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Abstract

Explicit formulas for calculating L
p and integrated L

p errors of kernel density estimators are

obtained. Numerical realisation is discussed. Some practical recommendations are given.
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1. Introduction

Let X1, ...,Xn be independent and identically distributed random variables from an absolutely

continuous distribution with probability density f(x). The kernel density estimator of f(x) is defined

as

fn(x;h) =
1

nh

n
∑

i=1

K

(

x − Xi

h
x − Xi

)

,

where K(x) is the kernel, and h = hn is a positive number (depending on n) called the bandwidth or

the smoothing parameter.

Construction of estimators and analysis of their properties are based on some error criteria. One

of the main three approaches is used: asymptotic analysis, simulation or numerical calculation (the

three approaches are discussed in particular in Marron and Wand (1992)). In case of kernel den-

sity estimation, the overwhelming majority of works uses the mean squared error (MSE) and mean

integrated squared error (MISE) as error criteria. This is primarily because of their mathematical

simplicity compared for example with the absolute, or other Lp, errors. MSE and MISE are defined

as

MSE(fn(x;h)) = E[fn(x;h) − f(x)]2

and

MISE(fn(·;h)) = E

∫

∞

−∞

[fn(x;h) − f(x)]2dx

and are represented in terms of f(x) and K(x) as follows (see for example Wand and Jones (1995))

MSE(fn(x;h)) =
1

n
[(K2

h ∗ f)(x) − (Kh ∗ f)2(x)] + [(Kh ∗ f)(x) − f(x)]2, (1)

MISE(fn(·;h)) =
1

n

∫

∞

−∞

[(K2
h ∗ f)(x) − (Kh ∗ f)2(x)]dx +

∫

∞

−∞

[(Kh ∗ f)(x) − f(x)]2dx, (2)

where Kh(x) = h−1K(x/h) and ∗ denotes the convolution. The presence of formulas (1) and (2)

makes it possible to effectively use asymptotic analysis and numerical calculation. The absence of

such formulas for other Lp errors leads to that practically only simulation can be used (for L1 is

asymptotic analysis also possible). The goal of this paper is to (at least partially) fill this gap. We

derive explicit formulas for the mean Lp and mean integrated Lp errors in terms of K(x) and f(x).

Mean Lp error (MLPE) and mean integrated Lp error (MILPE) are defined as

MLPE(fn(x;h)) = E |fn(x;h) − f(x)|p

and

MILPE(fn(·;h)) = E

∫

∞

−∞

|fn(x;h) − f(x)|pdx,

respectively. In this work we consider only 0 < p < 2.

2. Main Results

Let ℜz denote the real part of the complex number z and let i =
√
−1.
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Theorem 1.

MLPE(fn(x;h)) =

= C(p)

∫

∞

−∞

1

|t|p+1

[

1 −ℜ
(

e−itf(x)

(∫

∞

−∞

exp

(

it

nh
K

(

x − y

h

))

f(y)dy

)n)]

dt (3)

where

C(p) = −Γ(p + 1) cos((p + 1)π/2)

π
. (4)

Theorem 2.

MILPE(fn(·;h)) =

= C(p)

∫

∞

−∞

∫

∞

−∞

1

|t|p+1

[

1 −ℜ
(

e−itf(x)

(∫

∞

−∞

exp

(

it

nh
K

(

x − y

h

))

f(y)dy

)n)]

dtdx (5)

where C(p) is given by (4).

Proofs of the theorems are based on the following

Lemma 1. Let Y be a random variable with characteristic function φ(t). If E |Y |p < ∞, 0 < p < 2,

then

E |Y |p = C(p)

∫

∞

−∞

1

|t|p+1
(1 −ℜφ(t))dt (6)

where C(p) is given by (4).

Proof. Let 0 < p < 2. Denote the distribution function of Y by G(y). Since
∫

∞

−∞

1 − cos t

|t|p+1
dt = − π

Γ(p + 1) cos((p + 1)π/2)
=

1

C(p)
,

it is easy to see that

C(p)

∫

∞

−∞

1 − cos(yt)

|t|p+1
dt = |y|p.

