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SUMMARY

Motivated by the challenge of detecting Gene Ontology (GO) categories which are over-
represented or depleted when comparing biological findings represented by two over-lapping lists
of genes, we examine the performance of different statistical tests. One key feature with this type
of data is that the sample size at each GO category often is small and thus large sample asymptotic
tests are not suitable. We look at four different test statistics in combination with parametric boot-
strapping, and compare the methods with their asymptotic alternatives. We find that the choice of
test statistic influence which GO categories are found to be significant, and all tests under study
perform increasingly conservative as the sample size decreases. We observe that this problem is
statistically the same as comparing the positive predictive values of two diagnostic tests.

1 INTRODUCTION

In some biological experiments the aim is, e.g. by using DNA microarrays, to discover genes that are
differentially expressed between two or more conditions. The conditions may be defined by the pres-
ence or absence of a disease or by different treatments like diets, drugs or amount of physical exercise.
As an example we consider a situation where the relationship between inborn aerobic capacity and
cardiac gene expression in rats was studied, Bye, Langaas, Høydahl, Kemi, Heinrich, Koch, Britton,
Najjar, Ellingsen and Wisløff (2008). The rats were born with either high running capacity (HCR) or
low running capacity (LCR), and half of the rats were trained, while the others remained sedentary.
Thus there were four groups of rats, LCR trained, LCR sedentary, HCR trained and HCR sedentary.
Several comparisons were done, and the comparison of the gene expression for the sedentary HCR rats
with the gene expression for the sedentary LCR rats resulted in a list of 1540 differentially expressed
genes between these two groups.

However, since such lists contains only single genes, i.e. without information about potential con-
nections to the other genes on the list, it can be challenging to interpret the biological meaning of
the results. What may be more interesting for interpretation purposes is the biological pathways that
are active in the conditions under study. To do this, groups of genes instead of single genes are
considered. In this paper we consider groups of genes selected from a predefined set using the Gene
Ontology (GO) vocabulary, The Gene Ontology Consortium (2000). GO is a vocabulary that classifies
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genes into the three main categories: biological process, molecular function and cellular component
and their subcategories.

Given the list of differentially expressed genes from the experiment and the list of all genes present on
the microarray chip, called the master list, the biologist wants to know whether certain gene classes
are over-represented or depleted in the list of differentially expressed genes compared to the master
list. In the rat example, we are interested in knowing if the number of genes related to aerobic ca-
pacity among those differentially expressed between the sedentary HCR rats and the sedentary LCR
rats is higher than what we would expect by chance if we compare it to the master list. The list of
differentially expressed genes is contained in the master list, and the statistical hypothesis problem is
to test whether two binomial proportions are equal. Common approaches are Pearson’s asymptotic
χ2-test and Fisher’s exact test for large and small samples, respectively.

If there are more than two conditions in the experiment, several comparisons can be done which may
each result in a list of differentially expressed genes between the conditions being compared. Then
we would like to see whether some specific gene classes of interest are over-represented or depleted
on one of the lists compared to one of the others. The two lists may either be mutually exclusive or
partly overlapping. If they are mutually exclusive the problem reduces to test whether two binomial
proportions are equal as for the master list problem and the same approaches can be used. We will
consider only the situation of overlapping gene lists. In the rat example, we want to compare the
list of differentially expressed genes between trained HCR and LCR rats to the list of differentially
expressed genes between trained HCR rats and sedentary LCR rats.

Comparing two overlapping gene lists in terms of over-represented or depleted gene classes is sta-
tistically the same situation as comparing the positive predictive values for two diagnostic tests and
several hypothesis tests for this situation can be found in the literature, see Leisenring, Alonzo and
Pepe (2000), Wang, Davis and Soong (2006) and Moskowitz and Pepe (2006). Günther, Bakke,
Lydersen and Langaas (2008) presented a likelihood ratio test and a restricted difference test and
compared them to the other existing tests. Simulation experiments showed that for smaller sample
sizes these tests did not preserve their test size. When comparing gene lists, the actual sample size is
the number of genes associated with each of the three main GO-categories, not the number of genes
on the microarray chip, nor the total number of genes on the lists. This number is usually quite small
and large sample tests are not a suitable approach. Instead small sample tests should be applied.

In this paper we evaluate small sample tests for comparing two overlapping gene lists, i.e. to test
whether the probabilities that a randomly chosen gene belongs to a specific gene class are equal for
the two lists. We first describe the assumed model and define the null and alternative hypotheses
in Section 2, and then present the test statistics and how to calculate the p-values in Section 3. A
simulation study is conducted to assess the method and described in Section 4 and in Section 5 an
example in which data from the literature is given. A short discussion is given in Section 6 before we
end with the conclusions in Section 7.

2 MODEL AND DATA

We assume that we have two lists of genes, list A and list B. For each gene we are interested in
comparing the probability that it belongs to a certain gene class D given that it is on list A, with
the probability that it belongs to D given that it is on list B. Our null hypothesis is that these two
probabilities are equal. By defining the three events
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• D: The gene belongs to gene class D.

• A: The gene is present on gene list A.

