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SUMMARY

The existing asymptotic tests for comparing positive predictive values of two diagnostic tests
do not preserve the test size when the sample is small. As an exact approach we suggest using
enumeration for small sample spaces, i.e. to utilize the exact distribution of the test statistic by
adding probabilities of each outcome. In the problem of comparing positive predictive values,
there are nuisance parameters present which must be handled. We discuss different solutions, e.g.
estimation, maximization, integration and combinations thereof. The methods presented in this
report are general and can be applied to different discrete finite distributions. Further insight into
the mechanisms behind the different approaches are given and the performance of various test
statistics and p-values are compared systematically with respect to test size and power, both in the
setting of positive predictive values and in an example from literature comparing independent bi-
nomial proportions. We find in general that a combination of estimation and maximization yields
the highest test size and power among the valid p-values, and when comparing the positive predic-
tive values, the test statistics involving maximum likelihood estimates under the null hypothesis
perform the best in terms of test size and power.

1 INTRODUCTION

In many hypothesis testing problems, tests statistics with a known asymptotic distribution are avail-
able. When the sample size is small, however, the asymptotic distribution may approximate the exact
distribution poorly and the exact distribution of the test statistics can be challenging or impossible to
derive. For discrete models, one solution is to use enumeration, i.e. to find p-values by adding prob-
abilities under the null hypothesis of all possible outcomes having a more extreme value of the test
statistic than the observed outcome. If there are nuisance parameters in the model, this is however not
straight forward, the unknown parameters must be handled appropriately.

We consider different approaches, in particular estimation, maximization and integration. Our main
focus will be on the problem of comparing positive predictive values from two diagnostic tests where
a multinomial distribution is assumed, but the methods are general and can be applied to other null
hypotheses for other finite discrete distributions.
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We start by defining important properties for p-values and different ways to handle the problem of
nuisance parameters in Section 2. A trinomial situation is used as an example to explain how to
calculate the various p-values. As a stepping stone to our main problem, comparing positive predictive
values, in Section 3 we go through a fictitious example discussed and analyzed by Berger and Boos
(1994) and by Lloyd (2008) that concerns testing independence in a 2 × 2 contingency table. We
suggest alternative test statistics and compare their performance in terms of test size and power to
the test statistics used by Lloyd (2008). In Section 4 we present the problem of comparing positive
predictive values for two diagnostic tests, and evaluate a variety of test statistics and p-values for
this problem. Some computational details are given in Section 5, we discuss further aspects of the
presented problems in Section 6 and summarize the conclusions in Section 7.

2 THEORY

Before applying the methods, the general framework should be set. We present the necessary notation,
definitions and properties of p-values and explain different approaches on how to calculate p-values
by enumeration in the presence of nuisance parameters.

2.1 NULL HYPOTHESIS

In the general outline we assume that the random variables Y1, . . . , Yn are multinomially distributed
with parameters p = (p1, . . . , pn) and N , but other discrete distributions are possible (see e.g. Sec-
tion 3). Let Y denote the vector of the random variables, i.e. Y = (Y1, . . . , Yn), and let Y be the
sample space or reference set of Y .

Our null hypothesis is that a function f of some or all the parameters p1, . . . , pn equals 0, i.e.

H0 : f(p) = 0. (1)

The alternative hypothesis is
H1 : f(p) 6= 0.

Let P be the parameter space for p and P0 the subspace of P for which the null hypothesis (1)
is satisfied, i.e P0 = {p : f(p) = 0}. For illustrative purposes, an example from the trinomial
distribution will be studied throughout this section.

Trinomial example As an illustrative example we will use the trinomial model whereY = (Y1, Y2, Y3)
are multinomially distributed with parameters p = (p1, p2, p3) and N , or alternatively Y = (Y1, Y2,
N − Y1 − Y2), are multinomially distributed with parameters p = (p1, p2, 1 − p1 − p2). The joint
probability function of Y is

Pr(Y1 = y1, Y2 = y2) =
N !

y1!y2!(N − y1 − y2)!
py11 p

y2
2 (1− p1 − p2)N−y1−y2 .

We consider the null hypothesis,

H0 : f(p) = p1 − p2 = 0, (2)
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that is P0 = {(φ, φ, 1 − 2φ) : 0 ≤ φ ≤ 1/2}. So p1 = p2 = φ under the null hypothesis, which can
be considered an unknown nuisance parameter. The probability function of Y simplifies to

Pr(Y1 = y1, Y2 = y2) =
N !

y1!y2!(N − y1 − y2)!
φy1+y2(1− 2φ)N−y1−y2 (3)

under the null hypothesis. 2

2.2 PROPERTIES OF p-VALUES

When testing whether a null hypothesis is true, one usually calculates a p-value and if this p-value is
less than or equal to some chosen significance level α the null hypothesis is rejected.

A p-value may initially be defined as the probability of what has been observed or something more
extreme, given that the null hypothesis is true. A p-value can also be considered a test statistic in
its own right. We let P (Y ) denote our p-value statistic which is a function of the random variables
Y . For continuous models without nuisance parameters and for simple null hypotheses, i.e. when the
parameter space under H0 consists of only one point, the p-values are uniformly distributed under the
null hypothesis and the test size of a test that rejects H0 when P (Y ) ≤ α is exactly equal to α, Bickel
and Doksum (2001). Our sample space is discrete which means that not all p-values can possibly be
obtained. Instead, is is usually demanded that the p-value is valid, i.e. the probability of rejecting the
null hypothesis when it is true is less than or equal to the significance level α,

Pr(P (Y ) ≤ α;p) ≤ α

for all p in P0 and all α, 0 ≤ α ≤ 1, Casella and Berger (2002). The valid p-values yield a valid test
for any chosen significance level, although they are often conservative. If a p-value satisfy

supp∈P0
Pr(P (Y ) ≤ P (y);p) = P (y),

for all y in Y , then Lloyd (2008) call it exact.

In general, p-values are found by means of a test statistic T (Y ) having the property that for all y in Y
and for all p in P0, Pr(P (Y ) ≤ P (y);p) = Pr(T (Y ≥ T (y);p), assuming without loss of generality
that the null hypothesis is rejected for larges values of T (y). We define the tail set of an outcome yobs
to be the set of all y for which T (y) ≥ T (yobs), i.e. the critical region for a significance level given
T (yobs) as a critical value. For an observed outcome yobs, the reference set Y can be partitioned into
the tail set R(yobs) of the observed outcome and the complement of the tail set RC(yobs), so that
Y = R ∪RC where R(yobs) = {y : T (y) ≥ T (yobs)} and RC(yobs) = {y : T (y) < T (yobs)}.
Trinomial example We set N = 3, and then the reference set is Y =
{(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}. One
possible test statistic is

T (Y ) = |Y1/N − Y2/N |. (4)

Table 1 shows the calculated test statistic for all the outcomes in the reference set. For example,
T (0, 2, 1) = 2/3 and R(0, 2, 1) = {(0, 2, 1), (0, 3, 0), (2, 0, 1), (3, 0, 0)}. 2

The test statistic T (Y ) used to define the tail set can be an ordinary test statistic like the likelihood ratio
test statistic, a p-value originating from another test statistic, or even the multinomial probabilities of
the outcomes themselves. If the tail sets are defined by the probabilities of the outcomes, they will
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Outcome y y1/N y2/N T (y)
(0,0,3) 0 0 0
(0,1,2) 0 1/3 1/3
(0,2,1) 0 2/3 2/3
(0,3,0) 0 1 1
(1,0,2) 1/3 0 1/3
(1,1,1) 1/3 1/3 0
(1,2,0) 1/3 2/3 1/3
(2,0,1) 2/3 0 2/3
(2,1,0) 2/3 1/3 1/3
(3,0,0) 1 0 1

TABLE 1: The reference set in the trinomial example with associated test statistic, T (y) given in (4).

depend on p. This is not so if the tail sets are defined by either a p-value or some test statistic that
does not depend on p. A practical detail, when the multinomial probabilities or a p-value are used as
the test statistic, actually the negative of the probabilities and the p-values will be applied since only
the outcomes with probabilities or p-values smaller than or equal to the probability or p-value of the
observed outcome will be in the tail set.

2.3 CALCULATING p-VALUES BY ENUMERATION

Let π(y;p) = Pr(Y = y;p) be the probability of an outcome y. If π(y;p) is known, the p-value for
the observed outcome can be calculated using the following algorithm which is motivated by Fisher’s
exact test for 2× 2 tables, Fisher (1935):

1. Generate all possible outcomes in the reference set Y .

2. Calculate the probability of observing each outcome under the null hypothesis.

3. The p-value of an observed outcome is the sum of the probabilities of all outcomes that are in
the tail set of the observed outcome.

Zelterman, Chan and Mielke (1995) tested mutual independence of all the three factors of a 23 contin-
gency table using a multinomial distribution with eight parameters. Any outcome given N will then
correspond to a specific table where the entries sum to N and the reference set Y will be all possible
tables with grand total N . By conditioning on the set of one-way marginal totals, M , the probabil-
ity π(y|M) under H0 can be derived. It does not depend on nuisance parameters, and therefore the
second step in the algorithm is easily performed once the tables are generated.

With other null hypotheses it might be impossible to get rid of the nuisance parameters and condi-
tioning only reduces the number of possible outcomes or the number of nuisance parameters. In this
case, we must find a way to deal with the (remaining) nuisance parameters to be able to calculate the
probability of each outcome. There are several ways to do this.

ESTIMATION The simplest approach to deal with nuisance parameters is to insert e.g. the maximum
likelihood estimates p̃ underH0 for p. This is called the plug-in p-value by Bayarri and Berger (2000)
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and the estimation (E) p-value by Lloyd (2008). For an observed outcome yobs we insert p̃obs for p
and the p-value is given as

PE(yobs) = Pr(T (Y ) ≥ T (yobs); p̃obs) =
∑

y∈R(yobs)

π(y; p̃obs).

This p-value, however, is not valid as we will see numerically in Section 4.2.

Trinomial example Under H0, given the outcome yobs = (y1,obs, y2,obs, y3,obs) the maximum like-
lihood estimate of φ is φ̃obs = y1,obs+y2,obs

2N . If we insert this estimate in the multinomial probability
function, we obtain the estimation p-value

PE(yobs) =
∑

y∈R(yobs)

π(y; φ̃obs) =
∑

y∈R(yobs)

N !
y1!y2!(N − y1 − y2)!

φ̃y1+y2
obs (1− 2φ̃obs)N−y1−y2 .

The third column of Table 2 shows the estimation p-values for all outcomes in the reference set
when N = 3. To explain how the p-values are calculated, we consider the outcome y = (0, 2, 1).
The maximum likelihood estimate under H0 is φ̃ = 1/3. We then calculate the probability for each
outcome from (3) with φ̃ inserted for φ. The tail set consists of the four outcomes y of Table 1 for
which T (y) ≥ T (yobs), where T (y) is given in (4), and the estimation p-value of yobs is the sum
0.30, of the four probabilities. 2

Outcome y φ̃ PE(y)
(0,0,3) 0 1.00
(0,1,2) 1/6 0.56
(0,2,1) 1/3 0.30
(0,3,0) 1/2 0.25
(1,0,2) 1/6 0.56
(1,1,1) 1/3 1.00
(1,2,0) 1/2 1.00
(2,0,1) 1/3 0.30
(2,1,0) 1/2 1.00
(3,0,0) 1/2 0.25

TABLE 2: P -values for the trinomial example when substituting φ̃ for φ.

