, . . . , n8) the
observed data. The log-likelihood to be maximized for the multinomial distribution is

l(p) = logL(p|n) = c +

8∑

i=1

ni · log(pi) (4)

wherec is a constant.

The sum ofp1, p2, ...,p8 must equal 1,
8∑

i=1

pi = 1. (5)

Under the null hypothesis that the positive predictive values for the two tests are equal, their difference
δP is zero, i.e.

δP =
p5 + p6

p1 + p2 + p5 + p6

− p5 + p7

p1 + p3 + p5 + p7

= 0. (6)

In the unrestricted case (i.e.H0 ∪ H1), the maximum likelihood estimates forp1, . . . , p8 are the
estimates given by (1), which satisfy (5). Under the null hypothesis, the estimates cannot be given in
closed form and we will need to use an optimization routine toestimatep1, . . . , p8 by maximizing the
log-likelihood (4) under the constraints (5) and (6).

Let p̂ = (p̂1, p̂2, p̂3, p̂4, p̂5, p̂6, p̂7, p̂8) be the unconstrained maximum likelihood estimates and
p̃ = (p̃1, p̃2, p̃3, p̃4, p̃5, p̃6, p̃7, p̃8) the maximum likelihood estimates under the null hypothesis. Then,
in our model, asymptotically as N is large,

−2 · log(λ(n)) = −2

(
8∑

i=1

ni · (log(p̃i) − log(p̂i))

)
≈ χ2

1. (7)

We have one less free parameter in the restricted case because of the constraint (6).
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For testing whether the negative predictive values for the two tests are equal, the constraintδP (6) is
replaced byδN , where

δN =
p3 + p4

p3 + p4 + p7 + p8

− p2 + p4

p2 + p4 + p6 + p8

= 0. (8)

3.1.2 FINDING MAXIMUM LIKELIHOOD ESTIMATES UNDER THE NULL HYPOTHE SES

To find the maximum likelihood estimates under the null hypothesis, we can either maximize the
likelihood function under the given constraints using a numerical optimization routine or find the esti-
mates analytically by solving a system of equations. In bothapproaches we use Lagrange multipliers
and in either case we have two constraints.

NUMERICAL MAXIMIZATION OF THE LOG -LIKELIHOOD If we want to find the maximum likeli-
hood estimates using an optimization routine, the goal is tofind the values̃p under the null hypothesis
such that logL(p̃) ≥ logL(p) for all p that satisfies the two constraints (5) and (6).

To maximize the log-likelihood (4) under the null hypotheses, we use the R interface version of
TANGO (Trustable Algorithms for Nonlinear General Optimization), see Andreani, Birgin E. G.,
Martinez and Schuverdt (2007) and Andreani, Birgin, Martinez and Schuverdt (2008), which is a set of
Fortran routines for optimization. In order to run the program, one must specify the objective function
and the constraint and their corresponding first order derivatives. We reparametrize the problem by
setting

p1 =
1

1 + ey1 + ... + ey7

,

p2 =
ey1

1 + ey1 + ey2 + ... + ey7

,

p3 =
ey2

1 + ey1 + ey2 + ... + ey7

,

...

p8 =
ey7

1 + ey1 + ey2 + ... + ey7

where−∞ < yi < ∞, i = 1, . . . , 7. This reparametrization ensures that the constraint (5) is
satisfied, in addition to restricting the estimated probabilities to be0 ≤ pi ≤ 1, i = 1, . . . , 8. Let
y = (y1, y2, y3, y4, y5, y6, y7). The constraint under the null hypothesis (2) is then

δP,y =
ey4 + ey5

1 + ey1 + ey4 + ey5

− ey4 + ey6

1 + ey2 + ey4 + ey6

= 0 (9)

and the constraint under the null hypothesis (3) is

δN,y =
ey2 + ey3

ey2 + ey3 + ey6 + ey7

− ey1 + ey3

ey1 + ey3 + ey5 + ey7

= 0. (10)

These constraints are both non-linear equality constraints. The TANGO program uses an augmented
Lagrangian algorithm to find the minimum of the negative log-likelihood while ensuring that theH0

constraints (9) and (10) are satisfied when testing the null hypotheses (2) and (3) respectively. The
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Lagrangian multiplier is updated successively starting byan initial value that must be set. We also
set the initial value ofy and its lower and upper bounds. The value ofy at the optimum is returned.
Some computational remarks are given in Appendix D.

ANALYTICAL MAXIMIZATION OF THE LOG -LIKELIHOOD Another approach is to find the esti-
mates analytically by solving a system of equations arisingfrom the method of Lagrange multipliers,
for an introduction see Edwards and Penney (1998). The constraint under the null hypothesis can be
rewritten as

k(p) = p1p7 + p2p7 + p2p5 − p1p6 − p3p5 − p3p6 = 0. (11)

In addition, leth(p) be the constraint thatp1, ..., p8 must sum to one,

h(p) =

8∑

i=1

pi = 1, (12)

and letl(p) be the log-likelihood function given in (4).

The system of equations to be solved then consists of

∇l = γ∇h + κ∇k (13)

whereγ andκ are Lagrangian multipliers, together with the above constraints.

The partial derivatives of the log-likelihoodl and the constraintsh andk with respect top1, p2, p3,
p4, p5, p6, p7 andp8 are given by

∇l =

(
n1

p1

,
n2

p2

,
n3

p3

,
n4

p4

,
n5

p5

,
n6

p6

,
n7

p7

,
n8

p8

)
, (14)

∇k = (p7 − p6, p5 + p7,−p5 − p6, 0, p2 − p3,−p1 − p3, p1 + p2, 0), (15)

and
∇h = (1, 1, 1, 1, 1, 1, 1, 1). (16)

From Equations (11) – (16) we obtain the following system of equations, which consists of ten equa-
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tions and ten unknown variables

n1 = p1(γ + κ(p7 − p6))

n2 = p2(γ + κ(p5 + p7))

n3 = p3(γ + κ(−p5 − p6))

n4 = p4γ

n5 = p5(γ + κ(p2 − p3)) (17)

n6 = p6(γ + κ(−p1 − p3))

n7 = p7(γ + κ(p1 + p2))

n8 = p8γ
8∑

i=1

pi = 1

p1p7 + p2p7 + p2p5 − p1p6 − p3p5 − p3p6 = 0.

The denominators of (14) have been multiplied over to the right hand side in order to allow forpi = 0
as a possible solution forni = 0. Obviously,l cannot have a maximum valuepi = 0 if ni 6= 0, as
l(p) would be−∞ in this case. The solutions of this system of equations involve roots of third degree
polynomials, and we have used the Maple 12 command solveto find solutions. Among its solutions,
the one that maximizesl(p) and where allpi ≥ 0 yields the likelihood estimates̃pi under the null
hypothesis. We can show that whenni = 0, the corresponding likelihood estimate under the null
hypothesis̃pi is 0 for i = 1, 4, 5, 8, but that this is not necessarily true fori = 2, 3, 6, 7. For p̃4 andp̃8

we have the more general result thatp̃4 = n4/N andp̃8 = n8/N , see Appendix A for the proofs.

A gradient based optimization routine searches for the global minimum across the negative log-
likelihood surface and it can get stuck in a local minimum. Inour experience this especially happens
when some of the cell counts in the contingency table are small. The analytical maximization might
yield more accurate estimates in these cases, see Appendix D.

3.2 DIFFERENCE BASED TESTS

Other possible test statistics start out by looking at the difference of the PPVs, and then these test
statistics can be standardized by using Taylor series expansion. We also suggest some improvement
to these tests.

3.2.1 TEST STATISTICS

Based on the differenceδP given in Equation (6), which equals zero under the null hypothesis, we
may suggest a variety of possible test statistics.

