
NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

Asymptotic Normality of Posterior Distributions for Generalized
Linear Mixed Models

by

Hossein Baghishani and Mohsen Mohammadzadeh

PREPRINT
STATISTICS NO. 11/2010

NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY

TRONDHEIM, NORWAY

This preprint has URL http://www.math.ntnu.no/preprint/statistics/2010/S11-2010.pdf
Hossein Baghishani has homepage: http://www.math.ntnu.no/∼baghisha

E-mail: baghisha@math.ntnu.no
Address: Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491

Trondheim, Norway.



Asymptotic Normality of Posterior Distributions for Generalized Linear

Mixed Models

Hossein Baghishani,∗, Mohsen Mohammadzadeh
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Abstract

Generalized linear mixed models (GLMMs) are widely used in the analysis of non Gaussian re-

peated measurements such as clustered proportion and count data. The most commonly used

approach for inference in these models is based on the Bayesian methods and Markov chain Monte

Carlo (MCMC) sampling. However, the validity of Bayesian inferences can be seriously affected by

the assumed model for the random effects. We establish the asymptotic normality of joint posterior

distribution of the parameters and the random effects of a GLMM by the modification of Stein’s

Identity. We show that while incorrect assumptions on the random effects can lead to substantial

bias in the estimates of the parameters, the assumed model for the random effects, under some

regularity conditions, does not affect the asymptotic normality of joint posterior distribution. This

motivates use of the approximate normal distributions for sensitivity analysis of the random effects

distribution. We also illustrate the approximate normal distribution performs reasonable using

both real and simulated data. This creates a primary alternative to MCMC sampling and avoids

a wide range of problems for MCMC algorithms in terms of convergence and computational time.

Keywords: Asymptotic normality, clustered data, generalized linear mixed models, misspecifi-

cation, posterior distribution, Stein’s Identity.

1. Introduction

Discrete longitudinal and clustered data are common in many sciences such as biology, epidemi-

ology and medicine. A popular and flexible approach to handle this type of data is the GLMM. This
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class of models are useful for modeling the dependence among observations inherent in longitudinal

or clustered data (Breslow and Clayton, 1993). Statistical inferences in such models have been the

subject of a great deal of research over two past decades. Both frequentist and Bayesian methods

have been developed in GLMMs (McCulloch, 1997). In frequentist methods, in general, model

fitting and inference are based on the marginal likelihood. Computing, and then maximizing, the

marginal likelihood in these models generally involves numerical integration of high-dimensions

and usually is prohibitive.

Due to the advances in computation, the most commonly used approach for inference in these

models is based on the Bayesian methods, especially MCMC algorithms. However, the validity

of Bayesian inferences can be greatly affected by the assumed model for the random effects. It

is standard to assume that the random effects have a normal distribution. But, the normality

assumption may be unrealistic in some applications. In general, erroneous distribution assumption

for the random effects has unfavorable influence on the inferences, see e.g. Heagerty and Kurland

(2001), Agresti et al. (2004) and Litiere et al. (2007).

Bayesian inferences, furthermore, comes with a wide range of problems in terms of convergence

and computational time in GLMMs, especially in situations where the sample size is large. In

such situations, benefit of the large sample theory and asymptotic posteriors which work well, can

be useful. It is the main contribution of this paper to establish the asymptotic normality of joint

posterior distribution of the parameters and the random effects of a GLMM by the modification of

Stein’s Identity (Weng and Tsai, 2008). It is also the purpose of the paper to show that the assumed

model for the random effects, under some conditions, does not affect the asymptotic normality

of joint posterior distribution. This motivates use of the approximate normal distributions for

sensitivity analysis of the random effects distribution. However, we show that, through simulation

study, the model misspecification can lead to substantial bias in the estimates of the parameters.

We also illustrate the approximate normal distribution performs reasonable even for moderate

sample sizes by simulated and real data examples. This can create a primary alternative to MCMC

sampling and avoids above mentioned problems.

The asymptotic posterior normality generally is established by many authors under different

conditions: e.g. LeCam (1953), Walker (1969), and Johnson (1970) for i.i.d. random variables and

Heyde and Johnstone (1979), Chen (1985), Sweeting and Adekola (1987) and Sweeting (1992) for
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stochastic processes. Recently, Weng (2003) proposed an alternative method for posterior normality

of stochastic processes in the one parameter cases. Weng and Tsai (2008) extended Weng’s method

to multiparameter problems. Their method uses of an adequate transformation Z, then for any

bounded measurable function h, a version of Stein’s Identity (Woodroofe, 1989) is employed to

separate the remainder terms of the posterior expectations of h(Z) so that the posterior normality

becomes more lucid and can be easily established. We use the proposed method by Weng and Tsai

(2008) to establish the asymptotic normality of joint posterior of the model parameters and the

random effects in a GLMM.