CONDITIONING ON A SUFFICIENT STATISTIC Another solution to the problem of nuisance param-
eters is to condition on a sufficient statisticX for p, Casella and Berger (2002), then the probability of
the observed outcome given H0 and the sufficient statistic can be calculated and the p-value is given
by

Psuff(yobs) = Pr(T (y) ≥ T (yobs) | X;p ∈ P0) =
∑

y∈R(yobs)

π(y | X;p ∈ P0).

Trinomial example UnderH0, X = Y1+Y2 is a sufficient statistic for φ. The conditional probability
distribution of (Y1, Y2) given X is

Pr(Y1 = y, Y2 = y | X = x) =
x!

y1!y2!

(
1
2

)x
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and the p-value is then the sum of these probabilities over the outcomes in the tail set,

Psuff(yobs) =
∑

y∈R(yobs)

x!
y1!y2!

(
1
2

)x
.

The p-value for outcome yobs = (0, 2, 1) is found by considering only the outcomes withX = 2. They
are (0,2,1), (1,1,1) and (2,0,1). Looking back at Table 1, we see that T (0, 2, 1) = 2/3, T (1, 1, 1) = 0
and T (2, 0, 1) = 2/3. The p-value for (0, 2, 1) is then the sum of the probabilities Pr(Y = y|X = 2)
for outcome y = (0, 2, 1) and y = (2, 0, 1) which are both 0.25, so the p-value is 0.50. The conditional
probabilities and p-values for all the outcomes are given in Table 3. 2

Outcome y x P (Y = y;X = x) Psuff

(0,0,3) 0 1 1
(0,1,2) 1 0.5 1
(0,2,1) 2 0.25 0.5
(0,3,0) 3 0.125 0.25
(1,0,2) 1 0.5 0.25
(1,1,1) 2 0.5 1
(1,2,0) 3 0.375 1
(2,0,1) 2 0.25 0.5
(2,1,0) 3 0.375 1
(3,0,0) 3 0.125 0.25

TABLE 3: P -values obtained for the trinomial example by conditioning on the sufficient statistic X =
Y1 + Y2.

However, an appropriate sufficient statistic does not always exist. Instead of conditioning on a suffi-
cient statistic, we may condition on an ancillary statistic, Berger and Boos (1994). We will not pursue
this approach here.

FULL MAXIMIZATION Another approach to deal with nuisance parameters is to maximize over the
set of unknown parameters, Casella and Berger (2002). In this approach, called full maximization by
Lloyd (2008), the p-value is calculated as the supremum of the probability of the tail set over the
parameter space of p under H0, i.e. over P0. This p-value is valid and exact (as we will explain later
in this section) and is given as

PM(yobs) = supp∈P0
Pr(T (Y ) ≥ T (yobs);p) = supp∈P0

∑
y∈R(yobs;p)

π(y;p).

Trinomial example For each outcome we calculate the full maximization p-value by maximizing the
sum of multinomial probabilities for the outcomes in the tail set over all values of φ, 0 ≤ φ ≤ 1/2.
Thus, the full maximization p-value for each outcome is the maximum of the sums of multinomial
probabilities,

PM(yobs) = supφ∈[0,0.5]

∑
y∈R(yobs;φ)

N !
y1!y2(N − y1 − y2)!

φy1+y2(1− 2φ)N−y1−y2 .
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In this example, numerically we used a grid for φ of 5001 points, {0, 0.0001, 0.0002, . . . , 0.5000} in
the maximization. For the outcome yobs = (0, 2, 1), in each grid point, the multinomial probabilities
are calculated for the outcomes in the tail set defined by T (y) ≥ T (yobs) where T (y) is given in (4),
i.e. for the outcomes (0,2,1), (0,3,0), (2,0,1), (3,0,0), and added. Then the maximum of those sums is
the full maximization p-value. For this outcome, the maximum p-value is obtained when φ = 0.4, then
π((0, 2, 1);φ = 0.4) = π((2, 0, 1);φ = 0.4) = 0.096 and π((0, 3, 0);φ = 0.4) = π((3, 0, 0);φ =
0.4) = 0.064. Adding these probabilities yields the p-value 0.32. The p-values for the other outcomes
are given in the third column of Table 4 with the value of φ for which the maximum p-value is obtained
in the second column. 2

PARTIAL MAXIMIZATION Not all values of p are equally likely under the null hypothesis, therefore
it might not be desirable to maximize over all possible values of p. The set over which the supremum
is found can be restricted to a confidence set for p as suggested by Berger and Boos (1994). This
partial maximization p-value is valid when a penalty ζ is added, Berger and Boos (1994), but it is not
exact by the definition of Lloyd (2008). It is given by

PPM(yobs) = supp∈CζPr(T (Y ) ≥ T (yobs); f(p) = 0) + ζ = supp∈Cζ

∑
y∈R(yobs;p)

π(y;p) + ζ,

where Cζ is the 1− ζ confidence region for p under the null hypothesis.

Trinomial example Under H0, Y1 + Y2 is binomially distributed with parameters 2φ and N . We
will use the Clopper–Pearson confidence interval which is an exact confidence interval for binomial
proportions, Agresti (2002). The 1 − ζ confidence interval for φ is given by its lower limit CL and
upper limit CU,

CL =
1
2

(
1 +

N − y1 − y2 + 1
(y1 + y2)F2(y1+y2),2(N−y1−y2+1)(1− ζ/2)

)−1

CU =
1
2

(
1 +

N − y1 − y2

(y1 + y2)F2(y1+y2+1),2(N−y1−y2)(ζ/2)

)−1

where Fν1,ν2(c) denotes the 1− c quantile from the F distribution with ν1 and ν2 degrees of freedom.
When y1 +y2 = 0, the lower limit is 0 and when y1 +y2 = N = 3, the upper limit is 0.50. We choose
ζ = 0.001 as suggested by Berger and Boos (1994) and calculate the p-values from the formula

PPM(yobs) = supφ∈[CL,CU]

∑
y∈R(yobs;φ)

N !
y1!y2(N − y1 − y2)!

φy1+y2(1− 2φ)N−y1−y2 + ζ.

The p-values are calculated the same way as the full maximization p-values except that the maximiza-
tion is now done over the possible values of φ in the confidence interval. The tail set is unchanged.
Table 4, column 4 and 5, show the partial maximization p-values and the value of φ for which the
maximum p-value is found. We see that the partial maximization p-values are the same as the full
maximization p-values, except for the outcomes (0,1,2) and (1,0,2) where the p-values are smaller
because the value of p that maximizes the full maximization p-value is outside the confidence interval
for φ used by the partial maximization p-value.2
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ESTIMATION AND MAXIMIZATION Lloyd (2008) proposed the estimation followed by maximiza-
tion (E+M) p-value, where the negative of the estimation p-values serve as the values of a new test
statistic, followed by a full maximization step. In this way valid and exact p-values are obtained.

Since the test statistic is the estimation (E) p-values, performing the estimation step results in a differ-
ent ordering of the outcomes before performing the maximization step than the ordering defined by
the original test statistic. Thus the tail sets are changed and the E+M p-values may differ from the full
maximization (M) p-values. The estimation step can be done more than once with or without a final
maximization step, each time resulting in a different ordering of the outcomes. If two estimation steps
are performed before a maximization step, the p-values are called E2M p-values, again yielding valid
p-values.

Another way to look at the difference and similarity between the E and M p-values, is that for the E
p-values, first the probability of the observed outcome is maximized through the maximum likelihood
estimate of p under H0, and then the probability of the tail set is calculated. For the M p-values, the
tail sets are defined first, and then the probability of the tail set is maximized over p in P0. That is,

PE(yobs) =
∑

y∈R(yobs)

supp∈P0
π(y;p),

and
PM(yobs) = supp∈P0

∑
y∈R(yobs)

π(y;p).

Performing more than one maximization step in a sequence has no effect on the p-values. The reason
is that the tail sets remain the same. Assume some chosen test statistic defines the tail set to be used
in the first maximization step. The outcome having the largest value of this test statistic will have
the smallest M p-value, the outcome having the second largest value of the test statistic will have the
second smallest M p-value and so on. In the second maximization step, the negative of the M p-values
are the values of the test statistic that defines the new tail set. The outcome having the largest negative
M p-value is the outcome that had the largest value of the first test statistic, the outcome having the
second largest negative M p-value is the outcome that had the second largest value of the first test
statistic and so on. Since the p-value is the maximum sum of probabilities of the outcomes in the tail
set, maximized over p, and the tail set is the same, the p-values are unchanged.

Regardless of the choice of test statistic the M p-values are always valid. Assume that the chosen
significance level is α. We would then reject the null hypothesis for all outcomes for which the test
statistic T (Y ) is greater than or equal to some critical value k, where k is chosen so that all values
of the test statistic that are greater than or equal to k yield a p-value less than or equal to α. The
probability that a random outcome yobs is rejected under the null hypothesis is the probability that
the test statistic T (yobs) is greater than or equal to the critical value and this probability is less than
or equal to the p-value for an outcome y for which T (y) = k, which is less than or equal α. Also
exactness of the M p-value follows by construction.

The M p-values are often conservative, see Bayarri and Berger (2000), whereas the E p-values are
not valid and thus generally smaller than or equal to the M p-values. It is desired when comparing
different p-values to obtain p-values as small as possible while still valid.

Trinomial example We first find the E p-values for all the outcomes where each p-value is calculated
by inserting the maximum likelihood estimate p̃ for p for that particular outcome as described pre-
viously and given in Table 2. The E p-values are used to define the tail set of the observed outcome
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which is the set of outcomes for which PE(y) ≤ PE(yobs). For the observed outcome we then calcu-
late the E+M p-value as the sum of multinomial probabilities of the outcomes in the tail set maximized
over φ. Let RE(yobs) be the tail set of the observed outcome defined by the E p-values smaller than or
equal to the E p-value of the observed outcome. The E+M p-value is then given by

PE+M(y) = supφ∈[0,0.5]

∑
y∈RE(y)

N !
y1!y2!(N − y1 − y2)!

φy1+y2(1− 2φ)N−y1−y2 .

The E p-value of outcome (0,2,1) is 0.30. The tail set RE(0, 2, 1) = {(0, 2, 1), (0, 3, 0), (2, 0, 1),
(3, 0, 0)}. This is the same tail set as when we used the test statistic T (Y ) = |Y1/N − Y2/N | and
therefore the maximization over φ here yields the same maximum p-value as the full maximization
approach. The E+M p-values for all the outcomes are given in Table 4, column 7, with the value of φ
for which the maximum p-value is found, φM , in column 6. The p-values are maximized with respect
to φ over the same grid as in the full maximization approach. We see that for all the outcomes, except
(0,1,2) and (1,0,2), the E+M p-values are the same as the full maximization p-values. For those two
outcomes, the p-values are reduced from 1 to 0.5982 if we use the E+M approach, and they are the
same outcomes for which the p-values were reduced when performing partial maximization instead
of full maximization. 2

Outcome y φM PM φPM PPM φE+M PE+M

(0,0,3) 0.4535 1 0.4591 1 0.4535 1
(0,1,2) 0.50 1 0.4935 0.982 0.2265 0.5982
(0,2,1) 0.40 0.32 0.40 0.32 0.40 0.32
(0,3,0) 0.50 0.25 0.50 0.25 0.50 0.25
(1,0,2) 0.50 1 0.4935 0.982 0.50 0.5982
(1,1,1) 0.4535 1 0.4726 1 0.4535 1
(1,2,0) 0.50 1 0.50 1 0.4535 1
(2,0,1) 0.40 0.32 0.40 0.32 0.40 0.32
(2,1,0) 0.50 1 0.50 1 0.4535 1
(3,0,0) 0.50 0.25 0.50 0.25 0.50 0.25

TABLE 4: P -values obtained for the trinomial example by full maximization, partial maximization
and estimation plus maximization with values of φ for which the p-values are maximized.

