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Abstract

A variant of the method of moments is developed for parametric solution of convolution equa-

tions of the first kind. Two models — the gamma model and the shifted gamma model — are

studied in details.
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1 Introduction

A convolution equation of the first kind is an integral equation of the form

∫

∞

−∞

f(t − s)g(s)ds = h(t), (1)

where g(t) and h(t), the kernel and the right hand side, respectively are known functions, and f(t)

is the unknown function to be found. Practically, the functions g(t) and h(t) are observed on some

discrete grids with errors (usually random). Equation (1) arises in many scientific and engineering

disciplines, and there is a broad literature devoted to solution of these equations, see for example

Tikhonov and Arsenin (1977).

The convolution equation of the first kind is an ill-posed problem. This makes its solution in the

general case difficult, and requires some additional information about measurement errors, which is

often not available. The situation essentially improves if a parametric form of f(t) is known. In this

case the problem is reduced to estimation of a few parameters. The traditional way of parametric

solution, the least squares method, is however often not applicable in practice, because it leads to

cumbersome, strongly nonlinear equations which are sensitive to measurement errors. This is the

case, for example, when f(t) is a gamma density

f(t) =
βα

Γ(α)
tα−1e−βt, t > 0, α > 0, β > 0, (2)

or a beta density

f(t) =
Γ(α, β)

Γ(α)Γ(β)
tα−1(1 − t)β−1, 0 < t < 1, α > 0, β > 0,

where one needs to differentiate under the integral sign a combination of gamma functions. At the

same time, these families are among the most frequently arising in many applications.
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In this work, we develop a method, based on moments of the functions g(t) and h(t). It usually

gives an easily computable solution and is stable with respect to measurement errors. A special

attention is paid to the case when the unknown function is a gamma or a shifted gamma density, since

these functions are good approximations in many dynamical systems.

We will assume that the functions f(t), g(t), h(t) are integrable and integrate to one. This

assumption is, however, usually not necessary and is made only for mathematical convenience. The

method can in fact be used in much more general cases because, even when the functions are not

integrable, the problem can often be reduced to the case when the functions are integrable and

integrate to one, see Ushakova (2008).

The rest of the paper is organized as follows. In Section 2 we prove the main theorem on which

the method is based, and give a description of the method. In Section 3 the method is used for f(t)

of two parametric forms: gamma densities and shifted gamma densities. The mean squared error of

the estimators are studied asymptotically using the delta method.

2 Method

Denote as usual
(

n

k

)

=
n!

k!(n − k)!

Theorem 1. Let f(x) and g(x) be two integrable functions such that
∫

∞

−∞

f(x)dx =

∫

∞

−∞

g(x)dx = 1,

and let h(x) be their convolution,

h(x) =

∫

∞

−∞

f(x − y)g(y)dy.

Define for k = 0, 1, 2, . . .

µ
(k)
f =

∫

∞

−∞

xkf(x)dx, µ(k)
g =

∫

∞

−∞

xkg(x)dx,

µ
(k)
h =

∫

∞

−∞

xkh(x)dx,

γ
(k)
f =

∫

∞

−∞

(x − µ
(1)
f )kf(x)dx, γ(k)

g =

∫

∞

−∞

(x − µ(1)
g )kg(x)dx,

γ
(k)
h =

∫

∞

−∞

(x − µ
(1)
h )kh(x)dx.

provided that the corresponding integrals exist. Then

µ
(n)
h =

n
∑

k=0

(

n

k

)

µ
(k)
f µ(n−k)

g

and

γ
(n)
h =

n
∑

k=0

(

n

k

)

γ
(k)
f γ(n−k)

g
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Proof.

µ
(n)
h =

∫

∞

−∞

xn

(
∫

∞

−∞

f(x − y)g(y)dy

)

dx =

=

∫

∞

−∞

∫

∞

−∞

(x − y + y)nf(x − y)g(y)dxdy =

=

∫

∞

−∞

∫

∞

−∞

n
∑

k=0

(

n

k

)

(x − y)kyn−kf(x − y)g(y)dxdy =

=

n
∑

k=0

[

(

n

k

)
∫

∞

−∞

yn−k

(
∫

∞

−∞

(x − y)kf(x − y)dx

)

g(y)dy

]

=

=

n
∑

k=0

[

(

n

k

)

µ
(k)
f

∫

∞

−∞

yn−kg(y)dy

]

=

n
∑

k=0

(

n

k

)

µ
(k)
f µ(n−k)

g .