The paper is structured as follows. In the next section, we give a brief description of GLMMs

and some needed definitions. The main result for establishing the asymptotic posterior normality

of GLMMs is provided in Section 3. Next, in Section 4, the theoretical results are illustrated on

simulated spatial data with skew normal latent random effects and on Rongelap data of radionuclide

counts. We conclude with a discussion in Section 5. Thereafter follows three technical appendices

with introducing the modified Stein’s Identity (A), regularity conditions needed for establishing

the asymptotic posterior normality of GLMMs (B), and proof of the main theorem (C).

2. Preliminaries

2.1. The Generalized Linear Mixed Model

On the basis of the generalized linear models (GLMs), the GLMM assumes that the responses

are independent conditional on the random effects and are distributed according to a member of the

exponential family. Consider a clustered data set, in which repeated measures of a response variable

are taken on a random sample of m clusters. Consider the response vectors yi = (yi1, . . . , yimi)
T ,

i = 1, . . . ,m. Let n =
∑m

i=1mi be the total sample size. Conditional on q × 1 vector of unobserv-

able cluster-specific random effects ui = (ui1, . . . , uiq)T , these data are distributed according to a

member of the exponential family:

f(yij|ui,β) = exp{yij(xT
ijβ + vT

ijui)− a(xT
ijβ + vT

ijui) + c(yij))},

for i = 1, . . . ,m; j = 1, . . . ,mi, in which xij and vij , are the corresponding p- and q-dimensional

covariate vectors associated with the fixed effects and the random effects respectively, β is a p-

dimensional vector of unknown regression parameters, and a(·) and c(·) are specific functions.
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Here τij = xT
ijβ + vT

ijui is the canonical parameter. Let µij = E[Yij |β,ui] = a
′
(τij) with g(µij) =

xT
ijβ + vT

ijui, where g(.) is a monotonic link function. Furthermore, assume ui comes from a

distribution G(·,θ) in which θ is usually the dependency parameter vector of the model.

Let ψ = (β,θ) be the vector of model parameters where ψ ∈ Ψ, an open subset of ℜd. Then,

the marginal likelihood function of the GLMM will be

L(ψ;y) =
m∏

i=1

Li(ψ;yi), (1)

where, Li(ψ;yi) =
∫
. . .

∫ mi∏
j=1

f(yij|ui,β)G(ui,θ)dui. Here the calculation of the marginal like-

lihood function (1) nearly always involves intractable integrals, which is the main problem for

carrying out likelihood based statistical inferences.

Now let π(ψ) denote the joint prior density of the parameters. Then the joint posterior density

is defined by

π(ψ,u|y) =

m∏
i=1

f(yi|ui,ψ)G(ui,θ)π(ψ)

∫ m∏
i=1

f(yi|ui,ψ)G(ui,θ)π(ψ)dudψ

,

which is not available in closed form because of the same intractable integrals that cause trouble

in the likelihood function. Because of the usefulness and easy implementation of the MCMC

algorithms for sampling from this joint posterior density the most commonly used approach for

inference in these models is based on Bayesian methods.

2.2. Definitions and Preliminary Results

Some notations and calculations are needed in the sequel. Considering (1) we can write

π(ψ,u|y) = π(u|y,ψ)π(ψ|y) = π(u|y,ψ)L(ψ;y)π(ψ).

Hence,

log(
π(ψ,u|y)
π(ψ)

) = log π(u|y,ψ) + logL(ψ;y) = gn(u) + ℓn(ψ).

Assume that the functions gn(u) and ℓn(ψ) are twice continuously differentiable with respect to u

and ψ respectively. Let ∇gn(u) and ∇ℓn(ψ) be the vectors of first-order partial derivatives, and

∇2gn(u) and ∇2ℓn(ψ) be the matrices of second-order partial derivatives with respect to u and ψ
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respectively. Here and subsequently, let ψ̂n be the MLE of ψ satisfying ∇ℓn(ψ) = 0 and ũn be

the mode of gn(u).

To facilitate asymptotic theory arguments, whenever the ψ̂n and ũn exist and −∇2ℓn(ψ) and

−∇2gn(u) are positive definite, we define Fn, Gn, zn and wn as follow:

F T
n Fn = −∇2ℓn(ψ̂n), zn = Fn(ψ − ψ̂n), (2)

GT
nGn = −∇2gn(ũn), wn = Gn(u− ũn), (3)

otherwise define them arbitrarily, in a measurable way. Then the joint posterior density of (zn,wn)

is given by

πn(zn,wn|y) ∝ πn(ψ(zn),u(wn)|y) ∝ eℓn(ψ)−ℓn(
ˆψn)egn(u)−gn(ũn)π(ψ). (4)

Let ψ0 and u0 denote the true underlying parameter and the true realization of random effects

respectively. Let also P c
n and Ec

n denote the conditional probability and expectation given data y.