INTEGRATION In the partial maximization approach, the points in P0, the parameter space for p
under H0, are given weights 0 or 1. If p lie within their confidence interval, they are given weight
1 and 0 otherwise. Instead of weighing the probabilities with 0 and 1, we want to apply Bayesian
methodology and weigh the points in P0 according to a prior distribution π(p). We integrate out p in
order to be able to calculate π(y | H0). Bayarri and Berger (2000) review several Bayesian p-values as
well as suggesting two new p-values. First there is the prior predictive p-value where a prior π(p | H0)
is chosen, so that the probability of an outcome under the null hypothesis is

π(y | H0) =
∫
P0

π(y | p)π(p | H0)dp.

The prior predictive (PP) p-value of an observed outcome yobs is the sum of the probabilities
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π(y | H0) that are less than or equal to the probability π(yobs | H0). As we will see numerically in
Section 4.2, these PP p-values are not valid.

Trinomial example We choose the uniform Dirichlet prior as the joint distribution of p1 and p2, thus
π(p) = 2. Let z = p1 − p2. Under H0, z = 0, so that π(p | H0) = π(p | z = 0). The joint density of
the transformed variables is π(p1, z) = 2. Then π(p | z = 0) = π(p1, z = 0)/π(z = 0). The density
of z can be found by integrating out p1 from π(p1, z), giving π(z = 0) = 1, after having identified
the triangular region to which (p1, z) belongs. The probability of the trinomial outcome given H0 is

π(y | H0) =
∫ 1/2

0

N !
y1!y2!

py1+y2
1 (1− 2p1)N−y1−y22dp1 =

(y1 + y2)!
y1!y2!(N + 1)

(
1
2

)y1+y2

.

The p-value of the observed outcome is the sum of the probabilities π(y | H0) that are less than or
equal to the probability of the observed outcome. Table 5 shows the calculated probabilities as well as
the p-values for the possible outcomes in the trinomial example. 2

Outcome y π(p | H0) PPP

(0,0,3) 0.25 1
(0,1,2) 0.125 0.625
(0,2,1) 0.0625 0.1875
(0,3,0) 0.03125 0.0625
(1,0,2) 0.125 0.625
(1,1,1) 0.125 0.625
(1,2,0) 0.09375 0.375
(2,0,1) 0.0625 0.1875
(2,1,0) 0.09375 0.375
(3,0,0) 0.03125 0.0625

TABLE 5: P -values for the trinomial example using the Bayesian approach and a uniform Dirichlet
prior on p.

One challenge with the prior predictive approach is that the resulting p-values depend on the prior.
To make them less dependent on the choice of prior and more dependent on the data, one can use
the posterior predictive p-value, Bayarri and Berger (2000), where the probability of the observed
outcome is given in terms of the posterior probability,

π(y | H0) =
∫
P0

π(y | p)π(p | yobs)dp.

To calculate this probability, improper priors can be used, and the probability will be less influenced by
the choice of prior. However, the data are used twice since it first is needed to determine the posterior
distribution and then in computing the tail set.

As improvements to the posterior predictive p-value, Bayarri and Berger (2000) also suggested the
partial posterior predictive p-value and the conditional predictive p-value. In this work, we will only
consider the prior predictive p-values.

TEST SIZE AND POWER. The test size and test power are common evaluation measures on the
performance of a statistical hypothesis test. The test size is the probability of making a type I error,
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i.e. to reject the null hypothesis, when it is true. The power is the probability of rejecting the null
hypothesis when it is not true, which is one minus the probability of making a type II error, i.e. to not
reject the null hypothesis when it is not true. Given the chosen significance level α, the test size for a
test for which we reject the null hypothesis when the p-value P (y) is less than α is

Pr(P (Y ) ≤ α;p) =
∑

y;P (y)≤α

π(y;p) (5)

for a parameter p in P0.

The test power is
Pr(P (y) ≤ α;p) =

∑
y;P (y)≤α

π(y;p) (6)

for a parameter p in P .

3 INDEPENDENT BINOMIAL PROPORTIONS

Before focusing on our main problem of comparing positive predictive values, we go through a fic-
titious example analyzed in Berger and Boos (1994) and Lloyd (2008), and present alternative test
statistics and a more elaborate analysis of the p-values.

3.1 PRESENTATION OF THE PROBLEM

There are n = 330 subjects in a clinical trial of which n1 = 47 subjects receive treatment and
n2 = 283 subjects receive placebo. Let X1 be the number of subjects that survive among those
who received treatment and let X2 be the number of subjects that survive among those who received
placebo. If p1 is the survival probability for the treatment group and p2 is the survival probability
for the placebo group, we assume that X1 is binomially distributed with parameters n1 and p1 and
X2 is binomially distributed with parameters n2 and p2. Let X = (X1, X2) and p = (p1, p2). The
two-sided null hypothesis is that the survival probabilities in the two groups are equal, i.e.

H0 : f(p) = p1 − p2 = 0 (7)

versus the alternative that they are not equal,

H1 : f(p) = p1 − p2 6= 0.

Lloyd (2008) also considered the one-sided null hypothesis that the survival probability of the treat-
ment group is no better than the survival probability of the placebo group, i.e.

H0 : f(p) = p1 − p2 ≤ 0 (8)

versus the alternative that the survival probability of the treatment group is better than the probability
of the placebo group,

H1 : f(p) = p1 − p2 > 0.

11



Assuming independence between the treatment and placebo group, the joint distribution of X1 and
X2 is the product of the two binomial distributions,

Pr(X1 = x1, X2 = x2) =
(
n1

x1

)
px1
1 (1− p1)n1−x1 ·

(
n2

x2

)
px2
2 (1− p2)n2−x2

In this situation, the reference set is all possible outcomes (x1, x2) given n1 = 47 and n2 = 283 which
is a set of 13 682 outcomes. When calculating p-values various test statistics can be used to define the
tail set. One of the test statistics used by Berger and Boos (1994) and Lloyd (2008) is

TT(x1, x2) =
x1/n1 − x2/n2√

(x1 + x2)(n− x1 − x2)/(nn1n2)
.

When testing the null hypothesis (7) the tail set of an observed outcome (x1,obs, x2,obs) is
R(x1,obs, x2,obs) = {(x1, x2) : |TT(x1, x2)| ≥ |TT(x1,obs, x2,obs)|}, and when testing the null hy-
pothesis (8) the tail set is R(x1,obs, x2,obs) = {(x1, x2) : TT(x1, x2) ≥ TT(x1,obs, x2,obs)}.
Lloyd (2008) also uses the likelihood ratio test statistic

TLR = 2
2∑
i=1

(
xilog

p̂i
p̃i

+ (ni − xi)log
1− p̂i
1− p̃i

)
where p̂i = xi/ni is the general maximum likelihood estimate for pi, i = 1, 2 and p̃i is the maximum
likelihood estimate for pi, i = 1, 2 under the null hypothesis. If we are testing the two-sided null
hypothesis p̃1 = p̃2 = (x1 + x2)/(2n), and if we are testing the one-sided null hypothesis, p̃1 =
p̃2 = (x1 + x2)/(2n) when x1/n1 ≥ x2/n2 and p̃i = xi/ni, i = 1, 2, when x1/n2 < x2/n2.
These estimates were also used for the E step. For the maximization in the M step, 1001 equally
spaced values of p1 = p2 in [0,1] were used for the two-sided test and 5151 equally spaced points in
a rectangular grid in the triangular region 0 ≤ p1 ≤ 1, p1 ≤ p2 ≤ 1, were used for the one-sided test.

In addition to TT and TLR we propose three additional test statistics. Let π(x;p) denote Pr(X1 =
x1, X2 = x2;p). First, we define a simplified version of the likelihood ratio test statistic,

Tπe(xobs) = π(xobs; p̃obs),

which is simply the probability of the observed outcome xobs = (x1,obs, x2,obs) with the maximum
likelihood estimate of p under H0 for this outcome, p̃obs, inserted for p.

In our second and third additional test statistic, TπE and TπM , we let the probability π(x;p) of an
outcome x play the role of a test statistic. It is of course dependent on the unknown parameters, and
thus not a test statistic in the ordinary sense. It still makes sense to apply an E or M step to it, yielding
the πE p-value

TπE(xobs) = Pr(π(X; p̃obs) ≤ π(xobs; p̃obs); p̃obs) =
∑

x∈R∗(xobs)

π(x; p̃obs)

where R∗(xobs) consists of those x for which π(x; p̃obs) ≤ π(xobs; p̃obs), and the πM p-value

TπM(xobs) = supp∈P0
Pr(π(X;p) ≤ π(xobs;p);p) = supp∈P0

∑
x∈R∗(xobs)

π(x;p),

where R∗(xobs) consists of those x for which π(x;p) ≤ π(xobs;p). Note that the sets R∗(x) for
these two statistics are dependent on the parameter p, as opposed to the tail sets defined by an ordinary
statistic. Although TπE and TπM are constructed in a similar manner as p-values constructed by an E
and an M step, respectively, their use will be as test statistics, rather than p-values.
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3.2 COMPARISON OF TEST STATISTICS

Lloyd (2008) recommends using the E+M p-values in the problem of comparing independent binomial
proportions and we want to compare the test size and power of the TT, TLR, Tπe , TπE and TπM test
statistics for these p-values when testing both the one-sided and two-sided null hypotheses given in
(7) and (8). To calculate the test size, i.e. the probability of rejecting the null hypothesis given that the
null hypothesis is true, we generated 10001 equally spaced values of p1 = p2 in [0, 1] and calculated
the test size for each value p according to (5) by adding the probabilities of the outcomes that had a
p-value less than or equal 0.05, which was the chosen significance level. To assess power, we used
9001 equally spaced points on the line p1 = p2 + 0.1, for which we calculated the power by adding
the probabilities of the outcomes that had p-values less than or equal to 0.05, i.e. using (6).

Table 6 shows the mean test size and power for the five test statistics followed by an E and an M
step. For the two-sided hypothesis, TT, Tπe , TπE and TπM have similar mean test size, of which Tπe

has the greatest. TLR yields a smaller test size than the other test statistics. When testing the one-sided
hypothesis, the test size of Tπe is 0.0434 which is greater than the test size for the other test statistics
which ranges from 0.0382 to 0.0387. We see that the test statistics have similar power, lower for the
two-sided test than for the one-sided test, and for the two-sided test, TLR has the smallest power and
Tπe has the largest power. For the one-sided test, TπE has the lowest power and Tπe has the largest
power. This indicates that for this problem, the Tπe statistic performs best and should be considered
an alternative to TT and TLR.

Table 7 shows the E+M p-values for the observed outcome (x1, x2) = (14, 48) which for TT and TLR
agree with Lloyd (2008). For the two-sided test, the p-value for outcome (14,48), which is used as a
test case by Berger and Boos (1994) and Lloyd (2008), is less than 0.05 for all the test statistics except
TLR so the null hypothesis would be rejected on a 5% significance level for four of the test statistics.
TT yields the smallest p-value. For TLR we reject the one-sided null hypothesis. All test statistics yield
the p-value 0.025 for the one-sided test and thus reject the null hypothesis.

Hypothesis TT TLR Tπe TπE TπM

Two-sided 0.0472 0.0435 0.0479 0.0478 0.0472
One-sided 0.0386 0.0384 0.0434 0.0382 0.0387
Two-sided 0.3629 0.3475 0.3649 0.3644 0.3622
One-sided 0.4421 0.4410 0.4639 0.4388 0.4427

TABLE 6: Mean test size in the two upper rows and mean test power in the two lower rows for the
two-sided and one-sided hypothesis for the E+M p-values using different test statistics.