Wang et al. (2006) suggested the test statistics

g1(N ) =
N5 + N6

N1 + N2 + N5 + N6

− N5 + N7

N1 + N3 + N5 + N7

(18)

and

9



g2(N ) = log
(N5 + N6)(N1 + N3 + N5 + N7)

(N5 + N7)(N1 + N2 + N5 + N6)
. (19)

For a more detailed description of their work, see Appendix B.1. Moskowitz and Pepe (2006) also
suggest a similar test statistic tog2(N ), see Appendix B.2.

Since the null hypothesis can be written

HP
0 :

p1 + p3

p5 + p7

=
p1 + p2

p5 + p6

another test statistic to be used may be

g3(N ) =
N1 + N3

N5 + N7

− N1 + N2

N5 + N6

.

Another possibility is to use the log ratio of the terms, instead of their difference,

g4(N ) = log
(N1 + N3)(N5 + N6)

(N1 + N2)(N5 + N7)

or we may rewrite the null hypothesis in order to obtain

g5(N ) =
N5 + N6

N1 + N2

− N5 + N7

N1 + N3

.

3.2.2 STANDARDIZATION BY TAYLOR SERIES EXPANSION

For a general test statistic,g(N ), we may construct a standardized test statistic by subtracting the
expectation of the test statistic, E(g(N )), and dividing by its standard deviation,

√
Var(g(N )). In

the large sample case the square of the standardized test statistics may then be assumed to be approx-
imatelyχ2

1-distributed,

T (N ,µ,Σ) =

{
g(N ) − E(g(N ))√

Var(g(N ))

}2

≈ χ2
1. (20)

The expectation and variance of the test statistic can be approximated with the aid of Taylor series ex-
pansion as suggested by Wang et al. (2006). Let E(N ) = µ be the point around which the expansion
is centered. As before,Σ = Cov(N ). A second order Taylor expansion in matrix notation is givenas

g(N ) ≈ g(µ) + GT (µ)(N − µ) +
1

2
(N − µ)T H(µ)(N − µ) (21)

whereG is a vector containing the first order partial derivatives ofg(N ) with respect to the compo-
nents ofN andGT is the transpose ofG. FurtherH is a matrix with second order partial derivatives
of g(N ) with respect to the components ofN , i.e. the Hessian matrix.

The expectation ofg(N ) can then be approximated as

E(g(N )) ≈ g(µ)
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for the first order Taylor expansion and as

E(g(N )) ≈ g(µ) +
1

2
tr(H(µ)Σ) (22)

for the second order Taylor expansion, since

E
(

1

2
(N − µ)T H(µ)(N − µ)

)

= E
(
tr
(

1

2
H(µ)(N − µ)T (N − µ)

))

= 1

2
tr
(
H(µ)E((N − µ)T (N − µ))

)

where we have used the resultxT Ax = tr(xT Ax) = tr(AxxT ) wherex = N − µ andA is the
Hessian matrixH. E((N − µ)(N − µ)T ) is the covariance matrixΣ of N .

The variance ofg(N ) can be approximated as

Var(g(N )) ≈ GT (µ)Σ G(µ)

for the first order Taylor expansion. Using a second order Taylor expansion for the variance requires
finding the third and fourth order moments ofN .

Using the first order Taylor approximation of E(g(N )) and Var(g(N )) in the standardized test statistic
of (20) yields

T (N ) =
(g(N ) − g(µ))2

GT (µ)ΣG(µ)
≈ χ2

1. (23)

Under the null hypothesis,g(µ) = 0. G(µ) andΣ are functions of the unknown parametersp and
needs to be estimated. We can either insert the general maximum likelihood estimateŝpi = ni/N
or the maximum likelihood estimates̃pi underHP

0 , as found in Section 3.1.2. When we use the
standardized test statistic (23) withg1(N ) and estimate the variance using the maximum likelihood
estimates underH0 we refer to it as therestricted difference test. If we instead use the unrestricted
maximum likelihood estimates to estimate the variance, we refer to it as theunrestricted difference
test.

We have investigated two possible improvements of the standardized test statistics. In addition to
using the restricted maximum likelihood estimates to estimate the variance of (23), we have looked
at the effect of using a second order Taylor series approximation to E(g(N )) as an attempt to arrive
at a more accurate approximation to aχ2

1 distributed test statistic. The expectation and variance in
the standardized test statistic given in (20) is found usinga first order Taylor series expansion and the
difference between using the first order and the second orderTaylor series approximation to E(g(N ))
is the term1/2 · tr(H(µ)Σ). For the simulation experiment in Section 4 this turned out to be very
small as compared to the denominator of (23).

3.3 TEST BY LEISENRING, ALONZO AND PEPE (LAP)

Leisenring et al. (2000) present a test for the null hypothesis given in (2). We will denote this the LAP
test. They define three binary random variables;Dij that denotes disease status,Zij that indicates
which test was used andXij that describes the outcome of the diagnostic test for testj, j = 1, 2, for
subjecti, i = 1, . . . , N .
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Dij =

{
0, non-diseased
1, diseased

Zij =

{
0, test A
1, test B

Xij =

{
0, negative
1, positive

The PPV of test A can be written as PPVA = P (Dij = 1 | Zij = 0,Xij = 1) and the PPV of test B
as PPVB = P (Dij = 1 | Zij = 1,Xij = 1). Based on generalized estimation equations Leisenring
et al. (2000) fit the generalized linear model

logit(P (Dij = 1 | Zij ,Xij = 1)) = αP + βP Zij.

Testing the null hypothesisH0 : PPVA = PPVB is equivalent to testing the null hypothesis
H0 : βP = 0. To derive the generalized score statistic, an independentworking correlation structure
is assumed for the score function and the corresponding variance function isvij = µij(1−µij) where

µij = E(Dij). The score function is thenSP =
∑Np

i=1

∑mi

j=1
Zij(Dij − D̄) which also can be written

asSP =
∑Np

i=1

∑mi

j=1
Dij(Zij − Z̄). HereNp is the number of subjects with at least one positive test

outcome andmi is the number of positive test results for subjecti.

Z̄ =

∑Np

i=1
miZiDi∑Np

i=1
mi

is the proportion of positive B tests for the diseased subjects among all the positive tests and

D̄ =

∑NP

i=1
miDi∑NP

i=1
mi

is the proportion of positive tests for the diseased subjects among all the positive tests.

The resulting test statistic for testing the null hypothesis H0 : βP = 0 is obtained by taking the square
of the score function divided by its variance:

TPPV =

{∑Np

i=1

∑mi

j=1
Dij(Zij − Z̄)

}2

∑Np

i=1

{∑mi

j=1
(Dij − D̄)(Zij − Z̄)

}2
. (24)

Under the null hypothesis, this test statistic is asymptotically χ2
1-distributed. It is worth noting that

only the subjects with at least one positive test outcome contribute to the test statistic (24).

The test statistic in (24) is general and can be used even if the disease status is not constant within a
subject. Usually the disease status will be constant withinthe subject and the test statistic can be then
simplified. By definingTi =

∑mi

j=1
Zij, the number of positive B tests subjecti contributes to the

analysis, the statistic can be written

TPPV =

{∑Np

i=1
Di(Ti − miZ̄)

}2

∑Np

i=1
(Di − D̄)2(Ti − miZ̄)2

.
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We derived the test statistic by using our notation of the eight mutually exclusive events in Figure 1.
The numerator can be separated into six terms, in three of which the disease statusD = 0 and three
whereD = 1, by noting thatTi = 0 andmi = 1 when only test A is positive,Ti = 1 andmi = 1
when only test B is positive andTi = 1 andmi = 2 when both tests are positive. Then

TPPV =
((N1 + N2 + N5 + N6)(N5 + N7) − (N1 + N3 + N5 + N7)(N5 + N6))

2

f(N1, N2, N3, N5, N6, N7)
(25)

where

f(N1, N2, N3, N5, N6, N7)

= N1(N2 − N3 + N6 − N7)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N2(N1 + N3 + N5 + N7)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N3(N1 + N2 + N5 + N6)
2

(
2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N5(N2 − N3 + N6 − N7)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N6(N1 + N3 + N5 + N7)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

+ N7(N1 + N2 + N5 + N6)
2

(
1 − 2N5 + N6 + N7

2N1 + N2 + N3 + 2N5 + N6 + N7

)2

.