In what follows, unless indicated otherwise, all probability statements are with respect to the true

underlying probability distribution. Then we want to show

P c
n((zT

n ,w
T
n )T ∈ B) −→ Φd+q(B),

in probability as n→∞, where B is any Borel set in ℜd+q and Φd+q is the standard d+ q-variate

Gaussian distribution.

To conduct the posterior distribution in a form suitable for Stein’s Identity (see Appendix A),

we need following calculations. For converting ℓn(ψ) into a form close to normal, we first take a

Taylor’s expansion of ℓn(ψ) at ψ̂n:

ℓn(ψ) = ℓn(ψ̂n) +
1
2
(ψ − ψ̂n)T∇2ℓn(ψ∗)(ψ − ψ̂n),

where ψ∗ lies between ψ and ψ̂n. Let

kn(ψ) = −1
2
(ψ − ψ̂n)T [∇2ℓn(ψ̂n)−∇2ℓn(ψ∗)](ψ − ψ̂n). (5)

Thus,

ℓn(ψ) = ℓn(ψ̂n)− 1
2
‖zn‖2 + kn(ψ). (6)

With parallel arguments, we have

gn(u) = gn(ũn)− 1
2
‖wn‖2 + ln(u), (7)
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where

ln(u) = −1
2
(u− ũn)T [∇2gn(ũn)−∇2gn(u∗)](u− ũn), (8)

and u∗ lies between u and ũn. Therefor, we can rewrite the posterior (4) as

πn(zn,wn|y) ∝ φd(zn)φq(wn)fn(zn,wn), (9)

where fn(zn,wn) = exp{kn(ψ)+ln(u)}π(ψ(zn)) and φt(·) displays the standard t-variate Gaussian

density.

Note that from (6) and (7) we have

∇kn(ψ) = ∇ℓn(ψ)−∇2ℓn(ψ̂n)(ψ − ψ̂n),

∇ln(u) = ∇gn(u)−∇2gn(ũn)(u− ũn).

These imply that

∇kn(ψ) = [(
∂2ℓn
∂ψi∂ψj

(ψ∗ij))−∇2ℓn(ψ̂n)](ψ − ψ̂n),

∇ln(u) = [(
∂2gn

∂ui∂uj
(u∗ij))−∇2gn(ũn)](u− ũn),

where (∂2ℓn/∂ψi∂ψj)(ηij) and (∂2gn/∂ui∂uj)(ηij) denote the Hessian matrices of ℓn(ψ) and gn(u)

with its (i, j)-component evaluated at ηij respectively. Therefore,

(F T
n )−1∇kn(ψ) =

{
Id − (F T

n )−1[−(
∂2ℓn
∂ψi∂ψj

(ψ∗ij))]F−1
n

}
zn, (10)

(GT
n )−1∇ln(u) =

{
Iq − (GT

n )−1[−(
∂2gn

∂ui∂uj
(u∗ij))]G−1

n

}
wn. (11)

Suppose also ∇znf(zn,wn) and ∇wnfn(zn,wn) denote the partial derivatives of fn(zn,wn) with

respect to zn and wn respectively and ∇π(ψ) the derivative of prior distribution with respect to

ψ. Hence,

∇znfn(zn,wn)
fn(zn,wn)

= (F T
n )−1

{∇π(ψ)
π(ψ)

+∇kn(ψ)
}
, (12)

∇wnfn(zn,wn)
fn(zn,wn)

= (GT
n )−1∇ln(u). (13)

Let also D = D1 ∪D2, in which D1 = {∇ℓn(ψ̂n) = 0,−∇2ℓn(ψ̂n) > 0} and D2 = {∇gn(ũn) =

0,−∇2gn(ũn) > 0}. Here A > 0 means that the matrix A is positive definite. The following lemma

and corollary are essential for establishing the asymptotic normality of posterior distribution of a

GLMM.
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Lemma 1. Let s be a nonnegative integer. Suppose that π(ψ) satisfies (A1) and (A2). Then for

all h : ℜd+q −→ ℜ where h ∈ Hs,

Ec
n[h(zn,wn)]− Φh = Ec

n

{
(Uh(zn,wn))T [

∇znfn(zn,wn)
fn(zn,wn)

,
∇wnfn(zn,wn)
fn(zn,wn)

]
}
,

a.e. on D as n −→ ∞.

The proof of Lemma 1 is an extended form of the proof of Proposition 3.2 of Weng and Tsai

(2008).

Corollary 1. Partitioning Uh(zn,wn) to (Uh1(zn), Uh2(wn)), we can say that the necessary and

sufficient conditions to establish asymptotic normality of joint posterior distribution are

Ec
n

{
(Uh1(zn))T [

∇znfn(zn,wn)
fn(zn,wn)

]
}

−→ 0,

Ec
n

{
(Uh2(wn))T [

∇wnfn(zn,wN )
fn(zn,wn)

]
}

−→ 0,

a.e. on D as n −→ ∞.