Hypothesis TT TLR Tπe TπE TπM

Two-sided 0.037 0.057 0.040 0.041 0.040
One-sided 0.025 0.025 0.025 0.025 0.025

TABLE 7: E+M p-values from the two-sided and one-sided tests for outcome (14,48).

Figure 1 shows the E+M p-values for Tπe test plotted against the E+M p-values for TT for p-values
less than or equal to 0.11. The plot shows that Tπe overall yields smaller p-values than TT and as we
want p-values that are as small as possible provided that they are valid, Tπe seems to be preferable
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over TT.
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FIGURE 1: E+M p-values for Tπe plotted against E+M p-values for TT.

To explain what happens in the E and M steps, we look into the results for three particular outcomes,
(16,52), (1,0) and (30,126), which are consecutive decreasing outcomes when ordering by TT. Table
8 shows the value of TT for these outcomes in the third column and the probabilities π(x;p) of the
outcomes inserted the maximum likelihood estimates under the null hypothesis in the second column.
Note how much larger π((1, 0); p̃(1,0)) is than π((16, 52); p̃(16,52)) and π((30, 126); p̃(30,126)). When
performing the E step, this larger probability has a significant effect, as it is included in the sum of
probabilities that yields the p-value for outcome (1,0). The fourth column of Table 8 shows the E
p-values for the three outcomes. The p-value for outcome (1,0) is 0.05970 which is much greater
than the two other p-values and H0 is rejected on a 5% significance level, the other two p-values are
both less than 0.01 and H0 will not be rejected. Thus, the decision of whether to reject H0 differ
for these three outcomes, even though the values of TT are almost the same. The effect of the large
probability of outcome (1,0) also shows in the M p-values in the fifth column in Table 8. We note a
large increase in the M p-value for outcome (30,126) as compared to the E p-value, the reason being
that the M p-value is at least as large as the E p-value by construction, in particular for (1,0), and next,
that the the M p-value is at least as large as the M p-value of (1,0), since (1,0) has a larger test statistic
value. According to the M p-values, we would not reject H0 for any of those outcomes as opposite to
the E p-values where H0 is rejected for outcome (30,126). To avoid the effect of outcome (1,0), we
need a different ordering of the outcomes, in which (1,0) is placed further down on the list where the
outcomes are sorted by decreasing value of a test statistic. This is obtained by treating the E p-value as
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x π(x; p̃) TT(x1, x2) PE PM PE+M

(16,52) 0.00049 2.45928 0.00968 0.02458 0.01029
(1,0) 0.05247 2.45756 0.05970 0.06112 0.07229

(30,126) 0.00028 2.45512 0.00722 0.06112 0.00746

TABLE 8: The test statistic TT(x1, x2) and corresponding E, M and E+M p-values for outcomes
(16,52), (1,0) and (30,126).

a test statistic and then applying the M step. The outcomes that had unusually large p-values after the
E step compared to their neighbours, e.g. as outcome (1,0) had, is then moved down on the list when
sorting the outcomes by decreasing negative E p-values. The sixth column of Table 8 shows these
E+M p-values and we see that outcome (30,126) now has a p-value of 0.00746 and is thus unaffected
by the outcome (1,0). This example indicates why it is beneficial to perform an E step prior to the M
step. The M step is necessary to obtain valid p-values and therefore the E step alone is not sufficient.

The M p-value for the outcome (14,48) is 0.06114, see Lloyd (2008), which is significantly greater
than the E+M p-value of Table 7. Our investigation showed that the value 0.06114 also arises from
outcome (1,0), because the value of TT is less for outcome (14,48) than for outcome (1,0) which is
thus in the tail set of (14,48). The E+M p-value is smaller (0.025) because the E step changed the
ordering of the outcomes and (1,0) was placed behind (14,48) so that after performing the E step,
(1,0) is no longer in the tail set of (14,48). It should also be noted that π((14, 48);φ), as a function
of φ = p1 = p2 has a prominent and narrow peak near φ = 0 (but φ > 0), which explains the large
value of π((1, 0); p̃) and thus of PE(1, 0). Partial maximization avoids this peak, explaining that the
PM p-value is reasonable as reported by Berger and Boos (1994), though not as small as the E+M
p-values as reported by Lloyd (2008).

4 COMPARING POSITIVE PREDICTIVE VALUES

We now present the main problem of comparing the positive predictive values of two diagnostic tests.
The performance of various test statistics and p-values are compared in terms of test size and power.

4.1 PRESENTATION OF THE PROBLEM

Suppose that two diagnostic tests are available for a particular disease of interest. We want to compare
the prediction abilities of the two tests, which can be quantified by the positive and negative predictive
values. The positive predictive value is defined as the probability that a subject has the disease given
that the test is positive and the negative predictive value is the probability that a subject does not have
the disease given that the test is negative. Without loss of generality, in this work we will only consider
the positive predictive values, as the tests for the negative predictive values can easily be derived along
the same lines. We want to test whether the positive predictive value of test A is equal to the positive
predictive value of test B against the alternative that they are not equal;

H0 : PPVA = PPVB vs H1 : PPVA 6= PPVB.

In this situation we define six random variables that are given in Table 9. Let Y be the vector of these
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random variables, i.e. Y = (Y1, Y2, Y3, Y4, Y5, Y6). We assume that Y is multinomially distributed
with parameters N and p = (p1, p2, p3, p4, p5, p6). Thus, the probability function of Y is

Pr(Y = y) = N !
6∏
i=1

pyii
yi!
.

Variable Description
Y1 Number of non-diseased subjects with positive test A and B.
Y2 Number of non-diseased subjects with positive test A and negative test B.
Y3 Number of non-diseased subjects with negative test A and positive test B.
Y4 Number of diseased subjects with positive test A and B.
Y5 Number of diseased subjects with positive test A and negative test B.
Y6 Number of diseased subjects with negative test A and positive test B.

TABLE 9: Definition of the random variables Y1, . . . , Y6.

The positive predictive value of test A is

PPVA =
p4 + p5

p1 + p2 + p4 + p5

and the positive predictive value of test B is

PPVB =
p4 + p6

p1 + p3 + p4 + p6
.

The null hypothesis is then

H0 : fPPV(p) =
p4 + p5

p1 + p2 + p4 + p5
− p4 + p6

p1 + p3 + p4 + p6
= 0. (9)

The parameters p are not completely determined by the null hypothesis, we only know that fPPV(p) =
0 and that

∑6
i=1 pi = 1. Thus, from these two constraints, two of the parameters can be expressed

in terms of the four other remaining parameters, but these four parameters will be unknown nuisance
parameters.

In order to test the null hypothesis (9) we will calculate p-values by enumeration as described by the
algorithm in Section 2.3. The first step is to find the reference set.

4.1.1 FINDING THE REFERENCE SET

In the first step in the algorithm for calculating p-values, we enumerate using five nested for-loops
to find all possible outcomes having the value of N , which is the number of observations. It can
be distributed among six non-negative integer random variables having sum N , and the number of
possible outcomes is

(
N+5

5

)
. This is a general result for the number of distinct unordered selections of

N elements from six elements drawn with replacement. Figure 2 shows the number of outcomes on a
log10 scale plotted against N . The number of outcomes grows very quickly when N increases. When
N = 25 there are 142506 possible outcomes and when N = 50, there are nearly 3.5 million possible
outcomes.
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FIGURE 2: Number of possible outcomes on log10 scale as a function of N .

4.1.2 CALCULATING THE PROBABILITY OF THE OBSERVED OUTCOME

In the setting of comparing positive predictive values we will focus on calculating the probability of
an outcome either by substituting maximum likelihood estimates for p, maximize over the parameter
space for p or integrate out p by a Bayesian approach. This results in the estimation (E), maximization
(M) or combinations of these like the estimation and maximization (E+M) p-values, and the Bayesian
prior predictive p-values. As far as we know, there is no sufficient or ancillary statistic for p in this
problem. To calculate the p-values, a test statistic T (Y ) must be chosen. There are several possible
test statistics for this problem, and they will be presented in Section 4.1.3.

ESTIMATION AND MAXIMIZATION If we substitute the maximum likelihood estimates p̃ for p
under H0, the E p-value for an outcome yobs is

PE(yobs) = Pr(T (Y ) ≥ T (yobs); p̃obs) =
∑

y∈R(yobs)

N !
6∏
i=1

p̃yii,obs

yi!
(10)

where the tail set R(y) is defined by the chosen test statistic, T (Y ), and p̃i,obs is the maximum
likelihood estimate under H0 for pi, i = 1, . . . , 6 for the outcome yobs.

By maximizing the probability of the outcome yobs over the parameter space P0 where fPPV(p) = 0,
the M p-value is given by

PM(yobs) = supp∈P0
Pr(T (Y ) ≥ T (yobs);p) = supp∈P0

∑
y∈R(yobs)

N !
6∏
i=1

pyii,obs

yi!
, (11)

whereR(y) is defined by the chosen test statistic. When we calculate the E+M p-value, the expression
is the same as in (11), but the tail set is then defined by the p-values calculated from (10). We will also
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consider the double estimation (E2) p-values, where we first calculate p-values from (10) and then use
these p-values as test statistics to define the tail set when calculating p-values from (10) once more.
Finally we will maximize the E2 p-values by using these as test statistics to define the tail set in (11),
which results in E2M p-values.

INTEGRATION We also consider the Bayesian prior predictive p-values, which requires a different
approach. The starting point is still that the probability of an outcome under the null hypothesis is un-
known because the parameters p are not completely specified. Instead of estimating p or maximizing
the p-values over p, we weigh them according to how likely they are under the null hypothesis.

We start out by conditioning on the parameter p. Let π(y|H0) be the probability of the outcome y
under the null hypothesis (9). Then

π(y|H0) =
∫
P0

π(y|p) · π(p|H0)dp (12)

The first factor of the integrand, the probability of y given p is simply the multinomial distribution,
i.e.,

π(y|p) = N !
6∏
i=1

pyii
yi!
,

and π(p|H0) is the probability density function for p under the null hypothesis.

Since p6 = 1−
∑5

i=1 pi we first reduce the problem to five unknown parameters. Let

z =
p4 + p5

p1 + p2 + p4 + p5
− 1− p1 − p2 − p3 − p5

1− p2 − p5
. (13)

which is fPPV(p) (9) with 1−
∑5

i=1 pi inserted for p6.

Under the null hypothesis z = 0 and from this an expression for p4 can be derived, yielding four
unknown parameters. We change variables from p1, p2, p3, p4, p5 to p1, p2, p3, z, p5. The vector of the
new parameters is denoted p∗ in the following. Then π(p∗|z = 0) ∝ π(p∗, z = 0) so therefore we
start by finding π(p∗, z). We use the formula for change of variables, π(p) = π(p∗, z) · |J |, where J
is the Jacobian determinant,

J =

∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
∂z
∂p1

∂z
∂p2

∂z
∂p3

∂z
∂p4

∂z
∂p5

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣
=

∂z

∂p4

The absolute value |J | is p1+p2
(p1+p2+p4+p5)2

. As a prior distribution for p we first apply the Dirichlet
distribution with parameters α1 = α2 = . . . α5 = 1, thus π1(p) is constant. Then

π(p∗|z = 0) ∝ π(p∗, z = 0) = π1(p) · |J |−1 ∝ (p1 + p2 + p4 + p5)2

p1 + p2
,

and

π(p|H0) =
1
k1
· (p1 + p2 + p4 + p5)2

p1 + p2
,
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where k1 is a normalizing constant which can be found from
∫
P0
π(p|H0) = 1.