To compare the NPVs for test A and test B, Leisenring et al. (2000) fit the generalized linear model

logit(P (Dij = 1|Zij ,Xij = 0)) = αN + βNZij .

by using the generalized estimating equations method. The null hypothesis in this case is
H0 : βN = 0. Under the assumption that disease status is constant within a subject, this leads to the
test statistic

TNPV =

{∑Nn

i=1
Di(Ti − kiZ̄)

}2

∑Nn

i=1
(Di − D̄)2(Ti − kiZ̄)2

whereNn is the number of subjects with at least one negative test outcome andki is the number of
negative test results for subjecti. Only the subjects with at least one negative test outcome contribute
to this test statistic.

Leisenring et al. (2000) also propose a Wald test based on theestimates of the regression coefficients,
but their simulation studies show that the score test performs better.

4 SIMULATION STUDY

In order to compare the test size under the null hypothesis for the tests presented in Section 3 and to
assess the power of the tests under the alternative hypothesis, we perform a simulation experiment.
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All the tests are asymptotic tests, but it is not clear how large the sample size has to be for the tests
to preserve their test size. Therefore we will consider different sample sizes. Two different simula-
tion strategies for generating datasets will be presented.The maximum likelihood estimates under
the null hypotheses needed for the likelihood ratio test andthe restricted difference test are found
using TANGO as described in Section 3.1.2. All analyses are performed using the R language, R
Development Core Team (2008).

4.1 SIMULATION EXPERIMENT FROM LEISENRING, ALONZO AND PEPE

The first simulation experiment is based on the simulation experiment of Leisenring et al. (2000) and
we use their algorithm to generate the data. Therefore we denote this simulation experiment the LAP
simulation experiment.

4.1.1 ALGORITHM

We generate datasets by using the algorithm presented in Appendix B in Leisenring et al. (2000). Let
ID denote the disease status,

ID =

{
1, diseased
0, non-diseased

andIA andIB the test results of test A and B,

IA =

{
1, test A positive
0, test A negative

IB =

{
1, test B positive
0, test B negative

In order to generate the datasets, the number of subjects tested,N , the positive and negative predictive
values for both tests, the prevalence of the diseaseP (D) and the varianceσ2 for the random effect
for each subject must be set. The random effect introduces correlation between the test outcomes for
each subject. Our interpretation of the simulation algorithm is as follows:

1. SetN , P (D), PPVA, NPVA, PPVB, NPVB andσ.

2. Calculate the true positive rate TP and the false positiverate FP for test A and test B defined by
the equations

TP =
(1 − P (D) − NPV) · PPV
(1 − PPV− NPV) · P (D)

and

FP=
1 − P (D) − NPV

(1 − P (D))(1 − NPV− PPV·NPV
1−PPV )

.

3. Given TP and FP, the parametersαi andβi, i = 1, 2, for each test are calculated from the
following equations,

αi = Φ−1(FP)
√

1 + σ2

βi = Φ−1(TP)
√

1 + σ2,

whereΦ(·) is the cumulative distribution function of the standard normal distribution.
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Case no. N P (D) σ PPVA PPVB NPVA NPVB

1 100 0.25 0.1 0.75 0.75 0.85 0.85
2 500 0.25 0.1 0.75 0.75 0.85 0.85
3 100 0.50 0.1 0.75 0.75 0.85 0.85
4 500 0.50 0.1 0.75 0.75 0.85 0.85
5 100 0.25 1.0 0.75 0.75 0.85 0.85
6 500 0.25 1.0 0.75 0.75 0.85 0.85
7 100 0.50 1.0 0.75 0.75 0.85 0.85
8 500 0.50 1.0 0.75 0.75 0.85 0.85

TABLE 3: Specifications of the cases under the null hypotheses in the LAP simulation experiment.

4. For each subject the disease statusID is drawn independently with probabilityP (D).

5. A random effectr ∼ N(0, σ2) is generated for each subject.

6. Given the disease status and the random effectr, the probability of a positive test outcome for
each subject is given by

P (IA = 1|ID, r) = Φ(α1(1 − ID) + β1ID + r)

for test A and by
P (IB = 1|ID, r) = Φ(α2(1 − ID) + β2ID + r)

for test B. The test outcomes are drawn with these probabilities for each subject.

7. Findn1, . . ., n8 by counting the number of subjects that belongs to each of theeight events
described in Section 2, e.g.n1 is the number of subjects for whichID = 0, IA = 1 andIB=1,
the number of subjects that are not diseased and have positive tests A and B.

The algorithm is repeatedM times, providingM datasets ofn1, . . . , n8.

4.1.2 CASES UNDER STUDY

In the simulation experiment, we suggest eight cases by varying the input parametersN , P (D) and
σ in the LAP simulation algorithm. The setup of the experimentis a23 factorial experiment, i.e. we
have three factors,N , P (D) andσ, and each factor has two levels. The low level forN is 100 and
the high level is 500, while the low level forP (D) is 0.25 and the high level is 0.50. Forσ the low
level is 0.1 and the high level is 1.0. The response in this experiment is the estimated test size for each
test. The cases that are under the null hypothesesHP

0 andHN
0 in equations (2) and (3) are given in

Table 3. For cases not under the null hypotheses, the parametersN , P (D) andσ are the same, but
the remaining parameters are changed and will be described below. For each of these eight cases we
simulateM = 5000 datasets.

We generate data under the null hypotheses (2) and (3), by setting PPVA = PPVB = 0.75 and
NPV1 = NPV2 = 0.85. These datasets are used to estimate the test size underH0 for both the
PPV and NPV tests. To estimate the power of the tests, we need datasets underH1, and for PPV
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we generate datasets where PPVA = 0.85 and PPVB = 0.75 and NPV1 = NPV2 = 0.85. To
compare the power for the NPV tests, we generate datasets where NPV1 = 0.85 and NPV2 = 0.80
and PPVA = PPVB = 0.75.

To compare the positive predictive values of test A and B, we calculate the test statistics for the
LAP test, the likelihood ratio test and the unrestricted andrestricted difference tests. To compare the
negative predictive values for test A and B we use the negative predictive value versions of these test
statistics. We calculatep-values based on theχ2

1 distribution. We also assess the performance of the
four other difference based tests as proposed in Section 3.2.1.

4.1.3 RESULTS

A summary of the results of the simulation experiment will follow. For each case and selected value of
the nominal significance levelα, let W be a random variable counting the number ofp-values smaller
than or equal toα. ThenW is binomially distributed with sizeM , the number ofp-values generated,
and probabilityα. An estimate of the true significance level of the test,α̂ is then

α̂ =
W

M
. (26)

Let

W̃ = W + 2

M̃ = M + 4

α̃ =
W̃

M̃
.

A 100 · (1 − γ)% confidence interval for̂α with limits α̂L andα̂U , according to Agresti and Coull
(1998) is given as

α̂L = α̃ − zγ
2

√
α̃ · (1 − α̃)

M̃
(27)

and

α̂U = α̃ + zγ
2

√
α̃ · (1 − α̃)

M̃
(28)

wherezγ/2 is theγ/2-quantile in the standard normal distribution. When the samples are drawn under
H0, α̂ will be an estimate of the test size, i.e. the probability of making a type I error,P (rejectH0|H0).
A p-value is valid, as defined by Lloyd and Moldovan (2008), if the actual probability of rejecting the
null hypothesis never exceeds the nominal significance level. We choose the nominal significance
level to be 0.05 and we say that the test preserves its test size if the lower confidence limit is less
than or equal to 0.05, i.e. if̂αL ≤ 0.05. If α̂U < 0.05, the test is said to be conservative, while if
α̂L > 0.05 it does not keep its test size and it is then optimistic. If thesamples are drawn under the
alternativeH1, α̂ is an estimate of the power of the test, i.e.P (rejectH0 | H1), the probability to
correctly reject the null hypothesis when it is not true.