3. Asymptotic Normality of Posterior Distribution

In this section we establish the main result and represent a result considering more general

priors for parameters. First, let

S =
{
(zn,wn) : zn = Fn(ψ − ψ̂n),wn = Gn(u− ũn);ψ ∈ Ψ,u ∈ Λ

}
, (14)

where Λ is an open subset of ℜq. Moreover, for any k × k matrix J , let ‖J‖2 = λmax(JTJ) be the

spectral norm of J and let N(a; r) denote a neighborhood of a with radius r.

The following theorem, reveals the asymptotic normality of joint posterior distribution of the

parameters and the random effects of GLMMs. One attractive feature of the theorem is to select a

flexible random effects distribution such that gn(u) just satisfies some conditions. Then, it presents

that the assumed model for the random effects, subject to gn(u) satisfies (C1)-(C4), does not affect

the asymptotic normality of joint posterior distribution. This may encourage someone to use of

the approximate normal distributions for detecting the model misspecification using sensitivity

analysis of the random effects distribution.
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Theorem 1. Suppose that h be any bounded measurable function as in Lemma 2 in Appendix C.

Moreover, suppose that the prior π(ψ) satisfies (A1)-(A3), ℓn(ψ) satisfies (B1)-(B4) and gn(u)

satisfies (C1)-(C4). Then, Ec
n[h(zn,wn)]

p−→ Φh.

Proof. See Appendix C.

Note that we have to consider distributions which justify the regularity conditions. Therefor,

someone has to first check to hold the regularity conditions and then apply the asymptotic normal

distributions as approximate distributions of posteriors.

The conditions (A1) and (A2) exclude priors that are not continuously differentiable and have

not compact supports such as uniform. The following Corollary presents that the result of Theorem

1 holds for more general priors.

Corollary 2. Following Weng and Tsai (2008, Theorem 4.2 and 4.3) and the proof of Theorem 1,

asymptotic normality of joint posterior distribution of the parameter vector and the random effects

for a GLMM, holds with priors that must be continuous but need not have compact supports, be

bounded or be differentiable such as normal or Gamma(p, ν) with a shape parameter p < 1.

4. Examples

To illustrate the obtained theoretical results, we have considered two examples on spatial dis-

crete data. In the first example, we demonstrate the asymptotic normality of posterior densities

of the parameters of a spatial GLMM (SGLMM) with count Poisson responses. In the second

example, we simulate a spatially correlated binary data set on a 8× 8 equally-spaced regular grid

of locations with a skew normal distribution for random effects. To explore the effect of misspec-

ification on inferences and asymptotic distribution of joint posterior using a sensitivity analysis,

we reanalyze the second simulation example by considering normal distribution for spatial random

effects while the true mixing distribution is skew normal.

4.1. Rongelap Data of Radionuclide Counts

Rongelap data is one of the data sets used in Diggle et al. (1998) and is provided in R package,

geoRglm (Christensen and Ribeiro Jr, 2002). The observations were made at 157 registration sites,

si; i = 1, . . . , 157, and the latent spatial random effect is modeled by a Gaussian distribution. The
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data contains radionuclide count for various time durations mi. Also no explanatory variables have

been used previously for this data and we just have a constant term, β0.

Following Baghishani and Mohammadzadeh (2010), for the spatial latent random effect, we use

an isotropic stationary exponential covariance function

C(h;θ) = σ2 exp
(
−‖h‖

φ

)
, h ∈ ℜ2, (15)

in which θ = (σ2, φ) and ‖·‖ denotes the Euclidean norm and a log link function is used. The prior

distributions are considered to be independent. We use a normal prior, N(2, 92), for β0, a flat prior

for σ2 and an exponential prior with mean 150 for φ. The posterior densities of the parameters

obtain by using MCMC sampling. The MCMC sampler is a Langevin–Hastings scheme introduced

by Christensen and Waagepetersen (2002). Proposal variance and truncation constant for imple-

mentation of the algorithm are considered 0.012 and 300 respectively. The approximate normal

distributions are also obtained using Laplace approximation applied by Eidsvik et al. (2009). The

normal approximation is computed at the mode of the full conditional density for spatial random

effects, π(u|ψ,y) using Newton-Raphson optimization and fitting the covariance matrix at this

mode. Then, the approximate normal density for the model parameters is obtained by expression

(11) of Eidsvik et al. (2009).

—

Figure 1 about here.

—

Figure 1 shows the marginal posterior densities estimates of (β0, σ
2, φ) as well as 6 selected

sites of the spatial random effects, (9, 32, 51, 77, 98, 153), which are obtained from retaining 10000

samples every 10 iterations after an initial burn-in period 1000 iterations. Approximate normal

densities are also drawn in the figure. It is clear that the univariate normal distributions give

very good approximations to the marginal posterior distributions and the approximation bias is

negligible. Figure 2 also shows the contour plots of three pairs of the parameters (β, σ2), (β, φ)

and (σ2, φ) with superimposed MCMC samples to confirm goodness of the approximation.