• B: The gene is present on gene list B.

we can express the null hypothesis as

H0 : P (D | A) = P (D | B). (1)

Statistically, this is the same problem as testing equality of the positive predictive values of two diag-
nostic tests for the same disease. Two diagnostic tests with binary outcomes, i.e. positive or negative,
are applied to each subject in the study. The positive predictive value (PPV) is defined as the proba-
bility that the subject has the disease of study given that the test is positive. If we let event D be that
the subject has the disease, A the event that the outcome of test A is positive and B the event that
the outcome of test B is positive, then the positive predictive value of test A is PPVA = P (D | A),
and the positive predictive value of test B is PPVB = P (D | B). Our null hypothesis is that the two
positive predictive values are equal, i.e. H0 : P (D | A) = P (D | B) as in (1).

The Venn diagram in Figure 1 shows the six mutually exclusive events defined by A, B and D. We
only look at the restricted sample space, i.e. A ∪ B, and thereby only the part of D that intersects
A ∪ B. Let A∗, B∗ and D∗ be the complementary events of A, B and D respectively. Günther et al.
(2008) argue that when comparing positive predictive values it suffices to consider only the subjects
with at least one positive test result, which equals the setA∪B. In the GO setting the number of genes
belonging to the GO category D that are not present on any of the lists, i.e. the event (A∗ ∪B∗) ∩D,
is unknown as is the number of genes not present on the lists that do not belong to the GO category
D, therefore the part of D that intersects with A∗ ∪B∗ is not included.

To each of the six events in the Venn diagram there corresponds the probability qi that event i oc-
curs, i = 1, ..., 6. The sum of these probabilities is one, i.e.

∑6
i=1 qi = 1. Associated with each

event is also a random variable Ni, i = 1, . . . , 6, Ni being the number of times event i occurs. We
consider one main category at a time, such that in total there are N =

∑6
i=1Ni unique genes on

the two lists associated with either biological process, cellular component or molecular function. The
number N will typically change between the three main categories. Given N , the random variables
N1, N2, . . . , N6 are multinomially distributed with parameters N and
q = (q1, q2, q3, q4, q5, q6). The joint probability function of N1, N2, . . . , N6 is

P

(
6⋂

i=1

(Ni = ni)

)
= N !

6∏
i=1

qni
i

ni!
. (2)

The expected value of N = (N1, N2, N3, N4, N5, N6) is µ = E(N) = N · q and the covariance
matrix is Σ = Cov(N) = N(Diag(q) − qTq), Johnson, Kotz and Balakrishan (1997). We do not
assume that a random gene’s presence on list A is independent on its presence on list B and of whether
it belongs to GO category D. This is implicitly handled by the multinomial model, since each gene
yields only one observation of one of the six mutually exclusive events. We do however assume that
the genes are sampled independently of each other and we will comment this further in Section 6.

Throughout this work, we assume that only N is fixed and that N are realisations of multinomial
samples. Other sampling schemes are possible as well, for instance by fixing ND, NA and NB , the
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number of genes belonging to gene class D, are present on list A and are present on list B respectively,
and samplingN independently from three binomial distributions. In this report, we will not consider
these approaches.

The probabilities P (D|A) and P (D|B) can be expressed in terms of the parameters q since

P (D|A) =
P (D ∩A)
P (A)

=
q4 + q5

q1 + q2 + q4 + q5

and

P (D|B) =
P (D ∩B)
P (B)

=
q4 + q6

q1 + q3 + q4 + q6
.

Thus, the null hypothesis can be written

H0 : δ =
q4 + q5

q1 + q2 + q4 + q5
− q4 + q6
q1 + q3 + q4 + q6

= 0. (3)

N4

A

D

N2

N5

N1

N3

N6

B

FIGURE 1: Venn diagram for the events D, A and B showing which events the random variables
N1, . . . , N6 correspond to.

There are several possible alternative hypotheses. If we are interested in whether there is an en-
richment or depletion of genes belonging to gene class D on list A compared to list B, we have the
two-sided alternative

H1 : P (D|A) 6= P (D|B). (4)

If we are interested in testing only whether there is an enrichment of genes belonging to gene class D
on list A compared to list B, we have the one-sided alternative

H1 : P (D|A) > P (D|B). (5)

When testing whether there is a depletion of genes belonging to gene class D on list A compared to
list B, the alternative hypothesis is

H1 : P (D|A) < P (D|B). (6)

In this work we will focus on the two sided alternative. We observe data n = (n1, n2, n3, n4, n5, n6)
which are realizations of N = (N1, N2, N3, N4, N5, N6) and can be represented in a table as shown
in Table 1.
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Event D∗ D

A ∩B n1 n4

A ∩B∗ n2 n5

A∗ ∩B n3 n6

TABLE 1: The observed data classified by the events A, B and D.

3 METHOD

In this section we present the test statistics we considered to test whether the probability of a gene
belonging to gene class D given that it is present on list A is equal to the probability of a gene
belonging to gene class D given that it is present on list B. We also describe how to calculate the
p-values.

3.1 TEST STATISTICS

To test the null hypothesis (3), we consider four test statistics: a likelihood ratio test statistic, a score
test statistic and two difference test statistics. They have all been shown to be asymptotically χ2

1

distributed when the sample size is large, Casella and Berger (2002), Leisenring et al. (2000), Wang
et al. (2006), but here we will use parametric bootstrapping to approximate their distribution under the
null hypothesis for small samples. We describe the test statistics briefly, more details can be found in
Günther et al. (2008).

The likelihood ratio test statistic is

TLR = −2 · log(λ(N))

where λ(N) is the maximum likelihood of a multinomial sample under the null hypothesis divided
by the general maximum likelihood of the multinomial sample. LetQ denote the parameter space for
q andQ0 the subspace ofQ in which q satisfy the constraint given by the null hypothesis (3). Then,

λ(n) =
supQ0

L(q|n)

supQL(q|n)
.