Now, using µ
(1)
h = µ

(1)
f + µ

(1)
g ,

γ
(n)
h =

∫

∞

−∞

(x − µ
(1)
h )n

(
∫

∞

−∞

f(x − y)g(y)dy

)

dx =

=

∫

∞

−∞

∫

∞

−∞

(x − y − µ
(1)
f + y − µ(1)

g )nf(x − y)g(y)dxdy =

=

∫

∞

−∞

∫

∞

−∞

n
∑

k=0

(

n

k

)

(x − y − µ
(1)
f )k(y − µ(1)

g )n−kf(x − y)g(y)dxdy =

=

n
∑

k=0

[(

n

k

)
∫

∞

−∞

(y − µ(1)
g )n−k ×

×
(
∫

∞

−∞

(x − y − µ
(1)
f )kf(x − y)dx

)

g(y)dy

]

=

=

n
∑

k=0

[

(

n

k

)

γ
(k)
f

∫

∞

−∞

(y − µ1
g)

n−kg(y)dy

]

=

n
∑

k=0

(

n

k

)

γ
(k)
f γ(n−k)

g .

Taking into account that γ
(1)
f = γ

(1)
g = γ

(1)
h = 0, we derive the following

Corollary. Under conditions of the theorem,

γ
(2)
h = γ

(2)
f + γ(2)

g ,

γ
(3)
h = γ

(3)
f + γ(3)

g .

The method for parametric solution of the integral equation (1) is as follows. Let f(t) be known

up to m unknown parameters f(t) = f(t; θ1, . . . , θm). Express the first m moments µ
(1)
f , . . . , µ

(m)
f

or/and central moments γ
(2)
f , . . . , γ

(m+1)
f of the function f(t) in terms of the parameters θ1, . . . , θm

µ
(i)
f = µ

(i)
f (θ1, . . . , θm), i = 1, . . . ,m; (3)

γ
(j)
f = γ

(j)
f (θ1, . . . , θm), i = 2, . . . ,m + 1. (4)

Choose m of the 2m equations (3), (4) (sometimes it is more convenient to use a moment, sometimes

an absolute moment) and solve them with respect to θ1, . . . , θm:

θi = θi(µ
(1)
f , . . . , µ

(m)
f , γ

(2)
f , . . . , γ

(m+1)
f ) i = 1, . . . ,m. (5)
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Moments of the functions g(t) and h(t) can be assumed known. Practically, they are found using some

method of numerical integration. Since µ
(1)
g , . . . , µ

(m)
g , µ

(1)
h , . . . , µ

(m)
h , γ

(2)
g , . . . , γ

(m+1)
g , γ

(2)
h , . . . , γ

(m+1)
h

are known, we can find µ
(1)
f , . . . , µ

(m)
f , γ

(2)
f , . . . , γ

(m+1)
f using the following recursive formulas, which

follow from Theorem 1

µ
(k)
f = µ

(k)
h −

k−1
∑

i=0

(

k

i

)

µ
(i)
f µ(k−i)

g , k = 1, . . . ,m; (6)

γ
(k)
f = γ

(k)
h −

k−1
∑

i=0

(

k

i

)

γ
(i)
f γ(k−i)

g , k = 2, . . . ,m + 1. (7)

The moments µ
(1)
f , . . . , µ

(m)
f , γ

(2)
f , . . . , γ

(m+1)
f , found from (6) and (7), are substituted in (5), and this

gives estimates of parameters θ1, . . . , θm.

3 Gamma and shifted gamma models

In this section, we apply the suggested method to two important parametric families of functions,

gamma and shifted gamma densities. Thus the unknown function f(t) is either (2) or

f(t) = f(t;α, β, τ) =
βα

Γ(α)
(t − τ)(α−1)e−β(t−τ), t > τ ; (8)

α > 0, β > 0, τ > 0.

Of course, (2) is a special case of (8), but we consider these two families separately because the

estimators of α and β are different for the two models, even when τ is estimated by zero.