—

Figure 2 about here.

—
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4.2. A SGLMM with the Skew Normal Random Effects

In the class of GLMMs, most users are satisfied using a Gaussian distribution for the random

effects, but it is unclear whether the Gaussian assumption holds. To show that the joint posterior

normality, under conditions above, holds for other mixing distributions, we use a skew normal

distribution for the spatial latent random effects in a SGLMM (Hosseini et al., 2010). The skew

normal distribution (Azzalini, 1985) is more flexible since it includes the normal with an extra

parameter λ to simplify symmetry. For an n-dimensional random vector y a multivariate skew

normal density is given by

f(y|µ,Σ,λ) = 2φn(y;µ,Σ)Φ(λT Σ−
1
2 (y − µ)), (16)

in which λ ∈ ℜn is an n-dimensional skewness parameter. If λ = 0 the density (16) reduces to the

multivariate normal distribution.

We simulate spatially binary data on a 8× 8 equally-spaced regular grid of locations with the

following model:

f(yi|β) =
(

exp(ηi)
1 + exp(ηi)

)yi
(

1− exp(ηi)
1 + exp(ηi)

)1−yi

,

g(µi) = ln(
pi

1− pi
) = ηi = β0 + β1d1i + ui, i = 1, . . . , n,

where ui = u(si); i = 1, . . . , n, is a realization of a zero mean multivariate skew normal distribution

with covariance function (15) and d1i is the first component of ith location, i.e. si = (d1i, d2i). In

this example, parameters are fixed at (β0, β1, σ
2, φ, λ0) = (2, 1.5, 1.25, 3, 15) in which λ = λ01. The

prior distributions are considered to be independent. We use normal priors N(0, 22), N(0.5, 22) and

N(10, 32) for β0, β1 and λ0 respectively, an inverse Gaussian prior IG(3, 3) for σ2, and a gamma

prior Γ(1, 1
2 ) for φ.

—

Figure 3 about here.

—

—

Figure 4 about here.

—

To approximate the posterior distributions of the parameter vector and random effects, we

use a Metropolis-Hastings random walk sampler. Similar to previous example, the approximate
10



—

Figure 5 about here.

—

normal distributions are obtained in a manner similar to the Laplace approximation applied by

Eidsvik et al. (2009) but based on the closed skew normal (CSN) (Dominguez-Molina et al., 2003)

approximation instead of the usual normal approximation, see Hosseini et al. (2010) for more de-

tails. In this case, the approximation of the full conditional distribution of spatial latent random

effects is CSN, but when n −→ ∞ it converges to a normal distribution as well. To explore the

effect of misspecification on inferences and asymptotic distribution of joint posterior, we also con-

sider a normal distribution for spatial random effects while the true underlying mixing distribution

is skew normal and compute joint posterior as well as approximate normal under this misspecified

assumption with the same priors and initials considered for skew normal assumption.

Note that it is not our focus to check, rigourously, if the regularity conditions hold with this

selection for the random effects distribution. But, by a heuristic argument, we can expect that the

conditions hold utilizing good properties of CSN distribution similar to normal distribution.

Figure 3(a) presents the marginal posterior densities estimates for the parameters under two

correct and misleading assumptions for mixing distribution along with corresponding approximate

normal distributions. The samples are obtained, separately for both model, from retaining 1000

samples every 10 iterations after an initial burn-in period 1000 iterations. It is clear that the

asymptotic normality under two assumptions perform good except for σ2 with reasonable poor

approaching. However, the misspecification leads to substantial bias in the estimates of the depen-

dency parameters, σ2 and φ. Especially, it seems that the range parameter φ does not estimate

consistently under the misspecification. It is not the case for fixed effects and misspecifying the

model for the random effects only results in a small amount of bias in estimates for the fixed effects.

Figure 4 also represents the marginal posterior densities estimates for the random effects of 6

selected sites (1, 9, 25, 36, 42, 64), under correct and misleading assumptions. Their approximate

normal densities are also drawn in the figure. The misspecification has mild effect on the random

effects rather than dependency parameters. Figure 5 also shows the contour plots of three pairs of

the parameters (β0, β1), (σ2, φ) and (φ, λ) with superimposed MCMC samples. This figure confirms

goodness of the normal approximations for posterior distributions as well.
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5. Discussion

Bayesian inference methods are used extensively in the analysis of generalized linear mixed

models, but it may be difficult to handle the posterior distributions analytically. Further, exploring

of the asymptotic posterior distributions is not well studied in the literature as well. Yee et al.

(2002) introduced a method to achieve asymptotic joint posterior normality in situations where

full conditional distributions corresponding to two normalized blocks of variables, with one block

consisting of the model parameters and the second block consisting of the random effects, have

asymptotic normal distributions. Su and Johnson (2006) also generalized the work of Yee et al.