This leads to the following expression for the probability under H0 of an outcome y,

π(y|H0) =
∫
P0

N !
k1

(
6∏
i=1

pyii
yi!

)
(p1 + p2 + p4 + p5)2

p1 + p2
dp. (14)

For details on how to numerically compute the integral, see Section 5.

The p-value is the sum of these probabilities for outcomes in the tail set of the observed outcome. In
this setting we use the probability of an outcome under H0 as the test statistic and the tail set for an
outcome yobs is defined as the outcomes for which π(y|H0) ≤ π(yobs|H0), so the p-value is given as

PPP,1(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !
k1

(
6∏
i=1

pyii
yi!

)
(p1 + p2 + p4 + p5)2

p1 + p2
dp. (15)

To assess the effect of the choice of prior, we choose the non-uniform prior π2(p) ∝ p1 as an alterna-
tive prior, which leads to

π2(p|H0) =
p1(p1 + p2 + p4 + p5)2

k2(p1 + p2)
,

where k2 is a normalizing constant and the probability under H0 of an outcome y is

π(y|H0) =
∫
P0

N !
k2

(
6∏
i=1

pyii
yi!

)
p1(p1 + p2 + p4 + p5)2

p1 + p2
dp. (16)

We see that the probability of the outcome depends on the chosen prior π2(p) as expected. The p-
value, which is the sum of the probabilities in (16) for the outcomes that are in the tail set of the one
observed, is denoted PPP,2 and given by

PPP,2(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !
k2

(
6∏
i=1

pyii
yi!

)
p1(p1 + p2 + p4 + p5)2

p1 + p2
dp. (17)

An alternative formulation of the null hypothesis (9) is

f∗PPV(p) = p1(p1 + p2 + p3 + p4 + 2p5 − 1)− p2(1− p1 − p2 − p3 − p5) + p3(p4 + p5) = 0. (18)

In this case the absolute value of the Jacobi determinant will be p1 + p3 and if we assume the uniform
Dirichlet prior π1(p),

π(p|H0) =
1
k3
· 1
p1 + p3

,

where k3 is a normalizing constant and the probability under H0 of an outcome is

π(y|H0) =
∫
P0

N !
k3

(
6∏
i=1

pyii
yi!

)
· 1
p1 + p3

dp. (19)
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This probability is clearly not equal to the probability (14) and this is an example of Borel’s paradox.
The p-value is the sum of the probabilities in (19) for the outcomes in the tail set of the observed
outcome. It is denoted PPP,3 and given by

PPP,3(yobs) = Pr(π(Y |H0) ≤ π(yobs|H0))

=
∑

π(y|H0)≤π(yobs|H0)

∫
P0

N !
k3

(
6∏
i=1

pyii
yi!

)
1

p1 + p3
dp. (20)

4.1.3 DEFINING THE TAIL SET

The tail set of an outcome y is defined by a test statistic T (y). To test the null hypothesis in (9) there
are several tests available that are used for large samples, see Günther, Bakke, Lydersen and Langaas
(2008) for a detailed description of four possible test statistics. In this work we will use these test
statistics to define the tail set while ignoring their asymptotic distribution.

The first test statistic is the likelihood ratio test statistic which is the ratio between the maximum
likelihood under the null hypothesis and the general maximum likelihood, of which by convenience
the logarithm is taken and which is multiplied by −2, Casella and Berger (2002). In our multinomial
situation, it is given as

TLR = −2 · log
supp∈P0

L(p|y)
supp∈PL(p|y)

= −2
6∑
i=1

yi · (log p̃i − log p̂i), (21)

where p̃i is the restricted maximum likelihood estimates of pi, i.e. underH0, i = 1, . . . , 6, and p̂i is the
unrestricted general maximum likelihood estimates for the multinomial distribution, i.e., p̂i = ni/N ,
i = 1, . . . , 6, Johnson, Kotz and Balakrishan (1997). The maximum likelihood estimates under H0,
p̃i, i = 1, . . . , 6 cannot be written in closed form, but can be found analytically by solving a system
of equations arising from the method of Lagrange multipliers, which we did using Maple 12. More
details can be found in Günther et al. (2008), Section 3.1.2.

The difference test statistic is given by

Tg(y) =
(g(Y )− g(µ))2

GT (µ)Σ G(µ)
(22)

where g(Y ) is an estimator for the difference fPPV(p) in (9), i.e.

g(Y ) =
Y4 + Y5

Y1 + Y2 + Y4 + Y5
− Y4 + Y6

Y1 + Y3 + Y4 + Y6
,

and µ = E(Y ) = N · p, Σ = Cov(Y ) = N(Diag(p) − pTp), G is a vector containing the first
order partial derivatives of g(Y ) with respect to the components of Y , GT is the transpose of G,
and G(µ) is G with µ inserted for Y . Under the null hypothesis g(µ) = 0. G(µ) and Σ depend on
the unknown parameters p which must be estimated when calculating the test statistic. We can either
insert the unrestricted maximum likelihood estimates for the multinomial distribution p̂ and then we
refer to the test as the unrestricted difference test (uDT) and denote the test statistic TuDT, or insert
restricted maximum likelihood estimates under H0, p̃. Then the test is referred to as the restricted
difference test (rDT) and the test statistic is denoted TrDT .
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Leisenring, Alonzo and Pepe (2000) presented a score test based on generalized estimating equations.
We denote this test the LAP test. The test statistic can be written as

TLAP =
((Y1 + Y2 + Y4 + Y5)(Y4 + Y6)− (Y1 + Y3 + Y4 + Y6)(Y4 + Y5))2

h(Y1, Y2, Y3, Y4, Y5, Y6)
, (23)

where

h(Y1, Y2, Y3, Y4, Y5, Y6)

= Y1(Y2 − Y3 + Y5 − Y6)2
(

2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y2(Y1 + Y3 + Y4 + Y6)2
(

2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y3(Y1 + Y2 + Y4 + Y5)2
(

2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y4(Y2 − Y3 + Y5 − Y6)2
(

1− 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y5(Y1 + Y3 + Y4 + Y6)2
(

1− 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

+ Y6(Y1 + Y2 + Y4 + Y5)2
(

1− 2Y4 + Y5 + Y6

2Y1 + Y2 + Y3 + 2Y4 + Y5 + Y6

)2

.

These four test statistics will be used to define the tail set for the E and M p-values. Other test statistics
are possible and we suggest three, Tπe , TπE and TπM , which are defined in the same way as they were
for the independent binomial proportions (Section 3), but with the multinomial distribution with six
parameters substituted for the joint distribution of two independent binomial distributions, that is,

Tπe(yobs) = π(yobs; p̃obs), (24)

TπE(yobs) = Pr(π(Y ; p̃obs) ≤ π(yobs; p̃obs); p̃obs) (25)

and
TπM(yobs) = sup

p∈P0

Pr(π(Y ;p) ≤ π(yobs;p);p). (26)

Finally, we also consider the Bayesian prior predictive p-values, that in addition to being p-values in
their own right, can be used as test statistics to define the critical region for the E and M p-values, and
we denote them TPP where

TPP(yobs) =
∑

π(y|H0)≤π(yobs|H0)

∫
P0

π(y | p) · π(p | H0)dp. (27)

4.2 RESULTS

In the PPV setting, we have studied the performance of the different types of p-values with respect to
test statistics and the parameters in the multinomial distribution. The performance will be evaluated
in terms of test size and test power, which are calculated as given by (5) and (6). We choose the
significance level α = 0.05.
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4.2.1 EVALUATION OF TEST SIZE

The test statistics considered were the LAP, likelihood ratio, unrestricted difference and restricted
difference test statistics, TLAP, TLR, TuDT and TrDT. In addition we used the πe-probabilities and the
πE, πM and Bayesian p-values as test statistics, i.e. Tπe , TπE , TπM and TPP. For each of these test
statistics and for the chosen values of N we calculated the E, M, E+M, E2 and E2M p-values. We also
considered the performance of the Bayesian p-values as p-values in itself.

The performance of the test statistics can depend highly on the parameters p in the multinomial
distribution. Both the overall mean performance as well as the performance for specific values are
evaluated. For the mean performance a set of 10385 values of p in P0 is used, which are obtained
by using a four dimensional grid for the four free parameters where each side in the grid is divided
into 30 subintervals, and the 10385 values of p in the grid that belong to P0 are then the cases we
consider. For this set of cases we calculate the mean test size, i.e. we calculate the test size from (5)
for each case and then find the average for the 10385 cases. In addition, six specific cases of p in P0

are evaluated, see Table 10. These are the same cases as in Günther, Bakke and Langaas (2009) where
the reasoning for choosing these values can be found.

Case p1 p2 p3 p4 p5 p6

1 0.068 0.135 0.135 0.527 0.068 0.068
2 0.043 0.130 0.130 0.348 0.174 0.174
3 0.267 0.267 0.267 0.067 0.067 0.067
4 0.300 0.267 0.267 0.033 0.067 0.067
5 0.400 0.200 0.200 0.100 0.050 0.050
6 0.450 0.200 0.200 0.050 0.050 0.050

TABLE 10: Specification of multinomial parameters under H0.

The size of the multinomial sample determines how many possible outcomes there are and is an
interesting factor to consider. We want to investigate whether the performance of the test statistics
depends on sample size, in particular for small sample sizes, so we use N = 10, 15, 20, 25.

When maximizing the p-values over p in P0 we used a four-dimensional grid since there are four
free parameters, with 50 points on each side. In addition, the maximum likelihood estimates for all
possible outcomes given N were included in the grid. The Bayesian p-values were calculated on the
grid with 50 points in each side, for further details see Section 5.

Table 11 shows the mean test size for all the test statistics, values of N and type of p-values investi-
gated. We first compare the performance of the different types of p-values, E, M, E+M, E2 and E2M.

The M p-values yield the smallest test size for all values of N for all the test statistics except for the
likelihood ratio test when N = 20, there the E2M p-values yields the smallest test size. In general the
E and E2 p-values result in larger test sizes than the E+M and E2M p-values which we would expect
since the E and E2 p-values are not valid, whereas the E+M and E2M p-values are. The exception is
TuDT, when N = 10, the E p-values yield smaller test size than the E+M and E2M p-values, and when
N = 15, the E p-values yield smaller test size than the E2M p-values. The E2 p-values yield larger
test sizes than the E p-values, except for Tπe .