Table 4 shows the estimated test size with 95% confidence limits for the LAP test, the likelihood ratio
test and the restricted and unrestricted difference tests in Case 1–8 where the data is generated under
the null hypothesis that PPVA = PPVB .
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.058 0.052 0.065
Case 1 Likelihood ratio test 0.065 0.059 0.072
Case 1 Restricted difference test 0.051 0.046 0.058
Case 1 Unrestricted difference test0.067 0.060 0.074

Case 2 LAP test 0.056 0.050 0.063
Case 2 Likelihood ratio test 0.056 0.050 0.063
Case 2 Restricted difference test 0.055 0.049 0.062
Case 2 Unrestricted difference test0.058 0.051 0.064

Case 3 LAP test 0.051 0.046 0.058
Case 3 Likelihood ratio test 0.050 0.044 0.056
Case 3 Restricted difference test 0.048 0.043 0.055
Case 3 Unrestricted difference test0.051 0.045 0.058

Case 4 LAP test 0.057 0.051 0.064
Case 4 Likelihood ratio test 0.057 0.051 0.064
Case 4 Restricted difference test 0.057 0.051 0.064
Case 4 Unrestricted difference test0.057 0.051 0.064

Case 5 LAP test 0.058 0.052 0.065
Case 5 Likelihood ratio test 0.070 0.063 0.077
Case 5 Restricted difference test 0.053 0.047 0.059
Case 5 Unrestricted difference test0.065 0.058 0.072

Case 6 LAP test 0.054 0.048 0.060
Case 6 Likelihood ratio test 0.053 0.048 0.060
Case 6 Restricted difference test 0.052 0.046 0.058
Case 6 Unrestricted difference test0.055 0.049 0.061

Case 7 LAP test 0.053 0.047 0.060
Case 7 Likelihood ratio test 0.055 0.049 0.061
Case 7 Restricted difference test 0.049 0.044 0.056
Case 7 Unrestricted difference test0.054 0.048 0.060

Case 8 LAP test 0.055 0.049 0.062
Case 8 Likelihood ratio test 0.055 0.049 0.062
Case 8 Restricted difference test 0.054 0.048 0.061
Case 8 Unrestricted difference test0.055 0.049 0.062

TABLE 4: Estimated test size with 95% confidence limits when testing PPVA = PPVB for data
generated under the null hypothesis using the LAP-simulation algorithm.
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In Case 3, 6, 7 and 8 all four test preserve the test size. In Case 2 the unrestricted difference test is too
optimistic, while the other tests preserve the test size.

In Case 1 and 5 the restricted difference test is the only testpreserving the test size. The other tests
are too optimistic. These cases have small cell counts, and it might be that the restricted difference
test is more robust towards small cell counts than the other tests. Table 5 shows the mean observed
cell counts in Case 1–8 for the data generated under the null hypothesis that PPVA = PPVB. We see
that in Case 1 and 5,̄n1 is 0.2 and 1.1 respectively, and therebyn1 = 0 in many of the datasets, and
also some of the other cell counts are small.

In Case 4 none of the four tests preserve the test size, i.e. all the tests are slightly optimistic. As all the
cell counts are high in this case it is not surprising that theestimated test size is the same for all the
tests, however we see no apparent reason why the test size is not preserved, and thus this may perhaps
be a purely random event.

For the likelihood ratio test we analysed the23 factorial experiment usinĝα as the response and found
that the interaction between the factorsN andP (D) is the most significant effect on the the test size
with a p-value of 0.012. WhenN is at its high level,N = 500, the test size is less affected by
P (D) which makes sense, since the high value ofN ensures that all the cells will have large expected
values unless the corresponding cell probabilities are very small. There is also a significant interaction
betweenN andσ, whenN = 100, the estimated test size is higher forσ = 1.0 than forσ = 0.01 and
whenN = 500, the estimated test size is lower forσ = 1.0 than forσ = 0.01.

Table 12 (see Appendix C) shows the estimated test size with 95% confidence limits for the NPV
versions of the LAP test, the likelihood ratio test and the restricted and unrestricted difference tests
in Case 1–8 where the data is generated under the null hypothesis that NPV1 = NPV2. In Case 1,
2, 4 and 8, all the cases preserve the test size. In Case 5 all the cases except the likelihood ratio test
preserve the test size too. In Case 3 and 7 however, only the restricted difference test preserves the
test size, none of the other tests do. It may be because it is more robust to the small cell counts in the
eight cell,n̄8, which is 0.8 and 2.2 respectively in these two cases.

Table 13 and 14 (see Appendix C) show the estimated power with95% confidence intervals for the
PPV and NPV versions respectively of the LAP test, the likelihood ratio test and the restricted and
unrestricted difference tests in Case 1–8 for the data generated under the two alternative hypotheses.
The power of the restricted difference test is generally lower than the power of the other tests, which is
not surprising since it preserves its test size when the other tests do not. The power increases with the
number of subjectsN as we would expect. For the PPV tests, it also increases when the prevalence
P (D) increases. When the prevalence increases it is more likely that a random subject has the disease,
therefore more subjects will have the disease and there willbe more positive tests.P (D) = 0.50 in
Case 4 and 8 where the tests have higher power than in Case 2 and6 whereP (D) = 0.25. We
also note that in general the test power is higher whenσ = 1 compared to whenσ = 0.1. For the
NPV tests, the power increases whenN increases and whenP (D) decreases. WhenP (D) = 0.25,
P (D∗) = 1 − P (D) = 0.75, and the higher this probability is the more likely it is thata random
subject does not have the disease. The number of subjects that do not have the disease are then
expected to be higher than whenP (D) = 0.50 andP (D∗) = 0.50. As for the PPV tests, the power
increases whenσ increases.

Table 6 shows the estimated test size with 95% confidence intervals in Case 1–8 for the four other
difference based test statistics from Section 3.2.1. When calculating the observed value of the stan-
dardized test statistics the unrestricted maximum likelihood estimates in the variance are inserted
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Case no. n̄1 n̄2 n̄3 n̄4 n̄5 n̄6 n̄7 n̄8

1 0.2 3.9 3.9 67.0 6.3 6.2 6.2 6.3
2 1.2 19.7 19.6 334.6 31.4 31.1 31.0 31.5
3 4.3 10.3 10.2 25.1 38.4 5.4 5.5 0.8
4 21.4 51.5 51.3 125.7 191.8 27.1 27.1 4.0
5 1.1 3.1 3.1 67.8 8.3 4.2 4.2 8.4
6 5.3 15.6 15.5 338.6 41.7 20.9 20.8 41.6
7 7.5 7.0 7.0 28.3 39.8 4.1 4.0 2.2
8 37.6 35.3 35.2 141.9 198.7 20.1 20.0 11.2

TABLE 5: Mean cell counts for the cases in the LAP simulation study underH0.

since in the LAP simulation experiment, the test size for therestricted difference test was lower than
the test size for the unrestricted difference test. If we compare these results with the results for the
unrestricted difference test, we see that the estimated test size depend highly on the choice of test
statistic. The test based ong2(N ) preserves its test size in all the cases except Case 4. It is however
conservative in Case 1 and 5. The test based ong3(N ) preserves its test size in all the cases, but it
is conservative in all except Case 4 and 8. In Case 1 and 5 it is very conservative with an estimated
test size of just 0.008 and 0.007 respectively. For the fourth difference based test statistic,g4(N ), the
test size is preserved in all the cases except Case 4. It is conservative in Case 1, 3 and 5. The test
based ong5(N ) is conservative in all the cases, and more conservative thanthe other tests. In Case
1 and 5 the estimated test size is 0 and 0.001 which shows that this test statistic almost never rejects
the null hypothesis. The tests based ong2(N ) andg4(N ) can be used as their estimated test size is
reasonable, although conservative in some of the cases. We do not recommend using the tests based
on g3(N ) andg5(N ) as these are even more conservative than the other tests.