Let q̃i, i = 1, . . . , 6, be the restricted maximum likelihood estimates, that is, the maximum likelihood
estimates underH0, and let q̂i, i = 1, . . . , 6 be the unrestricted general maximum likelihood estimates
for the multinomial distribution, i.e. q̂i = ni/N . Inserting these estimates in the log-likelihood
function for the multinomial distribution leads to the test statistic

TLR = −2

(
6∑

i=1

ni · (log q̃i − log q̂i)

)
. (7)

Note that q̃i, i = 1, . . . , 6, cannot be written in any comprehensible closed form, but can be found
using an optimization routine or analytically by solving a Lagrangian system of equations. We do the
latter using Maple 12, for details see Günther et al. (2008).
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The difference tests are based on the estimator g(N) for the difference δ in (3),

g(N) =
N4 +N5

N1 +N2 +N4 +N5
− N4 +N6

N1 +N3 +N4 +N6
(8)

and the test statistic is derived by subtracting the expectation of g(N) and dividing by its approximate
standard deviation, which is found by taking the variance of the first order Taylor expansion of g(N).
Let µ = E(N) and Σ = Cov(N) as defined in Section 2. This yields

Tg =
(g(N)− g(µ))2

GT (µ)Σ G(µ)
(9)

where G is a vector containing the first order partial derivatives of g(N) with respect to the compo-
nents ofN and GT is the transpose of G. G(µ) is G with µ inserted forN .

Under the null hypothesis g(µ) = 0. G(µ) and Σ depend on the unknown parameters q which must
be estimated when calculating the test statistic. We can either use the unrestricted maximum likelihood
estimates q̂ for the multinomial distribution or the restricted maximum likelihood estimates q̃ under
H0. In the first case we refer to the test as the unrestricted difference test (uDT) and denote the test
statistic TuDT and in the second case we refer to the test as the restricted difference test (rDT) and
denote the test statistic TrDT.

Leisenring et al. (2000) presented a score test, which we denote the LAP test, for testing equivalence
of positive predictive values of two diagnostic tests, based on generalized estimating equations. They
define three indicator variables. First Dij indicates the disease status of subject i for diagnostic test
j, i.e. Dij = 0 if the subject does not have the disease and Dij = 1 if it does have the disease.
Zij indicates which test is used, it is 0 for test A and 1 for test B. Xij indicates the test result, it is
0 if the test is negative and 1 if it is positive. Then the positive predictive value for test A can be
written PPVA = P (Dij = 1 | Zij = 0, Xij = 1) and the positive predictive value for test B is
PPVB = P (Dij = 1 | Zij = 1, Xij = 1). Leisenring et al. (2000) fit the generalized linear model

logit(P (Dij = 1 | Zij , Xij = 1)) = αP + βPZij ,

and test whether βP = 0 which is equivalent to testing whether PPVA = PPVB . We translate the test
to the GO situation and in our notation the test statistic can be written as

TLAP =
((N1 +N2 +N4 +N5)(N4 +N6)− (N1 +N3 +N4 +N6)(N4 +N5))2

f(N1, N2, N3, N4, N5, N6)
, (10)
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where

f(N1, N2, N3, N4, N5, N6)

= N1(N2 −N3 +N5 −N6)2
(

2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

+N2(N1 +N3 +N4 +N6)2
(

2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

+N3(N1 +N2 +N4 +N5)2
(

2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

+N4(N2 −N3 +N5 −N6)2
(

1− 2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

+N5(N1 +N3 +N4 +N6)2
(

1− 2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

+N6(N1 +N2 +N4 +N5)2
(

1− 2N4 +N5 +N6

2N1 +N2 +N3 + 2N4 +N5 +N6

)2

.

The numerator can be found from by setting the difference in (8) equal to 0 and rearranging the terms.
In the denominator, the number of genes that do not belong to GO category D, N1, N2 and N3, are
each multiplied by the proportion of genes that belong to the category D and in this proportion, the
genes that are present on both lists, N1 and N4, are given double weight. The number of genes that
belong to GO category D, N4, N5 and N6, are each multiplied by the proportion of genes that do not
belong to the gene class D where the genes that are present on both lists are given double weight.

3.2 CALCULATION OF p-VALUES

We will use parametric bootstrapping to approximate the distribution of the test statistics under the
null hypothesis and find approximate p-values. The test statistic of interest, is either TLAP, TLR, TuDT
or TrDT. To calculate the p-values we use the following algorithm:

1. For a given sample of size N , find the maximum likelihood estimates of the parameters under
H0, q̃, and calculate the test statistic t for this sample, denoted ts.

2. Draw B samples from the multinomial distribution with parameters N and q̃.

3. Calculate the test statistic tk for each of these samples, 1 ≤ k ≤ B.

4. The p-value is given as
∑B

k=1 I(tk ≥ ts), where I(tk ≥ ts) =
{

1 if tk ≥ ts
0 if tk < ts

, thus the p-

value is the proportion of simulated test statistics greater than or equal to the given test statistics.

4 ASSESSMENT OF METHOD

To assess the performance of the four tests in terms of test size, we perform a simulation study.
The test size is the probability of making a type I error, i.e. for rejecting H0 when H0 is true. We
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consider different sample sizes to evaluate the effect of N on the test size, and we also use several
parameter values of q in the multinomial distribution to explore different areas of the null hypothesis.
All analysis are performed using the R language, R Development Core Team (2008), except finding
the maximum likelihood estimates under H0 which is done using Maple 12.