(2002) for b blocks of variables under simplified conditions. There are limitations for using their

method. In their method it is shown that if the limiting conditional distributions are compatible

in the sense of Arnold and Press (1989) and the full conditional distributions have asymptotic

normal distributions, then the joint posterior will be asymptotic normal. Furthermore, as they have

hinted, the posterior approximations will be poor whenever the posterior mean of any component

of a block is less than two standard deviations from a boundary of the parameter space. In this

paper, we established the asymptotic normality of joint posterior distribution of the parameters

and the random effects of a GLMM by extending the work of Weng and Tsai (2008). This approach

covers more general priors with respect to some previous related works such as Weng (2003). In

addition it bears conditions which in some situations justify the asymptotic normality of posterior

distributions when introduced conditions of others like Sweeting (1992) are to be failed.

One topic that has received much attention lately is to detect random effects model misspecifi-

cation in GLMMs (Huang, 2008). The problem in detecting misspecification for the random effects

is mainly due to the fact that there is no data realization for the random effects. Agresti et al.

(2004) suggested comparing results from both parametric and nonparametric methods, arguing

that a substantial discrepancy between the two analyses indicates model misspecification. In this

work, as many recent researches, we showed that, by simulation study, misspecifying the random

effects distribution in GLMMs leads to inconsistent estimators especially for the covariance pa-

rameters. One advantage of our work is to use the approximate normal distributions that are

obtained under different model assumption for the random effects to detect the misspecification

using sensitivity analysis. For example, this method can be used in the sensitivity analysis of the

model to the common assumption of normal distribution for the random effects. If there is not
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much difference in results, the normal appears sufficient. Then this approximation can be a fast

alternative for using in diagnostic methods for random effects model misspecification in GLMMs.
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Appendix A. Modified Stein’s Identity

In this appendix we derive a version of Stein’s Identity with extension of work of Weng and Tsai

(2008) and use of it to establish the asymptotic posterior normality of the parameters and the

random effects simultaneously in GLMMs in the Section 3.

Let Γ be a finite signed measure of the form dΓ = fdΦr in which f is a real-valued function

defined on ℜr satisfying
∫ |f |dΦr <∞. Write Φrh =

∫
hdΦr for functions h for which the integral

is finite and also write Γh =
∫
hdΓ. For s ≥ 0, let Hs be the collection of all measurable functions

h : ℜr −→ ℜ for which |h(a)| ≤ c(1 + ‖a‖s) for some c > 0, where a ∈ ℜr and let H = ∪s≥oHs.

Given h ∈ Hs, let h0 = Φrh, hr = h, and

hj(b1, . . . , bj) =
∫
ℜr−j

h(b1, . . . , bj ,e)Φr−j(de),

gj(b1, . . . , br) = e
1
2
b2j

∫ ∞

bj

{hj(b1, . . . , bj−1, c) − hj−1(b1, . . . , bj−1)}e−
1
2
c2dc,

for −∞ < b1, . . . , br <∞ and j = 1, . . . , r. Then let Uh = (g1, . . . , gr)T . Following lemma, modifies

the Stein’s Identity.

Lemma 2. (Weng and Tsai, 2008). Let s be a nonnegative integer and let dΓ = fdΦr, where f

is differentiable on ℜr such that∫
ℜr

|f |dΦr +
∫
ℜr

(1 + ‖a‖s)‖∇f(a)‖Φr(da) <∞.

Then

Γh− Γ1 · Φrh =
∫

(Uh(a))T∇f(a)Φr(da),

for all h ∈ Hs.
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Appendix B. Regularity Conditions

Three conditions on prior distribution are needed.

(A1) π(ψ) is continuously differentiable on ℜd.

(A2) π(ψ) has a compact support Ψ ⊂ ℜd

(A3) There exist ǫ0 and δ0 such that π(ψ) > ǫ0 over N(ψ0; δ0).

We also consider the regularity conditions of Weng and Tsai (2008) for ℓn(ψ) and similar mod-

ified versions of gn(u). The following conditions are required for ℓn(ψ).

(B1) P (Dc
1) −→ 0, ‖F−1

n ‖ p−→ 0, and ψ̂n
p−→ ψ0 as n −→ ∞, where

p−→ denotes convergence in

probability.

(B2) There exists an increasing sequence of positive constants {b1n} that converges to ∞, such

that

sup
ηij∈{ψ:‖zn‖≤b1n}

‖Id + (F T
n )−1(∂2ℓn/∂ψi∂ψj(ηij))F−1

n ‖ p−→ 0.

(B3) Let b1n be as in (B2). There exist constants r1 ≥ 1 and c1 ≥ 0 such that for all ψ ∈ {‖zn‖ >
b1n} ∩Ψ, ‖(F T

n )−1∇kn(ψ)‖ ≤ c1‖zn‖r1 .

