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Abstract

Some upper bounds for MISE of multivariate kernel density estimators are obtained. It is

shown, in particular, that under some regularity conditions, the actual error is always less than

the asymptotic error.
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1. Introduction

The most used measure of performance of kernel density estimators as well as the basis of the

choice of the smoothing parameter, bandwidth, is the mean intergated squared error (MISE) of the

estimator. Practically it is usually replaced by its asymptotic approximation. That is, MISE is

represented as the sum of the main term AMISE (asymptotic MISE), having a relatively simple form,

and the remainder R such that

MISE ∼ AMISE, R = o(MISE) as n→ ∞,

and then the evaluation of the actual error and the bandwidth selection are performed on the basis

of AMISE.

Wand and Jones (1995) discovered that, at least for convensional (nonnegative) kernels, AMISE

is always strictly greater than MISE. In addition, it turns out (see for example Glad et al., 2007) that

the ratio R/MISE can tend to zero very slowly, so that the difference AMISE–MISE can be substantial

even for quite large sample sizes (105 − 106). For moderate and small sample sizes this difference is

typically so large that it seems to be unreasonable to replace MISE by AMISE. This is corroborated

by Figures 2,3 of Section 4. Here are AMISE (solid line) and MISE (dashes) for five different densities

(normal mixtures). In Figure 3. they are functions of the sample size when the bandwidth is chosen

to be AMISE-optimal. In Figure 2 they are functions of h when the sample size is fixed: n = 100.

The densities are represented in Figure. Further examples can be found in Marron and Wand (1992).

This makes reasonable to try to find upper bounds for MISE lieing between MISE and AMISE. In

the univariate case, a number of such inequalities was obtained in Glad et al. (2007). They can give

a substantial gain. For example upper bounds for MISE, given by Theorem 1 of Glad et al. (2007)

are represented in Figures 2,3 (dots). In this work, some upper bounds for MISE of multivariate

kernel density estimators are derived. It is proved, in particular, that the Maron-Wand inequality

(MISE<AMISE) holds also in the multivariate case.

2. Main result

Let X1, ...,Xn be independent identically distributed d-dimensional random vectors with density

f(x), x = (x1, ..., xd)
T ∈ Rd. Throughout this article, |A| denotes the determinant of the square

matrix A,
∫

Rd is shorthand for
∫

· · ·
∫

Rd and dx is shorthand for dx1 · · · dxd. The general form of the

kernel estimator is (Wand and Jones, 1995)

fn(x;H) =
1

n

n
∑

j=1

KH(x −Xj),

where KH(x) = |H|−1/2K(H−1/2x), K(x) is a multivariate kernel, and H is a symmetric positive

definite d×d matrix — the bandwidth matrix. In this work we will suppose that K(x) is a symmetric

probability density function i.e. it is nonnegative, integrates to one, and K(x) = K(−x). The mean

integrated squared error (MISE) of the estimator is

MISE(fn(x;H)) = E

∫

Rd

[fn(x;H) − f(x)]2dx.
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Let us introduce the following conditions.

(i) All second derivatives
∂2

∂xi∂xj
f(x)

exist and are square integrable.

(ii) The kernel K(x) is square integrable. All second order moments of K(x) are finite.

Denote the covariance matrices of K(x) and f(x) by ΣK and Σf , respectively, and entries of the

matrix H1/2ΣH1/2 by cij . Also, let S(x) be the Hessian matrix of the density f(x), that is the d× d

matrix having (i, j) entry equal to
∂2

∂xi∂xj
f(x).

Finally, denote the trace of the matrix A by trA and the integral of the squared kernel by R(K):

R(K) =

∫

Rd

(K(x))2dx.

Theorem 1. Let conditions (i) and (ii) be satisfied. Then

MISE(fn(x;H)) <
1

4

∫

Rd

tr2(H1/2ΣKH1/2S(x))dx +
R(K)

n|H|1/2
− C(d)

n|Σ|1/2
, (1)

where

Σ = 2(Σf + H1/2ΣKH1/2) (2)

and

C(d) = [2d−1πd/2(d+ 2)Γ(d/2 + 1)]−1. (3)

Proof. Denote characteristic functions of f(x) and K(x) by ϕ(t) and ψ(t) respectively. Let ϕn(t)

be the empirical characteristic function based on the sample X1, ...,Xn, that is

ϕn(t) =
1

n

n
∑

j=1

eitT
Xj .

Then (Parseval identity)

MISE(fn(x;H)) =
1

(2π)d
E

∫

Rd

[ϕn(t)ψ(H1/2t) − ϕ(t)]2dt.