4.1 SIMULATION ALGORITHM

Given q and N , we draw M datasets from the multinomial distribution with parameters q and N . For
each of these datasets we find the p-value using parametric bootstrapping as described in Section 3.2.

4.2 CASES UNDER STUDY

The data sets are generated from the parameters q in the multinomial distribution and we choose six
cases of parameters, given in Table 2 and depicted in Figure 2.

Case q1 q2 q3 q4 q5 q6

1 0.068 0.135 0.135 0.527 0.068 0.068
2 0.043 0.130 0.130 0.348 0.174 0.174
3 0.267 0.267 0.267 0.067 0.067 0.067
4 0.300 0.267 0.267 0.033 0.067 0.067
5 0.400 0.200 0.200 0.100 0.050 0.050
6 0.450 0.200 0.200 0.050 0.050 0.050

TABLE 2: Specification of parameters in the simulation study.

The parameters in case 1 and 2 are motivated by the setting for diagnostic tests and chosen as described
in the multinomial simulation experiment of Günther et al. (2008). In case 3–6, we first set the
probabilities o1 = P (A ∩ B), o2 = P (A ∩ B∗) and o3 = P (A∗ ∩ B) and then p1 = P (D|A ∩ B),
p2 = P (D|A ∩B∗) and p3 = P (D|A∗ ∩B). From these probabilities q are calculated as follows,

qi =
{
oi(1− pi) i = 1, 2, 3
oipi i = 4, 5, 6.

In case 3 o1 = o2 = o3 = 1/3 and p1 = p2 = p3 = 1/5. In case 4 o1 = o2 = o3 = 1/3 and
p1 = 1/10 while p2 = p3 = 2/10. The probabilities in case 5 are o1 = 1/2, o3 = o4 = 1/4 and
p1 = p2 = p3 = 1/5. Finally, in case 6, o1 = 1/2, o2 = o3 = 1/4, p1 = 1/10 and p2 = p3 = 2/10.

The remaining parameter in the multinomial distribution, N , must also be chosen and since we are
considering small sample sizes, we use N = 10, 15, 20 and 25. For each of the values of N all the
cases given in Table 2 are run. In each of the six cases we draw M = 10000 samples and for each of
these samples we draw B = 10000 bootstrap samples.

4.3 RESULTS

The test size is estimated as the proportion of p-values being less than or equal to the chosen nominal
level α. Let W be a random variable counting the number of p-values smaller than or equal to α.

8



FIGURE 2: Values of qi, i = 1, . . . , 6, black: case 1, red: case 2, green: case 3, dark blue: case 4,
turquoise: case 5, cyan: case 6.

Then W is binomially distributed with size M , the number of p-values generated, and probability α.
The estimate of the test size of the test, α̂ is then

α̂ =
W

M
. (11)

We say that the test preserves its test size if α̂ ≤ α. The smaller α̂ is, while less than α, the more
conservative the test is. If α̂ > α the test does not preserve its test size and we say that it is too
optimistic. We choose α = 0.05 and calculate α̂ for the four test statistics, six cases and four values
of N .

Table 3 show the estimated test size for all the combinations of q, N and test statistic. There is one
table for each of the six cases. The likelihood ratio test has the largest test size in all the cases and for
all values of N except for N = 20 and N = 25 in case 1 and N = 25 in case 2. The unrestricted
difference test has the smallest test size in all the cases and for all values of N except for N = 20 and
N = 25 in case 1 and N = 25 in case 2, which are the exceptions when the likelihood ratio test has
the smallest test size. The test size of the LAP test and the unrestricted difference test lies somewhere
in between, which one is the largest varies.

When N = 10, all the tests are conservative for all the cases, but when N increases, the test size also
increases and in case 1 and 2 the tests do not preserve their test size for N ≥ 15. This also happens
in case 3 for N ≥ 20 for the likelihood ratio test and for N = 25 for the restricted difference test. In
case 4, 5 and 6, the tests are conservative for all values of N except the likelihood ratio test which test
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(a) Case 1

N LAP LRT rDT uDT
10 0.042 0.046 0.039 0.035
15 0.059 0.061 0.060 0.057
20 0.063 0.061 0.062 0.062
25 0.055 0.052 0.054 0.055

(b) Case 2

N LAP LRT rDT uDT
10 0.038 0.043 0.040 0.018
15 0.056 0.058 0.057 0.047
20 0.056 0.057 0.057 0.054
25 0.058 0.057 0.058 0.057

(c) Case 3

N LAP LRT rDT uDT
10 0.014 0.028 0.026 0.007
15 0.029 0.044 0.041 0.024
20 0.041 0.055 0.051 0.038
25 0.047 0.056 0.053 0.046

(d) Case 4

N LAP LRT rDT uDT
10 0.012 0.023 0.021 0.004
15 0.026 0.041 0.036 0.020
20 0.035 0.047 0.044 0.029
25 0.044 0.051 0.047 0.041

(e) Case 5

N LAP LRT rDT uDT
10 0.010 0.022 0.020 0.008
15 0.021 0.037 0.033 0.020
20 0.032 0.042 0.039 0.031
25 0.040 0.049 0.046 0.040

(f) Case 6

N LAP LRT rDT uDT
10 0.007 0.013 0.012 0.004
15 0.014 0.024 0.022 0.011
20 0.029 0.037 0.034 0.026
25 0.039 0.045 0.041 0.037

TABLE 3: Estimated test size, α̂, for α = 0.05. LAP denotes the LAP test, LRT the likelihood ratio
test and uDT and rDT denote the unrestricted and restricted difference test respectively.

size is 0.050 for N = 25 in case 4 and 6.