Next we compare the performance of the different test statistics. First we consider the test statistics
that originated from large samples where their asymptotic distributions were utilized, i.e. the LAP,
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N p-value LRT LAP uDT rDT πM πE πe PP1 PP3

10 M 0.0164 0.0092 0.0019 0.0130 0.0177 0.0088 0.0145 0.0104 0.0190
10 E 0.0381 0.0282 0.0179 0.0352 0.0388 0.0359 0.0643 0.0330 0.0366
10 E+M 0.0285 0.0198 0.0181 0.0285 0.0286 0.0242 0.0207 0.0257 0.0297
10 E2 0.0456 0.0420 0.0395 0.0439 0.0435 0.0441 0.0549 0.0441 0.0435
10 E2M 0.0273 0.0247 0.0220 0.0268 0.0279 0.0213 0.0260 0.0297 0.0299
15 M 0.0256 0.0122 0.0006 0.0242 0.0227 0.0085 0.0138 0.0061 0.0150
15 E 0.0451 0.0395 0.0297 0.0447 0.0438 0.0376 0.0650 0.0395 0.0428
15 E+M 0.0354 0.0243 0.0234 0.0354 0.0364 0.0317 0.0274 0.0339 0.0360
15 E2 0.0470 0.0466 0.0462 0.0470 0.0479 0.0453 0.0538 0.0472 0.0480
15 E2M 0.0332 0.0303 0.0302 0.0350 0.0355 0.0305 0.0311 0.0374 0.0370
20 M 0.0333 0.0140 0.0002 0.0277 0.0239 0.0091 0.0130 0.0024 0.0088
20 E 0.0469 0.0430 0.0365 0.0475 0.0468 0.0394 0.0640 0.0433 0.0458
20 E+M 0.0395 0.0308 0.0283 0.0386 0.0392 0.0337 0.0317 0.0369 0.0378
20 E2 0.0488 0.0477 0.0492 0.0482 0.0490 0.0465 0.0544 0.0491 0.0491
20 E2M 0.0319 0.0331 0.0329 0.0339 0.0365 0.0341 0.0324 0.0381 0.0388
25 M 0.0335 0.0124 0.0001 0.0136 0.0214 0.0089 0.0131 0.0009 0.0032
25 E 0.0483 0.0449 0.0403 0.0486 0.0479 0.0405 0.0636 0.0449 0.0469
25 E+M 0.0385 0.0324 0.0313 0.0403 0.0403 0.0314 0.0343 0.0402 0.0398
25 E2 0.0492 0.0479 0.0496 0.0490 0.0497 0.0482 0.0540 0.0494 0.0494
25 E2M 0.0359 0.0353 0.0343 0.0360 0.0362 0.0374 0.0349 0.0381 0.0379

TABLE 11: Mean test size for the 10385 values of p in P0, for all the test statistics and M, E, E+M,
E2 and E2M p-values when the chosen significance level is α = 0.05. The top row denotes the test
statistics, LRT is given in (21), LAP in (23), uDT and rDT in (22) with unrestricted and restricted
maximum likelihood estimates inserted for p respectively, πM in (26), πE in (25), πe in (24), PP1 in
(15) and PP3 in (20). N is the sample size.
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likelihood ratio, unrestricted difference and restricted difference test statistics. In general, for all types
of p-values, TLR and TrDT have the largest test size, TuDT and TLAP have the smallest test size and TuDT
has mostly smaller test size than TLAP. TLR has the largest test size for the M p-values. WhenN = 20,
TuDT has the largest test size for the E2 p-values, a result for which we have found no apparent reason.

If we look into the performance of Tπe , TπE and TπM we see that Tπe has the largest test size compared
to all the other test statistics for the E and E2 p-values for allN . TπM has the largest test size for the M,
E+M and E2M p-values for N = 10, for the E+M and E2M p-values when N = 15 and for the E2M
p-values when N = 20, whereas TπE has the largest test size for the E2M p-values when N = 25.
We note that when N increases the likelihood ratio or restricted difference test performs better than
the πM statistic for the M, E+M and E2M p-values, therefore the πM test statistic is probably a better
choice only when N is small.

What is worth noting, is that for the test statistics that are most conservative with respect to test size
for the M p-values, the gain is greater when performing one or more E step(s) before the M step
compared to the test statistics for which the test size for the M p-values is less conservative. This is
particularly evident for TuDT, TLAP and TπE compared to TLR. The test size for TLR increases less than
the test size for the other three test statistics when comparing the M and E+M p-values. For TLR the
test size is also reduced if two E steps instead of one are applied before the M step, whereas for TLAP
and TuDT the test size increases when two E steps are applied before the M step.

The mean test size increases when N increases. Comparing the test sizes for N = 10 to the test sizes
for N = 25 reveals an increase for all test statistics and type of p-values except for some of the M
p-values which have test size that is approximately 0. As an illustration, the mean test size for the M
p-value for the likelihood ratio test statistic is 0.0164 when N = 10 and 0.0335 when N = 25.

In addition to the test statistics discussed so far, the Bayesian prior predictive p-values PPP,1 and
PPP,3, originated from using the same prior π1(p), but different formulations of the null hypothesis,
were used as test statistics to compute E, M, E+M, E2 and E2M p-values. When N = 10, the PP3

test statistic yields larger test size than all the other test statistics for the M, E+M and E2M p-values.
Otherwise the test size of these two test statistics lies between the test size of the other test statistics,
not following a clear pattern, except that the PP3 yields larger test size than the PP1 in general.

We also evaluated the performance of all the test statistics, values of N and types of p-values for the
six multinomial cases of Table 10. Table 12 shows the test size for TLR for N = 10 and N = 25.
We see that the E and E2 p-values yield a test size greater than 0.05 in case 1–5 for N = 25 and
thus proves that these p-values are not valid. We also see that the test size is greater when N = 25
compared to N = 10. The results for the other test statistics and values of N are omitted in this report
since the findings in respect to test statistics and p-values in the six specific multinomial cases were
similar to the overall findings, however the test size for all test statistics was clearly dependent of the
chosen multinomial cases, i.e. the parameter p in the multinomial distribution. In general, which can
also be seen in Table 12, case 1 and 2 have larger test size than case 3–6. This trend was consistent
through the different test statistics, types of p-values and N and indicates that when comparing test
sizes the multinomial case chosen will have a large influence the test size, but it will not change the
conclusions with respect to which test statistic or which p-value results in the largest or smallest test
size.

Figure 3 shows histograms for the test size in the 10385 cases under H0 for the M, E, E+M, E2

and E2M p-values for each of the test statistics TLAP, TLR, TuDT, TrDT, TπM , TπE , Tπe and TPP,1 for
N = 10. We see that for TLR, TrDT, TπE , TπM ,and TPP,1 the distribution of the test size for the E
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N p-value case 1 case 2 case 3 case 4 case 5 case 6
10 M 0.0199 0.0193 0.0097 0.0071 0.0061 0.0035
10 E 0.0412 0.0426 0.0281 0.0218 0.0197 0.0122
10 EM 0.0281 0.0366 0.0242 0.0193 0.0170 0.0111
10 E2 0.0475 0.0500 0.0379 0.0302 0.0333 0.0220
10 E2M 0.0322 0.0294 0.0200 0.0157 0.0166 0.0101
25 M 0.0431 0.0428 0.0386 0.0391 0.0313 0.0287
25 E 0.0528 0.0529 0.0573 0.0563 0.0495 0.0441
25 EM 0.0431 0.0435 0.0458 0.0448 0.0389 0.0339
25 E2 0.0510 0.0514 0.0573 0.0569 0.0523 0.0469
25 E2M 0.0401 0.0387 0.0415 0.0404 0.0367 0.0322

TABLE 12: Test size for the likelihood ratio test statistic for the six multinomical cases.

p-values is skewed towards the right compared to the distribution for the M p-values, and we note
that the test size is sometimes larger than 0.05, showing that the E p-values are not valid. The E+M
p-values preserve the skewed distribution while shifting it to the left so that no test size is greater than
0.05. For the LAP and uDT test statistics, we note that the distribution of test size for the E p-values
is not skewed in the same way, but the E2 p-values are, so apparently it is necessary to do two E steps
before maximization for the LAP and uDT statistics.

Figure 3 illustrates what happens under the E and M steps. To obtain an even better understand-
ing of the effect of the E and M steps, we consider two possible outcomes when N = 10, y1 =
(1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0). Table 13 shows the p-values for these outcomes using the
likelihood ratio and LAP test statistics.

Outcome Test statistic M E E+M E2 E2M
y1 TLRT = 4.159 0.1025 0.0940 0.1108 0.0770 0.1062
y2 TLRT = 4.077 0.1025 0.0349 0.0450 0.0279 0.0408
y1 TLAP = 3.932 0.1048 0.0805 0.1056 0.0768 0.1064
y2 TLAP = 2.492 0.2297 0.0978 0.1329 0.0654 0.0855

TABLE 13: P -values for the likelihood ratio and LAP test statistics for the outcomes y1 =
(1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0).

Let us first consider the p-values for the likelihood ratio test statistic. We note that for y2 with a 5%
significance level, we would reject the null hypothesis based on the E p-value and not reject it based
on the M p-value. Since the likelihood ratio test statistic is greater for y1 than for y2, the M p-value
for y2 will necessarily be greater than for y1, which will be greater than the E p-value for y1. Since
the E p-value is less for y2 than for y1, y1 will not be in the tail set for y2 when performing the M step
after the E step and the E+M p-value results in rejection of the null hypothesis on a 5% significance
level for y2. Since the E and E2 steps alone do not result in valid p-values, we should perform an
M step afterwards. But as we see, the E step(s) are means to avoid certain outcomes having a large
p-value because of other outcomes having greater test statistics and artifically large E and M p-values
compared to other outcomes with similar magnitude of the test statistics.
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FIGURE 3: Distribution of test size for the various test statistics and p-values, N = 10, the x-axis is
cut at 0.08 and the y-axis at 3000.
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For the LAP test statistic, we do not see the same effect, even though the p-value with the smallest
test statistic, y2, has an M p-value greater than the M p-value for y1. Here the E p-value for y2 is also
greater than the one for y1, and thus this ordering is preserved when performing an M step after the E
step. The E2 p-value however, is smaller for y2 than y1, and performing the M step afterwards does
not change this.

Here y1 is an example of an outcome for which the decision of rejecting the null hypothesis does not
only depend on the type of p-value, but also of the chosen test statistic. Using the likelihood ratio test
statistic, we reject the null hypothesis on a 5% confidence level for all of the p-values E, E+M, E2 and
E2M. If we use the LAP test statistic instead, we do not reject it for any of the p-values.

Table 14 shows the mean test size for the Bayesian prior predictive p-values for N = 10, 15, 20, 25
using a grid with 50 points in each direction for both formulations ofH0, i.e. fPPV(p) and f∗PPV(p) and
both priors for p. We see that the test size depends highly on the choice of prior and formulation of
H0. The test size is smallest using the uniform Dirichlet prior and f∗PPV(p) = 0 as H0, it increases to
around 0.055 with fPPV(p) = 0 asH0 and if we choose the non-uniform Dirichlet prior π2(p), the test
size becomes very high. Clearly, the non-uniform prior is not a good choice and it also indicates that
the choice of prior has a larger effect than how we choose to formulate the null hypothesis. Comparing
these results to the results when using the prior predictive p-values as test statistics to define the tail
sets for the M, E, E+M and E2M p-values in Table 11 shows that the M step reduces the test size
in all cases for all values of N and for both formulations of H0 as expected. The test size for the
E2 p-values is higher than for the Bayesian p-values in many of the cases and in some cases, e.g.
case 5 for N = 15, 20, 25 for H0 : fPPV(p) = 0 and for N = 20, 25 for H0 : f∗PPV(p) = 0, the test
size increases for all the p-values except the M p-values. Table 14 also shows that the Bayesian prior
predictive p-values are not valid since the test size is larger than the significance level.

N PP1 PP2 PP3

10 0.0561 0.1272 0.0489
15 0.0557 0.1465 0.0491
20 0.0556 0.1533 0.0494
25 0.0552 0.1556 0.0494

TABLE 14: Test size for the Bayesian positive predictive p-values using different priors, formulation
of H0 and values of N , PP1 is given in (15), PP2 is given in (17) and PP3 is given in (20).

The prior predictive p-values for the two outcomes y1 = (1, 3, 0, 6, 0, 0) and y2 = (1, 0, 1, 3, 5, 0)
are given in Table 15. We see that the three Bayesian p-values are quite different for both outcomes.
For y2 we reject the null hypothesis, whereas for y1 we do not reject the null hypothesis. The two
p-values both found from the model with uniform Dirichlet prior are similar for y2, but for y1 it is
the two p-values that are based on the same formulation of H0 that are similar. The null hypothesis is
rejected for y2, but not for y1 for any of the p-values.