4.2 MULTINOMIAL SIMULATION EXPERIMENT

In the LAP-simulation algorithm,n1, . . . , n8 are not drawn from a particular probability distribution,
but obtained from the disease status and test results which are drawn with the specified probabilities
in Section 4.1.1. However, in our model for the likelihood ratio test we assume thatN1, ..., N8 are
multinomially distributed. This can be used in the samplingstrategy and we simulate data by sampling
n1, ..., n8 from the multinomial distribution given the total number ofsubjectsN and the parameters
p1, ..., p8. This is less challenging to implement than the LAP-simulation algorithm and when using
the likelihood ratio test it is natural to sample data from the distribution assumed when deriving the
test statistic.

4.2.1 ALGORITHM

Givenp = (p1, p2, p3, p4, p5, p6, p7, p8) and the total number of subjectsN , we can generate datasets
by drawingn1, n2, ..., n8 from a multinomial distribution with parametersp andN . We first need
to setp and if we want to sample under the null hypotheses, we need to ensure thatp satisfy the
constraintsδP in Equation (6) and/orδN in Equation (8). In additionp1, ..., p8 must sum to 1.

Our simulation algorithm is as follows:
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Case/test α̂ α̂L α̂U

Case 1g2(N ) 0.042 0.037 0.048
Case 1g3(N ) 0.008 0.006 0.011
Case 1g4(N ) 0.021 0.017 0.025
Case 1g5(N ) 0.000 0.000 0.001

Case 2g2(N ) 0.056 0.050 0.063
Case 2g3(N ) 0.043 0.038 0.049
Case 2g4(N ) 0.051 0.045 0.058
Case 2g5(N ) 0.008 0.006 0.011

Case 3g2(N ) 0.045 0.040 0.051
Case 3g3(N ) 0.037 0.032 0.042
Case 3g4(N ) 0.043 0.038 0.049
Case 3g5(N ) 0.001 0.000 0.002

Case 4g2(N ) 0.057 0.051 0.063
Case 4g3(N ) 0.056 0.050 0.063
Case 4g4(N ) 0.057 0.051 0.064
Case 4g5(N ) 0.042 0.036 0.048

Case 5g2(N ) 0.039 0.034 0.044
Case 5g3(N ) 0.007 0.005 0.010
Case 5g4(N ) 0.027 0.023 0.032
Case 5g5(N ) 0.000 0.000 0.001

Case 6g2(N ) 0.049 0.043 0.055
Case 6g3(N ) 0.040 0.035 0.046
Case 6g4(N ) 0.047 0.042 0.054
Case 6g5(N ) 0.007 0.005 0.010

Case 7g2(N ) 0.047 0.042 0.053
Case 7g3(N ) 0.035 0.031 0.041
Case 7g4(N ) 0.047 0.042 0.054
Case 7g5(N ) 0.001 0.000 0.003

Case 8g2(N ) 0.054 0.048 0.061
Case 8g3(N ) 0.052 0.046 0.058
Case 8g4(N ) 0.054 0.048 0.061
Case 8g5(N ) 0.042 0.036 0.048

TABLE 6: Estimated test size with 95% confidence limits when testing PPVA = PPVB using the
difference based tests.
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Case N p1 p2 p3 p4 p5 p6 p7 p8

Case 3MN 100 0.05 0.10 0.10 0.25 0.39 0.05 0.05 0.01
Case 5MN 100 0.01 0.03 0.03 0.68 0.08 0.04 0.04 0.09

TABLE 7: Specification of the parameters in the multinomial simulation experiment.

1. Setp = (p1, p2, p3, p4, p5, p6, p7, p8) andN .

2. Drawn1, n2, ..., n8 ∼ multinom(p, N). RepeatM times.

4.2.2 CASES UNDER STUDY

We performed a small simulation study by drawing data from a multinomial distribution. Under the
null hypothesis (2) we defined two cases called Case 3MN and Case 5MN. The parameters for these
cases are given in Table 7.

The parametersp1, ..., p8 for each of the cases sum to one and theδP -constraint (6) andδN -constraint
(8) are both satisfied. The parameters were set in order to represent Case 3 and 5 from the LAP-
simulation experiment. In both of these casesN = 100, while P (D) is 0.5 in Case 3MN and 0.25 in
Case 5MN as in Case 3 and 5 in the LAP-simulation experiment. For both Case 3MN and 5MN the
PPVs are equal and approximately 0.75, the NPVs are equal andapproximately 0.85. However, since
the datasets in the LAP simulation experiment were not drawnfrom a multinomial distribution, the
mean and the variance ofn will not be exactly the same in Case 3MN and 5MN as in Case 3 and 5.

The parametersp1, ..., p8 were found by setting the value ofP (D), the values of PPV1 = PPV2 and
NPV1 = NPV2 and by considering the mean observed values for Case 3 and 5 inTable 5. These
two cases were chosen because we would like to test the multinomial sampling strategy for one case
where the likelihood ratio test did not preserve its test size (Case 5) as well as one case where the test
size was preserved (Case 3) in the LAP simulation experimentwhen testing if the positive predictive
values are equal.

For each of the cases we drawM = 5000 samples from the multinomial distribution with parameters
as given in Table 7.

4.2.3 RESULTS

The estimated test size and 95% confidence limits for the LAP test, the likelihood ratio test and
the restricted and unrestricted difference tests for the two cases in the simulation study using the
multinomial simulation algorithm are given in Table 8.

In Case 3MN all the tests preserve the test size. We note that the estimated test size is lower for the
restricted difference test than for the other tests. In Case5MN only the restricted difference test and
the LAP test preserve their test size.

If we compare the results to Case 3 in the LAP simulation experiment we see that̂α is higher in Case
3MN than in Case 3 for all the tests. In Case 5MN,α̂ is higher for the likelihood ratio test and lower
for the other tests compared to Case 5 in the LAP simulation experiment. The datasets in the two
simulation experiments are not identical, but since they are generated with approximately the same
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Case/test α̂ α̂L α̂U

Case 3MN LAP 0.054 0.048 0.060
Case 3MN Likelihood ratio test 0.054 0.048 0.060
Case 3MN Restricted difference test 0.052 0.046 0.058
Case 3MN Unrestricted difference test0.054 0.048 0.061

Case 5MN LAP 0.056 0.050 0.063
Case 5MN Likelihood ratio test 0.072 0.065 0.079
Case 5MN Restricted difference test 0.050 0.044 0.057
Case 5MN Unrestricted difference test0.064 0.058 0.071

TABLE 8: Estimated test size with 95% confidence limits for testingPPV1 = PPV2 under the null
hypothesis using the multinomial simulation algorithm.

values for PPV1, PPV2, NPV1, NPV2 andP (D) we find it surprising that the estimated test size for
the likelihood ratio test is higher in the multinomial simulation experiment than in the LAP simulation
experiment. We would expect the likelihood ratio test to perform better, i.e. have a lower test size, on
datasets that are drawn from the model on which the test statistic is based, namely the multinomial
model.

Case/test α̂ α̂L α̂U

Case 3MN LAP 0.059 0.053 0.066
Case 3MN Likelihood ratio test 0.061 0.054 0.068
Case 3MN Restricted difference test 0.052 0.046 0.058
Case 3MN Unrestricted difference test0.060 0.054 0.067

Case 5MN LAP 0.049 0.044 0.056
Case 5MN Likelihood ratio test 0.062 0.056 0.069
Case 5MN Restricted difference test 0.051 0.045 0.057
Case 5MN Unrestricted difference test0.049 0.044 0.056

TABLE 9: Estimated test size with 95% confidence limits for testingNPV1 = NPV2 under the null
hypothesis using the multinomial simulation algorithm.