Figure 3 shows the estimated test size for the asymptotic methods plotted against the estimated test
size for the parametric bootstrap methods, there is one plot for each method for α = 0.05. If the
points lie above the diagonal line, the test size of the asymptotic test is higher than the test size of
the parametric bootstrap test, and lower if the points are below the line. If the points lie above the
horizontal line the test size for the asymptotic test is greater than α = 0.05 and smaller if they lie
below the line. Similarly, for the points that lie to the right of the vertical line, the test size for the
parametric bootstrap test is higher than 0.05 and it is lower than 0.05 if they lie to the left of this line.

We note in particular that for all the cases and for all values of N , the test size for the parametric
bootstrap restricted difference test is greater than the test size for the large sample restricted difference
test. For the likelihood ratio test, the opposite is true, the test size of the asymptotic likelihood ratio
test is greater than the test size of the parametric bootstrap likelihood ratio test. This indicates that
the parametric bootstrap test is an improvement compared to the asymptotic likelihood ratio test for
small samples. However, the asymptotic likelihood ratio test does not preserve its test size in 15 of
the 24 combinations of N and q and in six of those the parametric bootstrap test is still too optimistic.
To use the parametric bootstrap restricted difference test does not yield an improvement compared to
using the asymptotic restricted difference test.

Figure 4 shows the observed level, i.e. the test size, of the tests plotted against the nominal level for
N = 10, 15, 20, 25 in case 3 for a chosen nominal level in the range from 0 to 0.10. We see that the
test size increases when N increases and also that the tests yield more similar results for the higher
values of N . The unrestricted difference test and the LAP test preserve the test size in all the cases
while the likelihood ratio test is too optimistic when N = 20 or 25.
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(a) (b)

(c) (d)

FIGURE 3: Estimated test size for the asymptotic versus the small sample tests, for different values of
N : Red=10, green=15, dark blue=20, cyan=25.
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(a) (b)

(c) (d)

FIGURE 4: Observed level versus nominal level for (a)N = 10, (b)N = 15, (c)N = 20, (d)N = 25,
green = LRT, red = LAP, dark blue = rDT, grey = uDT.
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5 EXAMPLE FROM GENE ONTOLOGY

As an example of how the tests perform on a data set from literature, we use part of the data presented
by Bye et al. (2008). To estimate the effect of running capacity of the trained rats, we compare the
gene expression for the HCR trained rats with the LCR trained rats. This gives us a list of differentially
expressed genes between these two groups, we call this list A. It may be of interest to estimate the joint
effect of training and inbread running capacity by comparing the trained HCR rats versus the sedentary
LCR rats. This gives us another list of differentially expressed genes which we call list B. To determine
which genes are differentially expressed a cut-off must be chosen. For each gene, a p-value and an
adjusted p-value are calculated. The adjusted p-values are adjusted using the Benjamini-Hochberg
step-up procedure to control the false discovery rate (FDR), Benjamini and Hochberg (1995). The
cut-off is chosen such that all the genes that have a p-value smaller than or equal to this value are said
to be differentially expressed. We will use two different cut-offs and first we choose an FDR cut-off of
0.025 for both lists, which yields 12 genes on list A and 24 genes on list B. These lists are submitted
to eGOn, Beisvåg, Jünge, Bergum, Jølsum, Lydersen, Günther, Ramampiaro, Langaas, Sandvik and
Lægreid (2006), a web-based tool that automatically translates the lists to GO categories. We are
interested in genes annotated to the main category molecular function. There are three genes from the
first list and nine genes from the second list annotated to this category. Of these genes two are on both
list A and B and therefore there are N = 10 unique genes on the two lists associated with molecular
function.

The GO tree has several levels corresponding to the hierarchy of the GO categories. One gene can
belong to more than one GO category, and given that it belongs to a subcategory it will also belong
to the parent categories of this subcategory on the upper levels. After submitting the lists, one has to
choose which main category to consider, i.e. either molecular function, biological process or cellular
component. Level 1 is the main category itself with no subcategories, e.g. molecular function. The
higher level number is chosen, the more subcategories are included, and they are all subcategories of
the chosen main category. We choose to display the GO tree at level 3 for the main category molecular
function and Table 4 shows the 11 GO categories that are represented on the lists, i.e. the categories
which the genes on the lists belong to. A hypothesis test is performed for each category, testing
whether it is over-represented or depleted on one of the lists compared to the other list.

If we use an FDR cut-off of 0.05 on differential expression instead we get two lists of 30 and 63 genes,
42 of these genes can be classified under the main category molecular function. Within this category,
seven genes are present on both lists, seven genes are present only on list A and 21 genes are present
only on list B, yielding N = 35 unique genes. Table 5 shows the GO categories for these genes along
with their p-values.

Table 4 and 5 both include a column with the p-value calculated by eGOn. These p-values are cal-
culated using the asymptotic LAP test. We calculate the p-values for the three other tests, i.e. the
likelihood ratio test and the restricted and unrestricted difference test using parametric bootstrapping
and compare them to the asymptotic p-values for all four tests. When performing the bootstrapping
we draw B = 10000 bootstrap samples for each GO category.