Transforming the right hand side and taking into account that Eϕn(t) = ϕ(t) and

E|ϕn(t)|2 =
1

n
+

(

1 − 1

n
|ϕ(t)|

)

,

we obtain the following representation

MISE(fn(x;H)) =
1

(2π)d

∫

Rd

|ϕ(t)|2(1 − ψ(H1/2t))2dt+

+
1

n
· 1

(2π)d

∫

Rd

|ψ(H1/2t)|2dt +
1

n
· 1

(2π)d

∫

Rd

|ϕ(t)ψ(H1/2t)|2dt.
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Denote

S1 =
1

(2π)d

∫

Rd

|ϕ(t)|2(1 − ψ(H1/2t))2dt,

S2 =
1

(2π)d

∫

Rd

|ψ(H1/2t)|2dt,

S3 =
1

(2π)d

∫

Rd

|ϕ(t)ψ(H1/2t)|2dt.

We derive now upper estimates for S1 and S2 and lower estimate for S3.

The covariance matrix of the distribution, corresponding to the characteristic function ψ(H1/2t),

is H1/2ΣH1/2, therefore (Ushakov, 1999, Theorem 2.7.8)

(1 − ψ(H1/2t))2 ≤ 1

4

(

tT H1/2ΣH1/2t
)2

.

From this inequality, using the Plancherel formula, we obtain

S1 ≤ 1

4
· 1

(2π)d

∫

Rd

(tT H1/2ΣH1/2t)2|ϕ(t)|2dt =

=
1

4
· 1

(2π)d

d
∑

i=1

d
∑

j=1

d
∑

k=1

d
∑

l=1

cijckl

∫

Rd

titjtktl|ϕ(t)|2dt =

=
1

4

d
∑

i=1

d
∑

j=1

d
∑

k=1

d
∑

l=1

cijckl

∫

Rd

(

∂2f(x)

∂xi∂xj
· ∂

2f(x)

∂xk∂xl

)

dx =

=
1

4

∫

Rd





d
∑

j=1

d
∑

k=1

cjk
∂2f(x)

∂xj∂xk





2

dx =
1

4

∫

Rd

tr2(H1/2ΣH1/2S(x))dx.

Further,

S2 =
1

(2π)d

∫

Rd

|ψ(H1/2t)|2dt = |H|−1/2 1

(2π)d

∫

Rd

|ψ(t)|2dt =

= |H|−1/2

∫

Rd

(K(x))2dx =
1

n
|H|−1/2R(K).

Finally, the covariance matrix of the distribution, corresponding to the characteristic function

|ϕ(t)ψ(H1/2t)|2, is Σ = 2(Σf + H1/2ΣKH1/2) therefore, using again Theorem 2.7.8 from Ushakov

(1999), obtain

S3 ≥ 1

(2π)d

∫

{t:tT Σt}

|ϕ(t)ψ(H1/2t)|2dt ≥
∫

{t:tT Σt}

(1 − tT Σt)dt =

=
[2d−1πd/2(d+ 2)Γ(d/2 + 1)]−1

|Σ|1/2
.

Now (1) follows from the obtained bounds for S1, S2 and S3.

3. Some special cases
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Suppose now that one more condition is satisfied.

(iii)
∫

Rd

xxTK(x)dx = µ2(K)I

where µ2(K) =
∫

Rd x
2
jK(x)dx is independent of j, and I is the d× d identity matrix.

Under this condition H1/2ΣKH1/2 = µ2(K)H, and from Theorem 1 we obtain the following

Theorem 2. Let conditions (i), (ii) and (iii) be satisfied. Then

MISE(fn(x;H)) <
1

4
µ2(K)2

∫

Rd

tr2(HS)dx +
R(K)

n|H|1/2
− C(d)

n|Σ|1/2
, (4)

where Σ = 2(Σf + µ2(K)H) and C(d) is given by (3).

Corollary. Let conditions (i), (ii) and (iii) be satisfied, and the bandwidth matrix depends on the

sample size n in such a way that n−1|H|−1/2 and all entries of the matrix H tend to zero as n→ ∞.

Then

MISE(fn(x;H)) < AMISE(fn(x;H)). (5)

Since under conditions of the Corollary,

AMISE(fn(x;H)) =
1

4
µ2(K)2

∫

Rd

tr2(HS)dx +
R(K)

n|H|1/2

(Wand and Jones, 1995, p. 97), (5) immediately follows from (4).

In conclusion we consider two special, perhaps the most frequently used, smoothing parametriza-

tions. In the first case the estimator has form

fn(x;h1, ..., hd) =
1

nh1 · · · hd

n
∑

i=1

K

(

x1 −Xi1

h1
, ...,

xd −Xid

hd

)

(6)

where Xi = (Xi1, ..., Xid)
T . In this case hj can be considered as the smoothing parameter associated

with the j-th coordinate direction. For this parametrization we will use only kernels with a diagonal

covariance matrix. Denote

µ
(j)
2 (K) =

∫

Rd

x2
jK(x)dx, σ2

j = VarXij , j = 1, ..., d.