The estimated test size with 95% confidence limits for testing if the NPVs are equal in the same cases
are shown in Table 9. In Case 3MN only the restricted difference test preserves its test size, while in
Case 5MN the LAP test and the unrestricted difference test also preserve their test size. The likelihood
ratio test does not preserve its test size in any of these cases.

5 DATA FROM LITERATURE

We will use the dataset from Weiner, Ryan, McCabe, Kennedy, Schloss, Tristani and Fisher (1979)
which is the same dataset as used in Leisenring et al. (2000) and Wang et al. (2006). There were
871 subjects of which 608 subjects had coronary artery disease (CAD) and 263 subjects did not have
CAD. For all the subjects the results of clinical history (test A) and exercise stress testing (EST) (test
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B) were registered. The dataset is shown in Table 10.

Coronary artery disease -Coronary artery disease +
Result of EST Result of EST

+ - + -
Result of clinical history + 22 44 473 81

- 46 151 29 25

TABLE 10: Data from the coronary artery disease study.

Table 11 shows the resultingp-values for comparing the positive and negative predictivevalues using
the LAP-test, the likelihood ratio test and the restricted and unrestricted difference test.

Test PPV NPV
LAP 0.3706 <0.0001
Likelihood ratio test 0.3710 <0.0001
Restricted difference test 0.3696 <0.0001
Unrestricted difference test0.3705 <0.0001

TABLE 11: Comparison ofp-values for the tests using data from the coronary artery disease study.

We see that all the tests yield the same results. We do not reject the null hypothesis that the PPVs are
equal, but we reject the null hypothesis that the NPVs are equal. The estimated NPVs are 0.78 for the
clinical history and 0.65 for EST. Therefore the clinical history is more likely to reflect the true disease
status for subjects without CAD than without EST. Since all the cell counts in Table 10 are large, it is
to be expected that thep-values are equal for all the tests, as seen in our simulationexperiments.

6 ALTERNATIVE MODEL

When deriving the test statistic for comparing the positivepredictive values for two tests, Leisenring
et al. (2000) only consider the subjects that have at least one positive test result. The subjects that do
not have any positive tests do not contribute to the test statistic, i.e. there is no information in how
many subjects have two negative test results. Our multinomial setting with eight probabilities is useful
because the null hypothesis for both the PPV and NPV can easily be expressed using the same model.
However, for testing the equivalence of the PPVs, it is interesting to consider only using the subjects
with at least one positive test result also for our likelihood ratio test as this will reduce the number of
parameters and thereby reducing the dimension of the optimization problem. Similarly, for testing the
equivalence of the NPVs for test A and test B, we only need to look at the subjects with at least one
negative test.

This situation is illustrated in Figure 2. We still have the three main eventsA, B andD, but we only
consider the data contained inA and/orB. The sample space is divided into six mutually exclusive
events, to each of which a random variableN∗

i , i = 1, ..., 6, corresponds. We defineN∗
i to be the

number of subjects for which eventi occurs andn∗
i to be the observed value ofN∗

i . There areN∗

subjects in total, i.e.
∑

6

i=1
N∗

i = N∗. Let qi be the probability that eventi, i = 1, ..., 6, occurs.q1

is then the probability that a subject has a positive test result for both testA andB and has the dis-
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ease.N∗
1 , N∗

2 , ..., N∗
6 are multinomially distributed with parametersN∗ andq = (q1, q2, q3, q4, q5, q6)

where
∑

6

i=1
qi = 1.

The null hypothesis that the positive predictive value for test A is equal to the positive predictive value
for test B can be written

HP,6
0

:
q4 + q5

q1 + q2 + q4 + q5

− q4 + q6

q1 + q3 + q4 + q6

= 0 (29)

The likelihood ratio test statistic in this case is then

−2 · logλ(n∗) = −2

(
6∑

i=1

n∗
i · (log(q̃i) − log(q̂i)

)
(30)

wheren∗ = (n∗
1, n

∗
2, n

∗
3, n

∗
4, n

∗
5, n

∗
6), q̃i is the maximum likelihood estimate forqi under the null

hypothesis (29) and̂qi = n∗
i /N

∗ is the general maximum likelihood estimate.

N
∗
1

N
∗
4

A B

D

N
∗
3

N
∗
5

N
∗
2

N
∗
6

FIGURE 2: Venn diagram for the eventsD, A andB showing which events the random variables
N∗

1 , ..., N∗
6 correspond to.

If there is no information in the number of subjects not having at least one positive rest result, thenn4

andn8 should not affect the value of the likelihood ratio test statistic. From the Lagrangian system
of equations in Section 3.1.2, we can show that the estimatesof p4 andp8 underH0 arep̃4 = n4

N and
p̃8 = n8

N , see Appendix A.

Maximizing the multinomial likelihood with six parametersyields the same test statistic and thereby
the samep-value as when maximizing the multinomial likelihood with eight parameters as both the
restricted and unrestricted maximum likelihood estimatesof q1, q2, q3, q4, q5, q6 are obtained from the
restricted and unrestricted estimates ofp1, p2, p3, p5, p6, p7, p8 respectively by scaling the estimates
so they sum to one (see Appendix A).

7 CONCLUSIONS

In this report we have studied large sample tests for comparing the positive and negative predictive
value of two diagnostic tests in a paired design.
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Based on the simulation experiments in Section 4, we have found that our restricted difference test
outperforms the existing methods (Leisenring et al. (2000)and Wang et al. (2006)) as well as our
likelihood ratio test with respect to test size.

A very important prerequisite of our methods is the estimation of the maximum likelihood estimates
for the parameters in the multinomial distribution under the null hypothesis, and this has shown to be
a challenging task as is also mentioned in Leisenring et al. (2000). We have found these estimates in
two different ways, by using numerical optimization and solving a system of equations.

We have seen that when the sample size decreases, the LAP test, likelihood ratio test and unrestricted
difference test do not preserve their test size. In our future work we will abandon the large sample
assumption and work with small sample versions of our test statistics.
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A PROOFS OF PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMA-
TORS UNDER THE NULL HYPOTHESIS

We show some properties of the maximum likelihood estimators under the positive predictive value
constraint (6). Similar properties can be shown for maximumlikelihood estimators satisfying the
negative predictive value constraint (8).

We start by showing that ifn1 = 0, then the maximum likelihood estimate ofp1 under the null hy-
pothesis,̃p1, is 0. In the following, letp1, . . . , p8 denote estimates, not true multinomial probabilities.

First we rewrite the constraint (11) under the null hypothesis as

p1 + p2

p5 + p6

=
p1 + p3

p5 + p7

(31)

Assume thatn1 = 0,
∑

8

i=1
pi = 1, theH0 constraint (31) is satisfied and thatp1 > 0. We will prove

that whenn1 = 0, the maximum likelihood estimate ofp1 is zero, i.e.p̃1 = 0.

Let p′1 = 0, p′2 = k(p1 + p2), p′3 = k(p1 + p3), p′4 = p4, p′5 = p5, p′6 = p6, p′7 = p7 andp′8 = p8

wherek = p1+p2+p3

2p1+p2+p3
.

Then
∑

8

i=1
p′i = 1 andp′ also satisfyH0, since

0 + p′2
p5 + p6

=
0 + p′3
p5 + p7

.