(B4) There exist constant r1 ≥ 1 and a nonnegative function v1 : ℜ+ ×ℜd −→ ℜ for which, with

probability tending to 1 and ∀ψ ∈ Ψ, [ℓn(ψ̂n)−ℓn(ψ)] ≥ v1(t,ψ), e1n(ψ) = (detFn)‖zn‖r1e−v1(t,ψ)

are uniformly integrable in t and
∫
Ψ
e1n(ψ)dψ are uniformly bounded in t.

The following conditions are also required for gn(u).

(C1) P (Dc
2) −→ 0, ‖G−1

n ‖ p−→ 0, and ũn
p−→ u0 as n −→ ∞.

(C2) There exists an increasing sequence of positive constants {b2n} that converges to ∞, such

that

sup
ζij∈{u:‖wn‖≤b2n}

‖Iq + (GT
n )−1(∂2gn/∂ui∂uj(ζ ij))G−1

n ‖ p−→ 0.

(C3) Let b2n be as in (C2). There exist constants r2 ≥ 1 and c2 ≥ 0 such that for all u ∈ {‖wn‖ >
b2n} ∩Λ, ‖(GT

n )−1∇ln(u)‖ ≤ c2‖wn‖r2 .
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(C4) There exist constant r2 ≥ 1 and a nonnegative function v2 : ℜ+ ×ℜq −→ ℜ for which, with

probability tending to 1 and ∀u ∈ Λ, [gn(ũn)−gn(u)] ≥ v2(t,u), e2n(u) = (detGn)‖wn‖r2e−v2(t,u)

are uniformly integrable in t and
∫
Λ
e2n(u)du are uniformly bounded in t.

As Weng and Tsai (2008) have represented, the first two conditions (B1)-(B2) for ℓn(ψ) and

(C1)-(C2) for gn(u) regard information growth and continuity, respectively, and the last two

conditions (B3)-(B4) for ℓn(ψ) and (C3)-(C4) for gn(u) concern some integrability properties of

exp{ℓn(ψ̂n) − ℓn(ψ)} and exp{gn(ũn) − gn(u)} over S, respectively, which essentially involve the

tail behavior of ℓn(ψ) and gn(u). Also note that the uniformly bounded conditions in (B4) and

(C4) are guaranteed by the uniformly integrability, provided that Ψ and Λ are bounded. Fur-

thermore, Weng and Tsai (2008) compared these conditions with conditions of Weng (2003) and

Sweeting (1992). They showed that, by examples, their conditions are more easy to check nonlocal

behavior of the posterior distribution. For more details see Weng and Tsai (2008, Section 5).

Appendix C. Proof of Theorem 1

For proving the Theorem 1, we need the following lemmas.

Lemma 3. (Weng and Tsai, 2008). If h is a bounded measurable function, then ‖Uh(a)‖ ≤ c0

for some c0 > 0 and for all a ∈ ℜr. Moreover if h(a) = ‖a‖s, s ≥ 1, then for some cs > 0

‖Uh(a)‖ ≤ cs(1 + ‖a‖s−1).

Lemma 4. (Weng and Tsai, 2008) Under the regularity conditions there exist 0 < K3 < ∞ such

that, with probability tending to 1,

Ec
n{‖∇π(ψ)‖/π(ψ)} ≤ K3.

Considering (5)-(8) and the regularity conditions above, two following lemmas are obtained so

that their validates are established following results of Weng and Tsai (2008) but for both ℓn(ψ)

and gn(u).

Lemma 5. 1. If (B2) and (C2) hold, there exist constants p1, p2, q1 and q2 such that, with

probability tending to 1,

sup
ψ:‖zn‖≤p1

{ℓn(ψ̂n)− ℓn(ψ)} ≤ q1,

sup
u:‖wn‖≤p2

{gn(ũn)− gn(u)} ≤ q2.
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2. If (B3) and (C3) hold, then for some 0 < M <∞, with probability tending to 1,∫
S
e{ℓn(ψ)−ℓn(

ˆψn)}e{gn(u)−gn(ũn)}dzndwn < M,∫
S
‖zn‖‖wn‖e{ℓn(ψ)−ℓn(

ˆψn)}e{gn(u)−gn(ũn)}dzndwn < M,∫
S′
‖zn‖r1‖wn‖r2e{ℓn(ψ)−ℓn(

ˆψn)}e{gn(u)−gn(ũn)}dzndwn
p−→ 0,

where, S
′
= S ∩ {‖zn‖ > b1n} ∩ {‖wn‖ > b2n}.

Lemma 6. Let fn(zn,wn) and S be as in (9) and (14) respectively. Suppose that π(ψ) satisfies

(A1)-(A3). Then,

D1 If (B1), (B2), (C1) and (C2) hold, then there exists K1 > 0 such that, with probability tending

to 1, ∫
S
φd(zn)φq(wn)fn(zn,wn)dzndwn > K1.