Hence

E |Y |p = C(p)

∫

∞

−∞

|y|pdG(y) = C(p)

∫

∞

−∞

∫

∞

−∞

1 − cos(yt)

|t|p+1
dtdG(y)

= C(p)

∫

∞

−∞

1

|t|p+1

(∫

∞

−∞

(1 − cos(yt))dG(y)

)

dt = C(p)

∫

∞

−∞

1

|t|p+1
(1 −ℜφ(t))dt.

Proof of Theorem 1. Let x be fixed. Consider the random variable Y = Y (x) = fn(x;h)−f(x). Since

Y =





1

n

n
∑

j=1

1

h
K

(

x − Xj

h

)



 − f(x),

the characteristic function of Y is

φY (t) = E exp [it (fn(x;h) − f(x))] = e−itf(x)
Eexp





it

nh

n
∑

j=1

K

(

x − Xj

h

)





= e−itf(x)
n

∏

j=1

Eexp

[

it

nh
K

(

x − Xj

h

)]

= e−itf(x)

(∫

∞

−∞

exp

[

it

nh
K

(

x − y

h

)]

f(y)dy

)n

.

The result now follows from Lemma 1.

4



Theorem 2 follows from Theorem 1 by integration with respect to x.

3. Numerical realisation

The calculation of the right hand side of (3) has some specific features which should be taken

into account. In this section we briefly consider the problem of numerical realisation and give some

practical recommendations. Calculation of MLPE consists of two numerical integrations, with respect

to y and t.

Integration limits

The two integrals are from −∞ to ∞, so the first question arising in the numerical integration,

is the choice of integration intervals. For this choice it is useful to take the following into account.

In the inner integral (with respect to y) the absolute value of the function under the integral sign

does not exceed f(y). In the external integral (with respect to t) the function decreases quite slowly,

and for large values of t it practically coincides with |t|−p−1. Thus the integration intervals should be

chosen in such a way that, according to the desirable accuracy, the functions f(y) and |t|−p−1 can be

considered as negligible outside their respective intervals.

Oscillations

The magnitude of t/n determines the frequency of the trigonometric functions

cos

(

t

n
Kh(x − y)

)

and sin

(

t

n
Kh(x − y)

)

in (3) (here Kh(x) = h−1K(x/h)). If t ≫ n, the trigonometric functions oscillate with a high

frequency and this has to be taken into account, in particular in the choice of number of integration

points. Generally we recommend to use Composite Simpson’s Rule for the evaluation of

∫

∞

−∞

[

cos

(

t

n
Kh(x − y)

)

+ i sin

(

t

n
Kh(x − y)

)]

f(y)dy

Integration near 0

Consider (6). When t is close to 0, both the numerator and denominator under the integral sign

are close to 0. Let µ2 = EY 2 < ∞. Then

ℜφ(t) = 1 − µ2t
2

2
+ o(t2), t → 0,

and we can approximate the integral over a small neighbourhood of 0 by
∫ ε

−ε

1 −ℜφ(t)

|t|p+1
dt ≈ µ2

2 − p
ε2−p.

Using inequalities

1 − µ2t
2

2
≤ ℜφ(t) ≤ 1 − µ2t

2

2
+

µ4t
4

4!
where µ4 = EY 4 (see for example Ushakov (1999)), we can obtain an upper bound for the error of

this approximation:
∣

∣

∣

∣

∫ ε

−ε

1 −ℜφ(t)

|t|p+1
dt − µ2

2 − p
ε2−p

∣

∣

∣

∣

≤ µ4

12(4 − p)
ε4−p.
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Figure 1: The probability density in our example.

An example

In conclusion we give an example of calculation of mean integrated Lp error for p = {0.5, 1, 1.5}.
The probability density f(x) is a normal mixture density, specifically constructed to approximate the

shape of a gamma density, with shape parameter less than 1. The probability density is illustrated

in figure 1. The corresponding MILPE’s are plotted in figure 2, where the vertical lines are their

respective minimisers.
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Figure 2: MILPE’s for the probability density in figure 1. The vertical lines are their respective

minimisers.
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