We will show thatp′2 > p2 andp′3 > p3, implying logL(p′1, ..., p
′
8) > logL(p1, ..., p8). We start by

writing down the expression forp′2 and check if it is greater thanp2.

k(p1 + p2) > p2

p1 + p2 + p3

2p1 + p2 + p3

(p1 + p2) > p2

(p1 + p2 + p3) · (p1 + p2) > (p1 + p1 + p2 + p3)p2

(p1 + p2 + p3)p1 > p1 · p2

p1 + p2 + p3 > p2

The inequality is satisfied and thereforep′2 > p2. The same argument can be used to show that
p′3 > p3.
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The non-constant part of the log likelihood function is
∑

8

i=1
ni · logpi, and whenn1 = 0, the first

term in the sum is 0, regardless of the value ofp1. Whenp′2 > p2 andp′3 > p3 we see that

logL(0, p′2, p
′
3, p4, p5, p6, p7, p8) > logL(p1, p2, p3, p4, p5, p6, p7, p8).

Thereforep̃1 = 0. The same argument is valid for̃p5, i.e. p̃5 = 0 whenn5 = 0. Whenn4 and/orn8

is 0, thenp̃4 and/orp̃8 are also 0, see below.

However, the argument does not hold forp̃2, p̃3, p̃6 andp̃7 whenn2, n3, n6 or n7 is 0. Even though
e.g. p̃2 may sometimes be 0 whenn2 = 0, this is not always true. If e.g.̃p1 = 0 and p̃3 > 0, then
p̃2 cannot be equal to 0 even ifn2 = 0 because then the null hypothesis constraint (31) will not be
satisfied. One example of this situation is the tablen = (0, 0, 6, 0, 2, 6, 0, 0). The analytic solution
of the Lagrangian system of equations isp̃ = (0, 2/7, 1/7, 0, 2/7, 2/7, 0, 0) and we see that̃p2 6= 0
even thoughn2 = 0.

We proceed to show that̃p4 = n4/N andp̃8 = n8/N . If we add the first eight Lagrangian equations
in (18), we get

N = γh(p) + 2κk(p) = γ,

whereh(p) = 1 andk(p) = 0 are the two constraints. Thusγ = N , andp̃4 = n4/N andp̃8 = n8/N
follow from (18).

So the maximum likelihood estimatẽp under the null hypothesis is among thep = (p1, . . . , p8)
for which p4 = n4/N andp8 = n8/N . For such ap, let s(p) = r · (p1, p2, p3, p5, p6, p7), where
r = N/(N − n4 − n8) so that the sum of the components ofs(p) is 1. Let logL and logL′ denote
the log-likelihood of the original multinomial model with eight parameters and the alternative multi-
nomial model with six parameters in Section 6. Then logL(p) − logL′(s(p)) is constant, showing
that logL(p) is maximal if and only if logL′(s(p)) is. Furthermore,p satisfies the null hypothesis
for the multinomial model with eight parameters if and only if s(p) does for the multinomial model
with six parameters, showing that the maximum likelihood estimates under the null hypothesis for
the multinomial model with eight and six parameters are obtained from the other model by up- and
downscaling, respectively.

There are also other relationships between the restricted parameter estimates that can easily be shown
and used in the estimation of the parameters:

p1 + p2 + p3 =
n1 + n2 + n3

N

p5 + p6 + p7 =
n5 + n6 + n7

N

n1

p1

+ N =
n2

p2

+
n3

p3

n5

p5

+ N =
n6

p6

+
n7

p7

B EXISTING DIFFERENCE BASED METHODS

The already published difference based tests for comparingpredictive values will here be described
briefly.
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B.1 TEST BY WANG

Recently Wang et al. (2006) presented two tests, one based onthe difference of the PPVs and one
based on the log ratio of the PPVs for testing the null hypothesis in (2). The data are assumed to be
multinomially distributed.

They fit the model PPVA − PPVB = βP
1 using the weighted least squares approach.1 Testing if the

positive predictive values for test A and B are equal is equivalent to testingH0 : βP
1 = 0.

The test statistic is

W P
1 =

(√
N

Σ̂P
1

(P̂PVA − P̂PVB)

)2

, (32)

which is asymptoticallyχ2
1-distributed. Σ̂P

1 is the estimated variance of̂βP
1 = P̂PVA − P̂PVB . To

compare the negative predictive values the same approach isfollowed by looking at the difference
of the two negative predictive values. They fit the model NPVA − NPVB = βN

1 and test the null
hypothesisH0 : βN

1 = 0 using the following test statistic

W N
1 =

(√
N

Σ̂N
1

(N̂PVA − N̂PVB)

)2

(33)

whereΣ̂N
1 is the estimated variance of̂βN

1 = N̂PVA − N̂PVB . W N
1 is asymptoticallyχ2

1-distributed.

In the second test they consider the log ratio of the PPVs as their test statistic and fit the model
logPPVA

PPVB
= βP

2 . Testing if the positive predictive values are equal is in this case equivalent to testing

the null hypothesisH0 : βP
2 = 0. The test statistic is

W P
2 =

(√
N

Σ̂P
2

log
P̂PVA

P̂PVB

)2

(34)

which is asymptoticallyχ2
1 distributed. Σ̂P

2 is the estimated variance of̂βP
2 = log

dPPVA

dPPVB

. The same

approach is followed to derive a second test for the negativepredictive values by looking at the log

ratio of the negative predictive values for test A and test B,the model fitted is log
(

NPVA

NPVB

)
= βN

2 . To

test if the negative predictive values are equal, the null hypothesis isH0 : βN
2 = 0 and they use the

following test statistic

W N
2 =

(√
N

Σ̂N
2

log
N̂PVA

N̂PVB

)2

(35)

whereΣ̂N
2 is the estimated variance of̂βN

2 = log
dNPVA

dNPVB

. The test statistic in (35) isχ2
1-distributed.

They recommend using the tests based on the difference of thepredictive values because it performs
better than the tests based on the log ratio of the predictivevalues in terms of test size and power.

B.2 TEST BY MOSKOWITZ AND PEPE

Moskowitz and Pepe (2006) look at the relative predictive values, rPPV= PPVA

PPVB
and rNPV= NPVA

NPVB
.

By using the multivariate central limit theorem and the Delta method (which uses Taylor series ex-

1The notation in Appendix B.1 differs from the notation used in Wang et al. (2006).
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pansions to derive the asymptotic variance), the following100 · (1−α)% confidence intervals can be
estimated for log rPPV and log rNPV,

log rPPV± z1−α/2

√
σ̂2

P

N

log rNPV± z1−α/2

√
σ̂2

N

N

whereσ̂2
P andσ̂2

N are the estimated variances of1√
N

log r̂PPV and 1√
N

log r̂NPV respectively andN
is the number of subjects under study. Moskowitz and Pepe (2006) do not present a hypothesis test,
but based on the confidence intervals we have the asymptotically χ2

1 distributed test statistic

ZP =

(
log

(√
N

σ̂P
rPPV

))2

(36)

for testing the null hypothesis (2) for the positive predictive values. When testing the null hypothesis
(3) whether the negative predictive values are equal the test statistic

ZN =

(
log

(√
N

σ̂N
rNPV

))2

, (37)

which has an asymptoticχ2
1 distribution can be used. The test statistic in (36) only differs from the test

statistic in (32) in the estimated variance. Moskowitz and Pepe (2006) use the multinomial Poisson
transformation to simplify the variances.