Table 6 shows the results for the FDR cut-off of 0.025. The GO category ion binding (GO:0043167)
is significant when using either the parametric bootstrap or asymptotic likelihood ratio or restricted
difference test. It is also significant when using the asymptotic unrestricted difference test, while
it is not significant when using the parametric bootstrap or asymptotic LAP test or the asymptotic
unrestricted difference test. None of the other GO categories are significant for any of the tests.
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GO identifier Name p-value n4 n5 n6

GO:0005488 binding 0.157 2 1 5
GO:0030246 carbohydrate binding 0.273 1 0 0
GO:0043167 ion binding 0.077 1 1 0
GO:0008289 lipid binding 0.279 0 1 0
GO:0003676 nucleic acid binding 0.317 0 0 1
GO:0005515 protein binding 0.705 2 0 5
GO:0046906 tetrapyrrole binding 0.279 0 1 0
GO:0003824 catalytic activity 0.245 1 1 2
GO:0016787 hydrolase activity 0.273 1 0 0
GO:0016874 ligase activity 0.317 0 0 1
GO:0016491 oxidoreductase activity 0.46 0 1 1

TABLE 4: GO categories within molecular function with their corresponding p-values and number of
genes on the lists.

When considering only the parametric bootstrap tests, in general the likelihood ratio test and restricted
difference test give similar p-values which in some cases are smaller than the p-values for the LAP
test and the unrestricted difference test. One example is the GO category lipid binding (GO:0008289)
where the p-values are 0.160, 0.065, 0.065 and 0.220 for the LAP, likelihood ratio, restricted difference
and unrestricted difference tests respectively. Even though lipid binding is not significant for any of
these tests, it is not far from being significant for the LRT and rDT tests which is not the case for
the LAP and unrestricted difference tests. Together with the example ion binding, this indicates that
a GO category may be declared significant more often for the likelihood ratio test and restricted
difference tests than with the LAP and unrestricted difference tests. This coincide with the findings in
the simulation experiments where the estimated test size in several cases were higher for the likelihood
ratio and restricted difference tests than for the LAP and uDT tests.

Table 7 shows the results for the FDR cut-off of 0.05. The GO category catalytic activity (GO:0003824)
is significant with a p-value <0.05 for all the tests, both the parametric bootstrap and asymptotic tests.
The GO category hydrolase activity (GO:0016787) is significant when using the parametric bootstrap
LRT or rDT tests and when using the asymptotic LRT, rDT and uDT tests. We see the same for the GO
category substrate-specific transporter activity (GO:0022892), except that it is not significant using the
asymptotic uDT test. We note that the category ion binding which is significant when we use an FDR
cut-off of 0.025 is not significant now. In general, for the parametric bootstrap tests, the LRT and rDT
tests yield similar p-values that are often smaller than the p-values for the LAP and uDT tests. The
difference between the p-values can be quite large and for the GO term lipid binding (GO:0008289)
the p-values are 0.179, 0.0345, 0.036 and 0.188 for the LAP, likelihood ratio, restricted difference
and urestricted difference tests respectively. This example shows that the choice of test statistic is
critical when finding GO categories that are significantly over-represented or depleted in one gene list
compared to the other list. The differences between the parametric bootstrap and asymptotic tests do
not follow a clear pattern, for some GO categories the parametric bootstrap p-values are smaller, for
other GO categories they are greater.

The GO category chromatin binding (GO:0003682) was found to be significantly over-represented on
the list of differentially expressed genes between HCR and LCR sedentary rats, using an FDR cut-off
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GO identifier Name p-value n4 n5 n6

GO:0005488 binding 0.651 5 7 18
GO:0030246 carbohydrate binding 0.325 1 0 0
GO:0003682 chromatin binding 0.313 0 0 1
GO:0043167 ion binding 0.13 3 1 1
GO:0008289 lipid binding 0.161 1 1 0
GO:0003676 nucleic acid binding 0.485 1 1 5
GO:0000166 nucleotide binding 0.518 1 2 3
GO:0005515 protein binding 0.544 4 6 14
GO:0046906 tetrapyrrole bindin 0.308 0 1 0
GO:0003824 catalytic activity 0.016 5 5 6
GO:0016787 hydrolase activity 0.059 1 4 2
GO:0016874 ligase activity 0.56 1 0 2
GO:0016829 lyase activity 0.325 1 0 0
GO:0016491 oxidoreductase activity 0.226 2 1 1
GO:0016740 transferase activity 1 1 0 1
GO:0030234 enzyme regulator activity 0.325 1 0 0
GO:0030695 GTPase regulator activity 0.325 1 0 0
GO:0060089 molecular transducer activity 0.325 1 0 0
GO:0004871 signal transducer activity 0.325 1 0 0
GO:0005198 structural molecule activity 1 1 0 1
GO:0005201 extracellular matrix structural constituent 0.325 1 0 0
GO:0008307 structural constituent of muscle 0.313 0 0 1
GO:0030528 transcription regulator activity 0.388 1 1 1
GO:0003702 RNA polymerase II transcription factor activity 0.325 1 0 0
GO:0003700 transcription factor activity 0.388 1 1 1
GO:0016564 transcription repressor activity 0.325 1 0 0
GO:0005215 transporter activity 0.168 1 2 1
GO:0022892 substrate-specific transporter activity 0.073 1 2 0
GO:0022857 transmembrane transporter activity 0.168 1 2 1