4.2.2 EVALUATION OF TEST POWER

We would like to compare the test power of TLR, TLAP, TuDT, TrDT and TπM . Since the results of the
test size comparisons showed that the M p-values have the smallest test sizes and since the E and E2

p-values are not valid, we consider only the E+M and E2M p-values when comparing test power. We
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Outcome PP1 PP2 PP3

y1 0.1086 0.1084 0.0506
y2 0.0382 0.0171 0.0323

TABLE 15: Bayesian prior predictive p-values for the outcomes y1 = (1, 3, 0, 6, 0, 0) and y2 =
(1, 0, 1, 3, 5, 0).

expect that the power increases withN and we usedN = 10 andN = 25 to investigate the magnitude
of the increase. The power was calculated the same way as the test size except that the values of p are
chosen so that p does not satisfy the null hypothesis (9).

We wanted to compare the test power in specific multinomial cases and we chose six sets of the
parameters p, these were denoted case 7–12 and are given in Table 16. They were chosen because of
their decreasing distance fromH0 which is measured by the magnitude of fPPV(p). If fPPV(p) is close
to 0, then p nearly satisfies H0 while the greater |fPPV(p)| is, the further away from H0 p is. Since
the power in our chosen cases may not be representative for a randomly chosen case, we also generate
10385 random cases under H1, by drawing 10385 vectors of length 6 from the uniform distribution
and scaling each vector to sum to 1.

Case p1 p2 p3 p4 p5 p6 fPPV(p)
7 0.06 0.01 0.44 0.26 0.22 0.01 0.52
8 0.01 0.10 0.44 0.01 0.43 0.01 0.76
9 0.20 0.05 0.24 0.28 0.22 0.01 0.27
10 0.01 0.07 0.27 0.28 0.26 0.11 0.29
11 0.06 0.12 0.18 0.14 0.35 0.15 0.18
12 0.17 0.12 0.18 0.21 0.16 0.16 0.05

TABLE 16: Specification of cases under H1.

Table 17 and 18 shows the test power for the chosen cases, test statistics and p-values when N = 10
and N = 25 respectively. As expected the power increases when N increases. The test statistics TuDT
and TLAP have the smallest power except for the E2M p-values in case 6 whenN = 25. WhenN = 25
the TπM statistic has the highest power except in case 6 for the E2M p-values. For N = 10, the TLR
statistic has highest power for the E+M p-values in four of six cases, while only in one case for the
E2M p-values. The E+M p-values yields in general higher power than the E2M p-values, except for
the TLAP and TuDT statistics when N = 10. If we compare these results to the calculated mean power
for all the power cases, given in the last column of Table 17 and 18, we see that TLAP and TuDT have
smaller power for the E+M than the E2M p-values when N = 10 and also when N = 25 for TuDT.
TLR has the largest power for the E+M p-values when N = 10, otherwise the πM has the largest test
power.

When comparing the power in each of the six cases by considering the value of fPPV(p) in Table 16
we see that the power seems to decrease when fPPV(p) decreases which we would expect since in
cases that are far from H0 the test should have higher power than in cases closer to H0. However, in
case 7 and 8 fPPV(p) is 0.52 and 0.76 respectively and yet case 7 has the highest power, particularly
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Test statistic p-value case 7 case 8 case 9 case 10 case 11 case 12 mean
TLRT E+M 0.8344 0.7210 0.4125 0.2332 0.1161 0.0547 0.1064
TLAP E+M 0.7165 0.7203 0.2909 0.1863 0.0801 0.0360 0.0810
TuDT E+M 0.6997 0.3815 0.3269 0.1446 0.0556 0.0345 0.0697
TrDT E+M 0.8372 0.7173 0.4096 0.2286 0.1108 0.0529 0.1044
TπM E+M 0.8271 0.7568 0.3996 0.2119 0.1080 0.0472 0.1016
TLRT E2M 0.8219 0.7159 0.4140 0.2020 0.1006 0.0463 0.0967
TLAP E2M 0.7492 0.7044 0.3498 0.1857 0.0848 0.0416 0.0881
TuDT E2M 0.7640 0.3903 0.3712 0.1923 0.0755 0.0442 0.0844
TrDT E2M 0.8240 0.7160 0.4081 0.2162 0.1028 0.0476 0.0977
TπM E2M 0.8274 0.7500 0.4112 0.2031 0.1060 0.0467 0.0994

TABLE 17: Test power for the E and E2M p-values in case 7–12 and mean over 10385 cases for
N = 10.

Test statistic p-value case 7 case 8 case 9 case 10 case 11 case 12 mean
TLRT E+M 0.9979 0.9967 0.8014 0.4974 0.1936 0.0537 0.2163
TLAP E+M 0.9967 0.9935 0.7897 0.4713 0.1686 0.0509 0.2038
TuDT E+M 0.9970 0.9592 0.8056 0.4788 0.1699 0.0547 0.2075
TrDT E+M 0.9985 0.9976 0.8179 0.5275 0.2193 0.0585 0.2241
TπM E+M 0.9987 0.9978 0.8296 0.5378 0.2257 0.0586 0.2242
TLRT E2M 0.9976 0.9963 0.7908 0.4793 0.1835 0.0499 0.2080
TLAP E2M 0.9961 0.9935 0.7866 0.4609 0.1691 0.0515 0.2063
TuDT E2M 0.9969 0.9622 0.7874 0.4660 0.1704 0.0504 0.2068
TrDT E2M 0.9980 0.9969 0.7938 0.5017 0.2005 0.0501 0.2087
TπM E2M 0.9983 0.9969 0.8091 0.5080 0.2070 0.0510 0.2101

TABLE 18: Test power for the E and E2M p-values in case 7–12 and mean over 10385 cases for
N = 25.

whenN = 10. We see the same in case 9 and 10, fPPV(p) is then 0.27 and 0.29, and the power in case
9 is a lot higher than in case 10.

The mean value of |fPPV(p)| for the 10385 cases is 0.13, which explains the small overall power, since
the mean value is not as far from H0 as e.g. case 7 or 8. The mean power is comparable to case 11
where the distance from H0 is 0.18.

It is not surprising that the likelihood ratio, restricted difference and πM test statistics perform simi-
larly, considering they are all functions of the maximum likelihood estimates for p under H0, p̃. The
LAP and unrestricted difference test statistics however, do not depend on these estimates and this can
be the reason their performance is poorer.
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5 COMPUTATIONAL DETAILS

To compute the integral (14), we used the midpoint rule on a 4-dimensional grid. The four dimensions
correspond to p1, p2, p3 and p5. Each side in the grid is divided into a number of subintervals of equal
length, and the midpoint in each subinterval is calculated. For each point (p1, p2, p3, p5) in the grid,
we set p4,

p4 =
p1(1− p1 − 2p2 − p3 − 2p5) + p2(1− p2 − p3 − p5)− p3p5

p1 + p3

which is derived from (13).

If 0 < p4 < 1, we set p6 = 1−
∑5

i=1 pi and if 0 < p6 < 1 then the value

N !

(
6∏
i=1

pyii
yi!

)
(p1 + p2 + p4 + p5)2

p1 + p2
, (28)

which is π(y|p) multiplied with the non-normalized density of p, is added to the present value of the
integral. If either p4 or p6 are less than 0 or greater than 1, the current point in the grid is discarded.
The total non-normalized integral is the sum of (28) over the p’s satisfying the constraints for p4 and
p6. The integrals (16) and (19) are computed similarly.

The number of points in the grid has to be chosen and in the results presented in this report, a grid
where each side is divided into 50 subintervals was used. This resulted in 79876 points after discarding
those with p4 or p6 outside [0,1]. Table 19 shows the test size for the Bayesian prior predictive values
using the uniform Dirichlet prior and original formulation of H0 (9) for the six values of p given in
Table 10 and N = 10 when the number of subintervals, nint, on each side in the grid is 30, 35, 40, 45
and 50. We see that the test size varies with the grid size to some extent, the largest difference is in
case 1 between nint = 45 and nint = 50.

nint case 1 case 2 case 3 case 4 case 5 case 6
30 0.0395 0.0642 0.0401 0.0365 0.0186 0.0157
35 0.0389 0.0632 0.0405 0.0367 0.0191 0.0159
40 0.0384 0.0620 0.0405 0.0367 0.0191 0.0159
45 0.0384 0.0620 0.0405 0.0367 0.0191 0.0159
50 0.0407 0.0625 0.0408 0.0372 0.0193 0.0162

TABLE 19: Test size in case 1–6 for the Bayesian prior predictive p-value in (15) for N = 10 using
different grid sizes, nint is the number of sub intervals on each of the four sides in the grid.

A grid for p is also needed for the p-values that include a maximization step, i.e. the M, E+M and
E2M p-values. In the positive predictive value setting, we used the same grid as for the Bayesian prior
predictive p-values with 50 possible subintervals for each of the four sides in the grid, but in addition
we included the maximum likelihood estimates p̃ of p under H0 for all possible outcomes given N .
Table 20 shows the number of possible outcomes in the positive predictive value situation for a given
value of N and the size of the grid with the maximum likelihood estimates included. Thus, the size
of this grid increased with N , for N = 10, the grid consisted of 3003 + 79876 = 82879 points
and when N = 25, it consisted of 142506 + 79876 = 222382 points. Comparisons of the test size
for different grid sizes showed that the grid did not have a great influence on the test size when the
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N Number of outcomes Size of grid
10 3003 82879
15 15504 95380
20 53130 133006
25 142506 222382

TABLE 20: Number of possible outcomes given N and size of grid used when calculating p-values in
the problem of comparing positive predictive values.

grid is used for maximization. We also investigated how often the maximum p-value was obtained in
one of maximum likelihood points compared to the other points. The percentage increased with N
and decreased with the size of the grid without maximum likelihood estimates. When N increases
the number of maximum likelihood estimates increases, and it is not surprising that more of these
points will give the maximum p-value and similarly, when the number of grid points in the grid
without maximum likelihood estimates increases, more of the points that are not maximum likelihood
estimates will give the maximum p-value.

The p-value computations for a sequence of E and M steps are quite computer intensive, as p-values for
all outcomes (except in the last step), not only the one of interest in a specific study, must be computed
for further use as a test statistic in the next step. The test statistic giving the original ordering of
outcomes, e.g. the likelihood ratio test statistic, should be computed only once, as should the maximum
likelihood estimates of p under the null hypothesis. The grid used for the numerical maximization in
the M step and for calculation of the πM statistic was also calculated in advance.

In both the E and the M step, the outcomes should be sorted according to the test statistic (original test
statistic or negative output of a previous E or M step). In the E step, the p-values are then accumulated,
starting with the probability of the outcome having the most extreme value of the test statistic, and the
probabilities (with the maximum likelihood estimates of p under the null hypothesis of the outcome
of interest as parameters) of the forthcoming outcomes successively being added until the outcome
of interest is reached. Special care must be taken to include possible outcomes having an equal test
statistic value (“draws”), and because of possible numerical inaccuracies also a threshold for when
two values are counted as equal should be specified. In order to compute all possible p-values, this
should be repeated for all outcomes – we have chosen to accumulate probabilities for all outcomes in
parallel. Taking care when dealing with draws also applies to the M step and calculation of the πE and
πM test statistics.

In the M step we accumulated probabilities given by the grid points as parameters in parallel while
going through the sorted outcomes. As the number of grid points times the number of outcomes may
be huge, only the accumulated probabilities for each outcome were saved, and for each outcome
reached, the maximum of the accumulated probabilities were saved as the p-value of that outcome.