Theorem 3. Let conditions (i) and (ii) be satisfied, the estimator have form (6), and ΣK be a

diagonal matrix. Then

MISE(fn(x;h1, ..., hd)) <
1

4

∫

Rd





d
∑

j=1

h2
jµ

(j)
2 (K)

∂2f(x)

∂x2
j





2

dx+

+
R(K)

n





d
∏

j=1

hj





− 1

2

− C(d)

n
√

2





d
∏

j=1

(σ2
j + µ

(j)
2 (K)hj)





− 1

2

, (7)

where C(d) is defined by (3).
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Proof. It is easy to see that under conditions of the theorem, the first two summands in the right

hand side of (7) coinside with the first two summands in the right hand side of (1), therefore to prove

(7) it is sufficient to show that

|Σ| ≤ 2

d
∏

j=1

(σ2
j + µ

(j)
2 (K)hj), (8)

where Σ = 2(Σf + H1/2ΣKH1/2). Note that under assumptions we made, H1/2ΣKH1/2 is the

diagonal matrix with diagonal elements µ
(j)
2 (K)hj , j = 1, ..., d, therefore diagonal elements of

Σf + H1/2ΣKH1/2 are σ2
j + µ

(j)
2 (K)hj , and (8) follows since for a nonnegative definite matrix, the

determinant is less than or equal to the product of diagonal elements (see for example Bellman, 1960).

Finally consider the following simplest parametrization. There is a single scalar smoothing param-

eter h and the kernel estimator is of the form

fn(x;h) =
1

nh

n
∑

j=1

K

(

x −Xj

h

)

. (9)

In this case we will use only kernels satisfying condition (iii)

Theorem 4. Let conditions (i), (ii), (iii) be satisfied, and the estimator have form (9). Then

MISE(fn(x;h)) <
1

4
h4µ2(K)2

∫

Rd

(52f(x))2dx +
R(K)

nhd
− C(d)

n
√

2





d
∏

j=1

(σ2
j + µ2(K)h)





− 1

2

where

52f(x) =

d
∑

j=1

∂2f(x)

∂x2
j

.

The theorem follows from Theorem 3.

4. Examples

In the one-dimensional case (d = 1) the result given by Theorem 4 of this work is a little inferior to

the result given by Theorem 1 of Glad et al. (2007). However the upper bound of Theorem 4 is still a

substantial improvement of AMISE. In this section we present several examples. MISE, AMISE, the

upper bound of Theorem 1 of Glad et al. (2007) (UB1), and the upper bound of Theorem 4 of this

work (UB2) are calculated for five different densities. The densities are

#1. Normal

N(0, 1).

#2. Plateau
1

2
(N(−1, 1) +N(1, 1)).

#3. Symmetric bimodal
1

2
(N(−1.5, 1) +N(1.5, 1)).
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#4. Asymmetric bimodal

0.3N(−1.5, 1) + 0.7N(1.5, 1).

#5. Kurtotic
1

2
(N(0, 0.1) +N(0, 3)).

These five densities are represented in Figure 1. Results are presented in Figures 2,3. In Figure 3

AMISE (solid line), MISE (dashes), UB1 (dots), UB2 (dashes-dots) are functions of the sample size n

while h is chosen to be AMISE-optimal. In Figure 2 they are functions of h while n is fixed: n = 100.

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

f

(a)

−10 −5 0 5 10

0.
00

0.
10

0.
20

x

f

(b)

−10 −5 0 5 10

0.
00

0.
10

0.
20

x

f

(c)

−10 −5 0 5 10

0.
00

0.
10

0.
20

x

f

(d)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

x

f

(e)

Figure 1: The densities.

5. Conclusions

The main (and the most difficult) problem in kernel density estimation is the choice of the smooth-

ing parameter, bandwidth. Upper bounds, contained in Glad et al. (2007) and in this work, give new

resources for solving this problem. In bandwidth selection MISE is usually replaced by AMISE; which

then is approximately (since it contains parameters of the unknown density) minimized. But any func-

tion, situated between AMISE and one of the obtained upper bounds, is a better approximation of

MISE than AMISE is. One can choose therefore a curve from this stripe, having desirable properties,

and use it for the selection of the bandwidth. For example, it is known that always hAMISE < hMISE,
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Figure 2: The results.

where hAMISE and hMISE are AMISE-optimal and MISE-optimal values of the smoothing parameter,

respectively, see Marron and Wand (1992). It is sensible therefore to choose a function from the stripe,

which, on the one hand is as simple as AMISE and, on the other hand, has its minimum to the right

of hAMISE. A separate work will be devoted to investigation of these potentialities.
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Figure 3: The results
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