TABLE 5: GO categories within molecular function with their corresponding p-values and number of
genes on the lists.
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Parametric bootstrap Asymptotic
GO identifier LAP LRT rDT uDT LAP LRT rDT uDT
GO:0005488 0.198 0.315 0.344 0.204 0.157 0.249 0.354 0.109
GO:0030246 0.162 0.072 0.067 0.179 0.273 0.127 0.132 0.257
GO:0043167 0.054 0.004 0.007 0.072 0.077 0.010 0.012 0.021
GO:0008289 0.160 0.065 0.065 0.220 0.279 0.074 0.065 0.221
GO:0003676 0.383 0.371 0.401 0.446 0.317 0.433 0.540 0.289
GO:0005515 0.845 0.803 0.817 0.805 0.705 0.687 0.683 0.699
GO:0046906 0.146 0.062 0.062 0.206 0.279 0.074 0.065 0.221
GO:0003824 0.338 0.263 0.219 0.448 0.245 0.207 0.213 0.194
GO:0016787 0.164 0.073 0.065 0.181 0.273 0.127 0.132 0.257
GO:0016874 0.390 0.375 0.402 0.454 0.317 0.433 0.540 0.289
GO:0016491 0.678 0.454 0.299 0.714 0.460 0.376 0.353 0.431

TABLE 6: Parametric bootstrap and asymptotic p-values for the subcategories of molecular function.

of 0.05, compared to the list of all genes by Bye et al. (2008). Another GO category, nucleic acid
binding (GO:0003676) was significantly over-represented on the list of genes that were significantly
more expressed for HCR rats than for LCR rats compared to the list of genes that were significantly
more expressed for LCR rats than for HCR rats, Bye et al. (2008). None of these GO-categories
are over-represented in our two lists, but since we are not comparing the gene expression between
sedentary HCR and LCR rats it is not surprising.

Instead of comparing the comparison of gene expression for the HCR trained rats and the LCR trained
rats to the comparison of trained HCR rats and sedentary LCR rats, we could have compared the gene
expression of trained LCR rats with the gene expression of the sedentary LCR rats directly. This is
done in Bye et al. (2008). The list of differentially expressed genes is then submitted to eGOn and
compared to the master list. However, with an FDR cut-off of 0.05 the comparison results in only one
gene on the list and this gene is not annotated to any GO category.

With the first FDR cut-off of 0.025, we compared the two lists at 11 GO categories and with the second
FDR cut-off at 0.05 we compared the lists at 29 GO categories. The problem thus involves multiple
testing, and the p-values should be adjusted accordingly. This has not been done when comparing the
methods and the p-values in Table 6 and 7 are therefore unadjusted.

6 DISCUSSION

To obtain list of differentially expressed genes, a cut-off on the differential expression must be set.
The lists can then be submitted to a GO tool, e.g. eGOn, to discover GO categories that are over-
represented or depleted. This approach has been criticised, see Goeman and Bühlman (2007) for an
overview. Firstly, it is not clear where the cut-off should be set and secondly, one may argue that all
the data should be used. Other proposed methods address this problem by either using all the p-values
from the experiment or use raw expression data instead of p-values, see Goeman and Bühlman (2007).

The statistical tests in this report all treat the genes as the sampling units and are based on the as-
sumption that the genes on the lists act independently under the null hypothesis. Statistically, it would
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Parametric bootstrap Asymptotic
GO identifier LAP LRT rDT uDT LAP LRT rDT uDT
GO:0005488 0.670 0.672 0.676 0.667 0.651 0.652 0.657 0.649
GO:0030246 0.369 0.180 0.171 0.371 0.325 0.240 0.308 0.326
GO:0003682 0.382 0.393 0.407 0.403 0.313 0.363 0.472 0.309
GO:0043167 0.124 0.113 0.075 0.128 0.130 0.095 0.091 0.127
GO:0008289 0.179 0.034 0.036 0.188 0.161 0.053 0.075 0.152
GO:0003676 0.511 0.528 0.535 0.512 0.485 0.500 0.510 0.483
GO:0000166 0.544 0.528 0.516 0.544 0.518 0.498 0.491 0.515
GO:0005515 0.561 0.564 0.568 0.559 0.544 0.547 0.552 0.541
GO:0046906 0.182 0.091 0.082 0.190 0.308 0.132 0.151 0.299
GO:0003824 0.017 0.017 0.016 0.020 0.016 0.015 0.016 0.011
GO:0016787 0.093 0.043 0.022 0.094 0.059 0.029 0.027 0.046
GO:0016874 0.606 0.612 0.609 0.606 0.56 0.559 0.568 0.557
GO:0016829 0.378 0.175 0.167 0.38 0.325 0.240 0.308 0.326
GO:0016491 0.262 0.227 0.166 0.262 0.226 0.180 0.175 0.222
GO:0016740 1.000 0.871 1.000 1.000 1.000 1.000 1.000 1.000
GO:0030234 0.372 0.182 0.172 0.375 0.325 0.240 0.308 0.326
GO:0030695 0.368 0.18 0.171 0.371 0.325 0.240 0.308 0.326
GO:0060089 0.374 0.178 0.168 0.378 0.325 0.240 0.308 0.326
GO:0004871 0.371 0.176 0.166 0.373 0.325 0.240 0.308 0.326
GO:0005198 1.000 0.876 1.000 1.000 1.000 1.000 1.000 1.000
GO:0005201 0.366 0.173 0.164 0.37 0.325 0.240 0.308 0.326
GO:0008307 0.377 0.382 0.393 0.394 0.313 0.363 0.472 0.309
GO:0030528 0.501 0.422 0.349 0.501 0.388 0.340 0.33 0.384
GO:0003702 0.364 0.180 0.168 0.366 0.325 0.240 0.308 0.326
GO:0003700 0.494 0.418 0.346 0.493 0.388 0.340 0.33 0.384
GO:0016564 0.373 0.180 0.169 0.376 0.325 0.240 0.308 0.326
GO:0005215 0.236 0.134 0.079 0.237 0.168 0.107 0.101 0.157
GO:0022892 0.064 0.008 0.009 0.055 0.073 0.012 0.019 0.062
GO:0022857 0.234 0.132 0.081 0.234 0.168 0.107 0.101 0.157