3.1 Gamma model

Approximation by a gamma distribution is very popular and useful in many areas, in particular in

dynamical systems. In such systems, the unknown function f(t) is the distribution (density) of a delay,

and this distribution is often well approximated by a gamma distribution. It is so, in particular, for

many biological systems, see Mittler et al. (1998)

So, suppose that the unknown function has the form (2), where the parameters α and β are

unknown and need to be estimated. Since α = (µ
(1)
f )2/γ

(2)
f , β = µ

(1)
f /γ

(2)
f , and since due to Theorem

1 and its Corollary, µ
(1)
f = µ

(1)
h − µ

(1)
g and γ

(2)
f = γ

(2)
h − γ

(2)
g , we have

α =
(µ

(1)
h − µ

(1)
g )2

γ
(2)
h − γ

(2)
g

, β =
µ

(1)
h − µ

(1)
g

γ
(2)
h − γ

(2)
g

.

Let µ̂
(1)
h , µ̂

(1)
g , γ̂

(2)
h , γ̂

(2)
g be estimators of the moments µ

(1)
h , µ

(1)
g , γ

(2)
h , γ

(2)
g , respectively. Then the

suggested estimators of the parameters α and β are

α̂ =
(µ̂

(1)
h − µ̂

(1)
g )2

γ̂
(2)
h − γ̂

(2)
g

, β̂ =
µ̂

(1)
h − µ̂

(1)
g

γ̂
(2)
h − γ̂

(2)
g

. (9)
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Calculation of the integrals µ
(1)
h , µ

(1)
g , γ

(2)
h , γ

(2)
g , i.e. construction of estimates µ̂

(1)
h , µ̂

(1)
g , γ̂

(2)
h , γ̂

(2)
g ,

is a routine problem of numerical integration, which can be solved using standard techniques, see for

example Cheney and Kincaid (2000). Methods for estimating errors of these estimates are also well

known. Therefore, we do not consider this problem here and assume that distributions of these errors

are given. We express the distributions of the estimators α̂ and β̂ for the parameters of interest in

terms of distributions of µ̂
(1)
h , µ̂

(1)
g , γ̂

(2)
h , γ̂

(2)
g . Denote

Xn = (µ̂
(1)
h , µ̂(1)

g , γ̂
(2)
h , γ̂(2)

g )T

and

c = (µ
(1)
h , µ(1)

g , γ
(2)
h , γ(2)

g )T.

Suppose that Xn is asymptotically normal

√
n(Xn − c)

D−→ N (0,Σ). (10)

Denote (vectors of derivatives)

a =

(

2(µ
(1)
h − µ

(1)
g )

γ
(2)
h − γ

(2)
g

,−2(µ
(1)
h − µ

(1)
g )

γ
(2)
h − γ

(2)
g

,− (µ
(1)
h − µ

(1)
g )2

(γ
(2)
h − γ

(2)
g )2

,
(µ

(1)
h − µ

(1)
g )2

(γ
(2)
h − γ

(2)
g )2

)T

,

b =

(

1

γ
(2)
h − γ

(2)
g

,− 1

γ
(2)
h − γ

(2)
g

,− µ
(1)
h − µ

(1)
g

(γ
(2)
h − γ

(2)
g )2

,
µ

(1)
h − µ

(1)
g

(γ
(2)
h − γ

(2)
g )2

)T

.

Using the multivariate delta method, we obtain the following

Theorem 2. Let (10) hold. Then

√
n(α̂ − α)

D−→ N (0,aTΣa),

√
n(β̂ − β)

D−→ N (0,bTΣb).

3.2 Shifted gamma model

When the distribution of a delay in a dynamical system is estimated, the gamma approximation has

the following disadvantage. A delay, described by a gamma distribution, starts right after zero. For

many dynamical systems, this is unrealistic: the event must “mature”. For example, in some biological

models of HIV infection, such as Mittler et al. (1998), Nelson and Perelson (2002), describing the

in-host dynamics of the infection, the model allows a delay from the time of infection of a cell by the

virus until the production of new viral particles. In both of the aforementioned papers, a gamma delay

density is assumed. However, the viral replication cycle is a multistage process which includes: entry

to the cell, reverse transcription, integration into host DNA, transcription, translation, assembly of

the viral particle and release of virions from the cell. All these processes definitely take some time to

be accomplished. Hence, an extension of the gamma family to shifted gamma distributions seems to

be a reasonable solution of the problem.