D2 If (B4) and (C4) hold, then there exists K2 > 0 such that, with probability tending to 1,∫
S
φd(zn)φq(wn)fn(zn,wn)dzndwn < K2.

Proof of Theorem 1: Note that Uh and π(ψ) are bounded by Lemma 3 and (A1)-(A2). From

(12), (13) and Lemma 1, for a.e. on D, we have

Ec
n[h(zn,wn)]− Φh = Ec

n,zn
+ Ec

n,wn
,

as n −→∞, where

Ec
n,zn

= Ec
n

{
(Uh1(zn))T (F T

n )−1∇π(ψ)
π(ψ)

}
(17)

+ Ec
n

{
(Uh1(zn))T (F T

n )−1∇kn(ψ)
}

= Izn + IIzn

Ec
n,wn

= Ec
n

{
(Uh2(wn))T (GT

n )−1∇ln(u)
}

= Iwn . (18)

Since P (Dc
1) −→ 0 by (B1) and P (Dc

2) −→ 0 by (C1), it suffices to show Izn + IIzn

p−→ 0 and

Iwn

p−→ 0. First component of right hand side of (17), Izn , converges to zero by Lemma 4 and

‖F−1
n ‖ p−→ 0 under (B1). Moreover, from (17) we have,

IIzn =

∫
S(Uh1(zn))T (F T

n )−1∇kn(ψ)φd(zn)φq(wn)fn(zn,wn)dzndwn∫
S φd(zn)φq(wn)fn(zn,wn)dzndwn

. (19)
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The denominator of (19) is bounded below by some K1 > 0 by Lemma 6(D1). Then we just need

to show that the numerator converges to 0 in probability. First we decompose the numerator into

two integrals over ‖zn‖ ≤ b1n and ‖zn‖ > b1n and call the corresponding integrals as IIzn,1 and

IIzn,2 respectively. With respect to (10), (A1)-(A2) and Lemma 3, there exists a constant C1 > 0

such that

|IIzn,1| ≤
∫
‖zn‖≤b1n

|(Uh1(zn))T (F T
n )−1∇kn(ψ)|π(ψ)eℓn(ψ)−ℓn(

ˆψ)egn(u)−gn(ũ)dzndwn

≤ C1 sup
ψ:‖zn‖≤b1n

‖Id − (F T
n )−1[−(

∂2ℓn
∂ψi∂ψj

)(ψ∗ij)]F−1
n ‖

×
∫
‖zn‖≤b1n

‖zn‖eℓn(ψ)−ℓn(
ˆψ)egn(u)−gn(ũ)dzndwn,

where the relations between ψ and zn and u and wn are given in (2) and (3). Using (B2) and

Lemma 5, part 2, we conclude that IIzn,1
p−→ 0. Next, by (B3), (A1)-(A2) and Lemma 3, there

exists a constant C2 > 0 such that

|IIzn,2| ≤ C2

∫
S∩{‖zn‖>b1n}

‖zn‖r1eℓn(ψ)−ℓn(
ˆψ)egn(u)−gn(ũ)dzndwn,

which using Lemma 5, part 2, converges to 0 in probability. Hence, IIzn

p−→ 0. Similarly,

Iwn

p−→ 0 follows from (A1)-(A2), (C2)-(C3), (11), Lemma 3 and Lemma 5, part 2. This completes

the proof.
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Figure 1: Rongelap data. (a): Posterior densities (solid) for parameters (β0, σ
2, φ). (b): Posterior densities of the

random effects (solid) for 6 selected sites (9, 32, 51, 77, 98, 153). The dashed curves are approximate normal densities.
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Figure 2: Rongelap data. Contour plots of the normal approximations of the joint posterior distribution of (a)

(β, σ2), (b) (β, φ) and (c) (σ2, φ). The points represent obtained samples from MCMC sampling.
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Figure 3: Simulation study. (a): Posterior densities estimates for the parameters of spatial GLMM, (β0, β1, σ
2, φ)

obtained by two correct skew normal (thick solid) and misleading normal (thick dashes) assumptions for mixing

distribution along side corresponding approximate normal densities (thin dot-dash and thin solid, respectively). (b):

Posterior density estimate of λ (solid) along side its approximate normal density (dot-dashes).
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Figure 4: Simulation study. Posterior densities estimates for the random effects for 6 selected sites (1, 9, 25, 36, 42, 64)

computed by two correct skew normal (thick solid) and misleading normal (thick dashes) assumptions for mixing

distribution along side corresponding approximate normal densities (thin dot-dash and thin solid, respectively).
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Figure 5: Simulation study. Contour plots of the normal approximations of the joint posterior distribution of (a)

(β0, β1), (b) (σ2, φ) and (c) (φ, λ). The points represent obtained samples from MCMC sampling.
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