Calculation of the πE and πM test statistics, based on the probabilities of the outcomes themselves
instead of on an external test statistic, are more computer intensive, as the ordering of the outcomes
is specific for each outcome of interest, and not to a given test statistic. For πE, the p-value for an
outcome of interest is found by adding probabilities of all outcomes having a probability that is not
greater, using the maximum likelihood estimate of p under the null hypothesis of the outcome of
interest as parameters, thus the probability of each outcome has to be calculated for each outcome of
interest. We found some gain in computation speed by sorting the outcomes before adding.
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N E M πe πE πM

10 0m0.33s 0m17.69s 0m0.06s 0m2.84s 1m29.94s
25 16m17.13s 14m4.51s 0m0.96s 155m13.68s 101m20.51s
10 0m0.34s 0m18.65s 0m0.01s 0m2.86s 1m33.01s
25 15m51.13s 39m17.33s 0m0.97s 156m40.3s 262m6.08s

TABLE 21: Running time for E and M p-values and for calculating the test statistics Tπe , TπE and TπM
in the positive predictive values setting for samples sizes N = 10, 25 (3003 and 142506 outcomes,
respectively). The two upper rows show the time when using a grid with nint = 50 without maximum
likelihood estimates and the time in the two lower rows is the time when using the grid with nint = 50
including maximum likelihood estimates (79876 points without estimates, 82879 including estimates
for N = 10, and 222382 points including estimates for N = 25).

For πM, the grid points rather than the outcomes were gone through in an outer loop. For each grid
point, the probability of each outcome was calculated, the outcomes sorted accordingly, and probabil-
ities accumulated from the smallest to the greatest. If the cumulative probability of an outcome was
greater than some earlier maximum for that outcome, the maximum was replaced by the current sum.

In contrast, calculation of πe is trivial, this is simply the probability of an outcome taking its maximum
likelihood estimate of p under the null hypothesis as the parameter vector.

Power and size calculations for a given parameter vector are simply a matter of adding probabilities
of outcomes having p-values not exceeding the significance level (in our case 0.05).

The code was written in C++, implemented in GCC and the calculations were performed with the
Standard Template Library, using one of eight processors on a Dell PowerEdge 2950 with two Quad-
core Xeon X5365 3.0 GHz processors, 4 MB cache, 16 GB RAM. The running time for calculating E
and M p-values for any test statistic, along with the running time for calculating the πe, πE and πM test
statistics when comparing positive predictive values for N = 10 and N = 25 are given in Table 21
for the grid with nint = 50, without and with the maximum likelihood estimates of p included. When
N = 10, all the calculations are performed rather fast, except calculating the values of the πM test
statistic which takes one and a half minute. When N increases, the running time naturally increases
severely since all calculations must be performed for all possible outcomes. We note that calculating
the πE test statistic takes longer than calculating the πM test statistic when N = 25 for the grid with-
out maximum likelihood estimates. This is because the number of possible outcomes is less than the
number of grid points in this case. If the number of grid points is larger than the number of outcomes,
as in the grid where the maximum likelihood estimates are included, calculating the πM statistic takes
much longer than calculating the πE statistic.

6 DISCUSSION

The enumeration idea is not new as it goes back to Fisher (1935), but it has often been overlooked. We
have demonstrated how to apply the idea for testing independent binomial proportions and comparing
positive predictive values. Another recent application of the idea is in genome-wide association stud-
ies, in which single nucleotide polymorphisms (SNP) across the human genome are studied. When the
mode of inheritance is unknown, the MAX test statistic, which is the maximum of the three Cochrane–
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Armitage trend statistics for dominant, recessive and additive inheritance modes, see Freidlin, Zheng,
Li and Gastwirth (2002), tests the association between the genotype and phenotype. The exact distri-
bution of the MAX test statistic is unknown and calculating p-values based on proposed asymptotic
distributions involves numerical integration. Another common approach is to use permutations tests,
but both solutions leads to possible random errors in the calculated p-values. Moldovan, Langaas and
Bahlo (2009) instead calculate exact p-values using the enumeration approach and thereby avoid this
uncertainty.

When the sample size increases and enumeration will be too time consuming, the parametric boot-
strapping approach can be used instead. Günther et al. (2009) used parametric bootstrapping to ap-
proximate the distribution of the likelihood ratio, LAP and restricted and unrestricted difference test
statistics. The p-values obtained from this distribution are approximately the same as the E p-values
we find by enumeration in this report, and the parametric bootstrap approach involving simulated out-
comes is actually a numerical approximation that calculates the tail without using enumeration. This
is seen if the test size for case 1–6 in Table 12 is compared to the test size for the small sample para-
metric bootstrap likelihood ratio test in Table 3 of Günther et al. (2009) – the values are almost the
same. It may be of use for larger sample sizes when calculating maximum likelihood estimates and
p-values for the bootstrap samples is less time consuming than calculating the maximum likelihood
estimates and p-values for all possible outcomes. When using the formulas for calculating exact test
size and power, i.e., (5) and (6), drawing outcomes from the multinomial distribution under H0 or H1

and estimating the test size or power by the proportion of these outcomes having p-values less than
or equal to the significance level as was done in Günther et al. (2009) is not necessary, and therefore
the uncertainty in the estimates are removed. This is however, only possible when the sample size is
small enough so that the p-values for all possible outcomes can be calculated.

Another option when the sample size increases is to condition on sums of Ni, i = 1, . . . , 6, which
in a contingency table setting corresponds to conditioning on the marginals. This reduces the number
of possible outcomes and makes it possible to use exact tests for higher values of N . The usability
of this approach depends on the actual problem. In the example from Lloyd (2008), n1 and n2 are
fixed as the number of subjects who receives treatment and placebo respectively. In the setting of
positive predictive values, it is not clear which values that should be fixed. It could be the number of
diseased and non-diseased subjects, if the disease status is decided before the two tests are applied, or
it could be the number of subjects with positive test A, positive test B and positive tests A and B, but
in practise, these numbers will usually not be fixed in advance.

As Table 12 showed, the test size of a test statistic for any p-value depends on the chosen value of
p, the parameter in the multinomial distribution. When the chosen significance level is 0.05, some
cases have test size close to 0.05, whereas other cases have smaller test sizes. A further investigation
reveals what the cases for which the test size is close to 0.05 have in common. Assume the outcomes
are sorted by decreasing value of some chosen test statistic. The M step will result in rejection of the
null hypothesis for outcomes that are above a certain limit, where the limit is the p-value closest to
0.05 (but not greater than 0.05). The null hypothesis is not rejected for any of the outcomes below
the limit. Assume that the last outcome for which H0 is rejected, y0 has a maximum tail probability
PM,0, i.e. p-value, in the point p0. If the true value of p is in fact p0, then the probability of rejecting
H0 is the sum of the probabilities of this outcome and the outcomes above, which is PM,0. Thus a
test size of almost 0.05 is always obtained for a particular p, it is only the discreteness that prevents it
from exactly being obtained for a specific value of p. This value is the value of p that maximizes the
p-value for the outcome that has the largest p-value less than or equal to 0.05. If one wants to report
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the test size in a certain multinomial case, choosing this value of p will ensure that the test size is
close to 0.05 unlike the six multinomial cases we chose.

7 CONCLUSIONS

In this work we have provided an in-depth effort of using enumeration and exact p-values to ad-
dress the problem of comparing positive predictive values. The existing tests for this situation rely on
asymptotic distributions and have previously been shown not to preserve the test size when the sam-
ple size was moderate. The test size and power of nine test statistics in combination with five types
of p-values have been thoroughly evaluated for different sample sizes. As demonstrated, the M step
yields valid p-values, although these are often conservative. The E step provides a reordering of the
reference set in contrast to the M step and one or two E steps before the M step increases the test size
while yielding valid p-values.

We have presented three new test statistics, Tπe , TπE and TπM , that can be applied to any problem.
In the problem of comparing binomial proportions, the πe test statistic performed better than the test
statistics analyzed by Lloyd (2008) in terms of test size and power for the E+M p-values.

For comparing the positive predictive values from two diagnostic tests, we recommend using either
the likelihood ratio, restricted difference or πM test statistic and to calculate the E+M p-values. These
p-values are valid, and for these test statistics the results have indicated that there is no need to do
more than one E step before the final M step. However, the importance of one or more E steps before
maximization is greater for e.g. the LAP and unrestricted difference test than for the likelihood ratio
test as it increases the test size more significantly, suggesting that the ordering provided by the LAP
and unrestricted difference test is not optimal with respect to test size and power.

We do not recommend using the prior predictive p-values, as these are very sensitive to the choice of
prior and on the null hypothesis formulation.

This report gives further general insight into the mechanisms behind the E, M and E+M p-values in
general and in the example discussed by Lloyd (2008). We describe how the E p-value changes the
ordering of outcomes and why this reduces the conservativeness of the M p-values if the E p-values
are applied before the M step.

In further work, it would be of interest to find a test statistic that in some sense provides an optimal
ordering of the outcomes with respect to test size and power and in particular, the πe, πE and πM should
be studied in greater detail and compared to other test statistics. We would also like to investigate if
ordering of the outcomes converges after a certain number of E steps, and also the effect of performing
two or more consecutive sequences of the form EkM.

REFERENCES

Agresti, A. (2002). Categorical data analysis, second edn, John Wiley & Sons, Inc., Hoboken, NJ,
chapter 1.4.4.

Bayarri, M. J. and Berger, J. O. (2000). P values for composite null models, Journal of the American
Statistical Association 95(452): 1127–1142.

34



Berger, R. L. and Boos, D. D. (1994). P values maximized over a confidence set for the nuisance
parameter, Journal of the American Statistical Association 89(427): 1012–1016.

Bickel, J. and Doksum, K. A. (2001). Mathematical statistics, second edn, Prentice Hall, Inc., chap-
ter 4.

Casella, G. and Berger, R. L. (2002). Statistical inference, second edn, Duxbury, chapter 8.

Fisher, R. A. (1935). The logic of inductive inference, Journal of the Royal Statistical Society 98: 39–
82.

Freidlin, B., Zheng, G., Li, Z. and Gastwirth, J. L. (2002). Trend tests for case-control studies of
genetic markers: power, sample size and robustness, Human Heredity 53: 146–152.

Günther, C.-C., Bakke, Ø. and Langaas, M. (2009). Comparing positive predictive values for small
samples with application to gene ontology testing. Preprint Statistics No. 3, Department of
Mathematical Sciences, Norwegian University of Science and Technology.

Günther, C.-C., Bakke, Ø., Lydersen, S. and Langaas, M. (2008). Comparison of predictive values
from two diagnostic tests in large samples. Preprint Statistics No. 9, Department of Mathematical
Sciences, Norwegian University of Science and Technology.

Johnson, N. L., Kotz, S. and Balakrishan, N. (1997). Discrete multivariate distributions, Wiley series
in probability and statistics, chapter 35.

Leisenring, W., Alonzo, T. and Pepe, M. S. (2000). Comparisons of predictive values of binary medical
diagnostic tests for paired designs, Biometrics 56: 345–351.

Lloyd, C. J. (2008). Exact p-values for discrete models obtained by estimation and maximization,
Australian & New Zealand Journal of Statistics 50(4): 329–345.

Moldovan, M., Langaas, M. and Bahlo, M. (2009). Efficient error-free computation of MAX p-
values with an application to genome-wide association studies. Walter and Eliza Hall Institute
of Medical Research, Melbourne, Australia, submitted.

Zelterman, D., Chan, I. S.-F. and Mielke, P. W. (1995). Exact tests of significance in higher dimen-
sional tables, The American Statistician 49(4): 357–361.

35


	StatPreprint200904
	rapport