In this subsection, we consider this model, i.e. assume that the function f(t) in (1) has the form

(8). Since

µ
(1)
f =

α

β
+ τ, γ

(2)
f =

α

β2
, γ

(3)
f =

2α

β3
,
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we have the following expressions for α, β, and τ in terms of µ1
f , γ2

f , and γ3
z :

α =
4(γ

(2)
f )3

(γ
(3)
f )2

, β =
2γ

(2)
f

γ
(3)
f

, τ = µ
(1)
f −

2(γ
(2)
f )2

γ
(3)
f

.

Due to Theorem 1 and its Corollary, this gives

α =
4(γ

(2)
h − γ

(2)
g )3

(γ
(3)
h − γ

(3)
g )2

, β =
2(γ

(2)
h − γ

(2)
g )

γ
(3)
h − γ

(3)
g

,

τ = µ
(1)
h − µ(1)

g − 2(γ
(2)
h − γ

(2)
g )2

γ
(3)
h − γ

(3)
g

Thus, in the considered case, the suggested estimators of α, β, and τ are

α̂ =
4(γ̂

(2)
h − γ̂

(2)
g )3

(γ̂
(3)
h − γ̂

(3)
g )2

, β̂ =
2(γ̂

(2)
h − γ̂

(2)
g )

γ̂
(3)
h − γ̂

(3)
g

, (11)

τ̂ = µ̂
(1)
h − µ̂(1)

g − 2(γ̂
(2)
h − γ̂

(2)
g )2

γ̂
(3)
h − γ̂

(3)
g

. (12)

Denote

Xn = (µ̂
(1)
h , µ̂(1)

g , γ̂
(2)
h , γ̂(2)

g , γ̂
(3)
h , γ̂(3)

g )T

and

c = (µ
(1)
h , µ(1)

g , γ
(2)
h , γ(2)

g , γ
(3)
h , γ(3)

g )T.

As in the previous section, suppose that Xn is asymptotically normal

√
n(Xn − c)

D−→ N (0,Σ). (13)

Using the multivariate delta method, we obtain the following asymptotics for α̂, β̂, τ̂ in terms of the

limit distribution of the vector Xn. Denote

a =

(

0, 0,
12(γ

(2)
h − γ

(2)
g )2

(γ
(3)
h − γ

(3)
g )2

,−12(γ
(2)
h − γ

(2)
g )2

(γ
(3)
h − γ

(3)
g )2

,−8(γ
(2)
h − γ

(2)
g )3

(γ
(3)
h − γ

(3)
g )3

,
8(γ

(2)
h − γ

(2)
g )3

(γ
(3)
h − γ

(3)
g )3

)

,

b =

(

0, 0,
2

γ
(3)
h − γ

(3)
g

,− 2

γ
(3)
h − γ

(3)
g

,−2(γ
(2)
h − γ

(2)
g )

(γ
(3)
h − γ

(3)
g )2

,
2(γ

(2)
h − γ

(2)
g )

(γ
(3)
h − γ

(3)
g )2

)

,

d =

(

1,−1,−4(γ
(2)
h − γ

(2)
g )

γ
(3)
h − γ

(3)
g

,
4(γ

(2)
h − γ

(2)
g )

γ
(3)
h − γ

(3)
g

,
2(γ

(2)
h − γ

(2)
g )2

(γ
(3)
h − γ

(3)
g )2

,−2(γ
(2)
h − γ

(2)
g )2

(γ
(3)
h − γ

(3)
g )2

)

.

Theorem 3. Let (13) hold. Then

√
n(α̂ − α)

D−→ N (0,aTΣa),

√
n(β̂ − β)

D−→ N (0,bTΣb),
√

n(τ̂ − τ)
D−→ N (0,dTΣd).

Note that the estimators (9) of α and β in the ordinary gamma model differ from the estimators

(11) in the shifted gamma model when τ = 0. At the same time, negative values of τ are “nonphysical”.

Therefore, if the estimate τ̂ given by (12) is negative, we suggest to let τ be estimated by zero instead

of (12), and to let α, β be estimated using the ordinary gamma model, i.e. by (9).
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