C RESULTS FROM THELAP SIMULATION EXPERIMENT

Table 12 shows the estimated test size with 95% confidence limits when comparing the negative
predictive values for data generated the null hypothesis. Table 13 and 14 show the estimated test
power when comparing the positive and negative predictive values respectively for data generated
under the alternative hypothesis.
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.052 0.046 0.059
Case 1 Likelihood ratio test 0.056 0.050 0.063
Case 1 Restricted difference test 0.048 0.043 0.055
Case 1 Unrestricted difference test0.052 0.046 0.059

Case 2 LAP test 0.050 0.045 0.057
Case 2 Likelihood ratio test 0.050 0.044 0.057
Case 2 Restricted difference test 0.050 0.044 0.056
Case 2 Unrestricted difference test0.050 0.045 0.057

Case 3 LAP test 0.058 0.052 0.065
Case 3 Likelihood ratio test 0.059 0.053 0.066
Case 3 Restricted difference test 0.052 0.047 0.059
Case 3 Unrestricted difference test0.060 0.053 0.067

Case 4 LAP test 0.046 0.041 0.052
Case 4 Likelihood ratio test 0.046 0.040 0.052
Case 4 Restricted difference test 40.045 0.039 0.051
Case 4 Unrestricted difference test0.047 0.041 0.053

Case 5 LAP test 0.050 0.044 0.056
Case 5 Likelihood ratio test 0.061 0.055 0.068
Case 5 Restricted difference test 0.049 0.044 0.056
Case 5 Unrestricted difference test0.050 0.044 0.056

Case 6 LAP test 0.049 0.044 0.056
Case 6 Likelihood ratio test 0.049 0.044 0.056

Case 6 Restricted difference test 0.049 0.043 0.055
Case 6 Unrestricted difference test0.049 0.044 0.056

Case 7 LAP test 0.060 0.053 0.067
Case 7 Likelihood ratio test 0.067 0.061 0.074
Case 7 Restricted difference test 0.056 0.050 0.063
Case 7 Unrestricted difference test0.060 0.054 0.067

Case 8 LAP test 0.046 0.040 0.052
Case 8 Likelihood ratio test 0.047 0.041 0.053
Case 8 Restricted difference test 0.044 0.039 0.050
Case 8 Unrestricted difference test0.046 0.040 0.052

TABLE 12: Estimated test size with 95% confidence limits when testing NPVA = NPVB for data
generated under the null hypothesis using the LAP simulation algorithm.
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Case/test α̂ α̂L α̂U

Case 1 LAP test 0.125 0.116 0.135
Case 1 Likelihood ratio test 0.143 0.134 0.153
Case 1 Restricted difference test 0.111 0.102 0.120
Case 1 Unrestricted difference test0.141 0.131 0.151

Case 2 LAP test 0.396 0.383 0.410
Case 2 Likelihood ratio test 0.390 0.376 0.403

Case 2 Restricted difference test 0.380 0.367 0.394
Case 2 Unrestricted difference test0.400 0.386 0.413

Case 3 LAP test 0.369 0.356 0.383
Case 3 Likelihood ratio test 0.361 0.348 0.375
Case 3 Restricted difference test 0.349 0.336 0.363
Case 3 Unrestricted difference test0.369 0.356 0.383

Case 4 LAP test 0.945 0.938 0.951
Case 4 Likelihood ratio test 0.944 0.937 0.950
Case 4 Restricted difference test 0.943 0.936 0.949
Case 4 Unrestricted difference test0.944 0.938 0.950

Case 5 LAP test 0.146 0.137 0.156
Case 5 Likelihood ratio test 0.174 0.163 0.184
Case 5 Restricted difference test 0.124 0.116 0.134
Case 5 Unrestricted difference test0.158 0.149 0.169

Case 6 LAP test 0.463 0.450 0.477
Case 6 Likelihood ratio test 0.458 0.444 0.472
Case 6 Restricted difference test 0.449 0.435 0.463
Case 6 Unrestricted difference test0.466 0.452 0.479

Case 7 LAP test 0.485 0.471 0.498
Case 7 Likelihood ratio test 0.484 0.470 0.498
Case 7 Restricted difference test 0.468 0.454 0.482
Case 7 Unrestricted difference test0.485 0.471 0.498

Case 8 LAP test 0.987 0.984 0.990
Case 8 Likelihood ratio test 0.987 0.984 0.990
Case 8 Restricted difference test 0.987 0.983 0.990
Case 8 Unrestricted difference test0.987 0.984 0.990

TABLE 13: Estimated power with 95% confidence limits when testing PPVA = PPVB for data gen-
erated under the alternative hypothesis.

31



Case/test α̂ α̂L α̂U

Case 1 LAP test 0.324 0.312 0.338
Case 1 Likelihood ratio test 0.336 0.323 0.349
Case 1 Restricted difference test 0.048 0.043 0.055
Case 1 Unrestricted difference test0.052 0.046 0.059

Case 2 LAP test 0.929 0.921 0.935
Case 2 Likelihood ratio test 0.929 0.921 0.935
Case 2 Restricted difference test 0.050 0.044 0.056
Case 2 Unrestricted difference test0.050 0.045 0.057

Case 3 LAP test 0.113 0.105 0.122
Case 3 Likelihood ratio test 0.114 0.105 0.123
Case 3 Restricted difference test 0.052 0.047 0.059
Case 3 Unrestricted difference test0.060 0.053 0.067

Case 4 LAP test 0.350 0.337 0.364
Case 4 Likelihood ratio test 0.349 0.336 0.362

Case 4 Restricted difference test 0.045 0.039 0.051
Case 4 Unrestricted difference test0.047 0.041 0.053

Case 5 LAP test 0.427 0.413 0.441
Case 5 Likelihood ratio test 0.458 0.444 0.471

Case 5 Restricted difference test 0.049 0.044 0.056
Case 5 Unrestricted difference test0.050 0.044 0.056

Case 6 LAP test 0.986 0.982 0.989
Case 6 Likelihood ratio test 0.986 0.982 0.989

Case 6 Restricted difference test 0.049 0.043 0.055
Case 6 Unrestricted difference test0.049 0.044 0.056

Case 7 LAP test 0.136 0.127 0.146
Case 7 Likelihood ratio test 0.146 0.136 0.156

Case 7 Restricted difference test 0.056 0.050 0.063
Case 7 Unrestricted difference test0.060 0.054 0.067

Case 8 LAP test 0.465 0.451 0.478
Case 8 Likelihood ratio test 0.463 0.450 0.477
Case 8 Restricted difference test 0.044 0.039 0.050
Case 8 Unrestricted difference test0.046 0.040 0.052

TABLE 14: Estimated power with 95% confidence limits when testing NPVA = NPVB for data
generated under the alternative hypothesis using the LAP simulation algorithm.
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D COMPUTATIONAL REMARKS

When using the TANGO program Andreani et al. (2007), Andreani et al. (2008), there are several
parameters that can be set or modified by the user. Along with the specification of the objective
function and the constraints, the initial estimates of the Lagrange multipliers, the initial values of the
variables and their lower and upper bounds must be set. Otherparameters have a default value, but
these can be altered by the user. These parameters include tolerance limits and the maximum number
of iterations.

In our simulation studies we have chosen the initial value 0.0 for all the variables with upper and
lower bounds±200000. The initial value for the Lagrangian multiplier was set to 0.0 as advised in
the program when one does not believe it should have a specificvalue. The feasibility and optimality
tolerances are10−4 by default. We found that with these tolerances, the resulting variable values
depend on both the initial value of the Lagrange multiplier and the initial values of the variables.
However, different initial values for the variables give more similar results than different initial values
of the Lagrange multipliers. The smaller the tolerance is, the more similar the results will be, so in
order to get results that do not depend on any of the initial values one should use smaller values for
the tolerances and in our problems, smaller than10−4. The problem is then that it takes longer for the
algorithm to converge. When performing the likelihood ratio test for one or a few datasets this is not
an issue, but when performing simulation experiments with several thousand datasets this will slow
down the experiment considerably.

Another problem is that of the algorithm converging to a local maximum. For example, the analytical
restricted likelihood estimates for the tablen = (0, 7, 0, 69, 5, 3, 11, 5) is -115.73 while it is -166.38
using the numerical estimates from TANGO. The difference iscaused by the fact that̃p3 = 0 using
the numerical optimization routine, while it is 0.04 using the analytical optimization. For most of
the large sample datasets the difference is less, with e.g. 15 of 5000 estimates in Case 1 in the LAP
simulation experiment differ by more than 1.0 between the analytical and numerical estimates. We
recommend using the analytical estimates.
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