TABLE 7: Parametric bootstrap and asymptotic p-values for the subcategories of molecular function.
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be more intuitive to use the subjects as the sampling units, as discussed by Goeman and Bühlman
(2007). Indeed, when testing for equality of the positive predictive values of two diagnostic tests,
the observational unit is the individual and the assumption of independence of test results between
individuals is in most cases not seen to be problematic. But in the gene class setting the assumption
does not hold, because genes act together in pathways and genes that are functionally related can be
strongly correlated. If the gene expression measurements are correlated, the p-values tend to be pos-
itively correlated, see Goeman and Bühlman (2007). A possible extension of the methods developed
in this report could be to look at different dependence structures between the observational units.

We have considered test statistics designed for comparing positive predictive values for diagnostic
tests which translates to comparing association with GO categories for overlapping gene lists. Other
possible approaches to handle overlapping gene lists include deleting the genes that are on both lists
from each list or simply ignore the fact that there are genes that are on both lists and treat them as
mutually exclusive lists. The deletion approach is implemented in the GO tool FatiGO, Al Shahrour,
Diaz Uriarte and Dopazo (2004), in which Fisher’s exact test is implemented. In the ignore approach
Fisher’s exact test or Pearson χ2 test can be used. The asymptotic LAP test is implemented in eGOn
which then handles the problem of overlapping gene lists more correctly than other GO-tools by not
deleting the genes that are on both lists or ignore that the genes are overlapping.

In the simulation experiments in Section 4 and the example using data from the literature in Section
5, we see that the likelihood ratio and restricted difference tests yields similar results which differ
from the LAP and unrestricted difference tests. The likelihood ratio and restricted difference test both
use the maximum likelihood estimates for the parameters under the null hypothesis in addition to the
general maximum likelihood estimates. The LAP and unrestricted difference also yield similar test
results and these test statistics are functions of the observed data n and thereby the general maximum
likelihood estimates only, and are thus not influenced by the maximum likelihood estimates under the
null.

When considering small sample sizes, one or more of the cells in Table 1 have often zero counts
which leads to non-computable test statistics for the LAP and difference tests. In these cases, we set
the test statistics to 0 if the numerator is 0, implying that the null hypothesis will never be rejected for
such tables. If only the denominator is 0, the test statistic is disregarded. For N = 10 there are 18
out of 3003 possible tables for which this will happen, while if N = 15 it will happen for 28 out of
15504 tables, for N = 20 for 38 of 53130 tables and for N = 25 for 48 of 142506 outcomes. For the
likelihood ratio test statistic zero counts does not represent a problem, it can always be calculated. If
any of the counts are 0, the summation term in (7) is also 0.

While the methodology in the present paper does not rely on asymptotic results, it is still approxima-
tive in the sense that it relies on simulations. Another shortcoming is that the test size is not preserved
in general. Both these issues will be addressed in a forthcoming paper, Günther, Bakke, Rue and
Langaas (2009), where enumeration rather than simulation will be applied to the testing method of
the present paper and where it will be modified to yield p-values that preserve the test size. The test
size and power will be calculated exactly.

7 CONCLUSIONS

In this report we look at the problem of testing the null hypothesis given in (3) when the sample
size is small. The large sample tests using asymptotic distributions do not preserve their test size in
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this case and therefore small sample tests are needed. We suggest using parametric bootstrapping to
approximate the distribution and to calculate the p-values. The likelihood ratio test and the restricted
difference test are both functions of the maximum likelihood estimates q under the null hypothesis
which may be difficult to find because of local optima. Especially zero counts causes problems, but
our method that analytically solves the system of equations handles these problems well.

The simulation experiments show, at least based on the present six cases, that the small sample like-
lihood ratio test yields a smaller test size than the large sample likelihood ratio test, while for the
restricted difference test the large sample test yields the smallest test size and is still conservative,
thus for this test there was no improvement.

For testing whether there is a difference in enrichment or depletion of genes belonging to a certain
GO category between two list of genes from a microarray experiment, there are several test statistics
to choose from, and depending on the sample size, one can use either parametric bootstrapping or
the asymptotic χ2

1 distribution to calculate p-values. The choice of test statistic can influence which
GO categories that are found to be significant and because the small sample parametric bootstrap
likelihood ratio and restricted difference tests are more optimistic than the small sample parametric
bootstrap LAP and unrestricted difference tests, the first two will yield more significant GO categories
than the other two. The smaller the sample size is, the more conservative all the tests are which means
they will not reject the null hypothesis even when it is not true., i.e. the tests will not discover gene
classes that are over-represented or depleted on one list compared to the other list. Therefore, para-
metric bootstrapping does not seem to be an optimal solution and a better approach would probably
be to use an exact small sample test that preserves its test size without being conservative, which will
be investigated further.
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