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1 Introduction

State space models, also known as dynamic models in the Bayesian literature, are a broad class
of parametric models with time varying parameters where both, the parameter variation and
the available data information are described in a probabilistic way. They find application in the
modeling and forecasting of time series data and regression (for a comprehensive treatment see
for example West and Harrison, 1997; Durbin and Koopman, 2001). In this report we propose
and illustrate through a series of examples, a computational framework to perform approxi-
mate inference in linear and generalized linear dynamic models based on the Integrated Nested
Laplace Approximation (INLA) approach, which overcome some limitations of computational
tools currently available in the dynamic modeling literature. INLA is a recent approach pro-
posed by Rue and Martino (2007) and Rue et al. (2009) to perform fast Bayesian inference
through the accurate approximation of the marginal posterior densities of hyperparameters and
latent variables in latent Gaussian models. This class of statistical models embraces a wide range
of models commonly used in applications, including generalized linear models, generalized addi-
tive models, smoothing spline models, semi-parametric regression, spatial and spatio-temporal
models, log-Gaussian Cox processes, geostatistical and geoadditive models, besides state space
models.

An efficient computational implementation of the procedures needed by the INLA approach
was made in the open source library GMRFLib, a C-library for fast and exact simulation of
Gaussian Markov random fields (Rue and Follestad, 2002). A user friendly interface for using
INLA with the R programming language (R Development Core Team, 2010), hereinafter referred
to as the INLA library, is also available from the web page http://www.r-inla.org/. Most
of the latent models mentioned above have been successfully fitted using the INLA library and
many examples are available from the INLA web page.

Currently just univariate dynamic models with a simple random walk evolution, such as
first order and dynamic regression models, can be directly fitted by the INLA library. However,
for more complex cases, such as growth models and spatio-temporal dynamic models, it is
still possible to formulate specific latent models in a state-space form in order to perform
approximate inference on them using INLA. The main aim of this report is to show how to
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use the INLA library to perform inference in linear and generalized linear dynamic models. An
inference framework to achieved this goal is proposed and illustrated with simulated and real life
examples. A first approach uses existing model options in the INLA library to model random
walk evolution and seasonal behavior of the different components of the dynamic models. A
generic approach is also proposed to formulate and fit dynamic models in a more general setting,
which is useful with more complex models, such as spatio-temporal dynamic models. This
generic approach consists in merging the actual observations from the observational equation
with “pseudo” observations coming from the evolution equations of the dynamic model in a
unique structure and fit this augmented latent model in INLA considering different likelihoods
for the observations and states. The combination of the two approaches is also possible. We
show how this inference framework enables the fitting of several kinds of dynamic models,
including realistically complex spatio-temporal models, in a short computational time and in a
user friendly way.

The rest of the paper is organised as follows. In Section 2 we briefly introduce dynamic
models and the main computational approaches in the literature to perform inference on this
class of models. Section 3 describes the basics of the INLA computational approach. The
proposed framework to fit dynamic models using INLA is illustrated in Section 4 through a
series of simulated examples, firstly with the most common types of dynamic models and then
with two cases of a complex spatio-temporal dynamic model. In Section 5 some well known
worked examples from the literature are considered and their fitting using the INLA library is
compared with current approaches. Concluding remarks and future work are stated in Section
6.

2 Dynamic models

According to Migon et al. (2005), dynamic models can be seen as a generalization of regres-
sion models, allowing changes in parameter values throughout time by the introduction of an
equation governing the temporal evolution of regression coefficients. In the Gaussian case they
consist on the couple of equations

yt = F ′
tXt + νt, νt ∼ N(0, Vt) (1)

Xt = GtXt−1 + ωt, ωt ∼ N(0,Wt), (2)

where yt is a time sequence of scalar observations, Xt is a sequence of state (latent) parameters
describing locally the system. It is assumed that yt is conditionally independent given Xt.
Ft is a vector of explanatory variables and Gt is a matrix describing the states evolution. The
disturbances νt and ωt are assumed to be both serially independent and also independent of each
other. Therefore, the model is completely specified by the quadruple {Ft; Gt;Vt; Wt}. When
these quantities are known, inference on the states Xt can be performed analytically through
an iterative procedure using the Kalman filter algorithm (for details see for example West and
Harrison, 1997).

On the other hand, when the hyperparameters Vt and Wt are unknown, inference in dy-
namic linear models is not available analytically. In order to circumvent this problem, several
proposals to perform approximate inference in DLMs have appeared in the literature. Early
work includes approaches based on the extended Kalman filter (Jazwinski, 1970) or on Gaussian
quadratures (Pole and West, 1990). In recent years, considerable attention has been concen-
trated in simulation-based approaches, such as sequential Monte Carlo also known as particle
filters (e.g., Gordon et al., 1993; Godsill et al., 2004) and especially Markov chain Monte Carlo
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(MCMC) methods. The later is currently the most common approach to inference in dynamic
models (e.g., Gamerman, 1998; Reis et al., 2006) due to its generality and capability to obtain
samples from the the posterior distribution of all unknown model parameters in an efficient way.
However, MCMC implementation is more involved and it suffers from a series of well known
problems that have hindered its wider utilization in applied settings. For example, convergence
can be quite difficult to diagnose and the computational cost may become prohibitively high
for complex models, as is the case of spatio-temporal dynamic models. The Monte Carlo errors
are also intrinsically large and strong correlation among parameters is common, leading the
algorithms slow.

A sort of computational tools to fit dynamic models using some of the inference methods
mentioned above have also appeared in the literature to aid end users to benefit from metho-
dological developments. The first of them was the Bats software (West et al., 1988; Pole et
al., 1994), a package for time series analysis and forecasting using Bayesian dynamic modeling
developed in the late 80’s by the “Bayesian Forecasting Group” of Warwick University. It deals
with univariate time series and dynamic regression models. It performs sequential estimation
and uses a discount factor approach to model the unknown variances.

The SsfPack library (Koopman et al.,1999), a module for the programming language Ox,
provides functions for likelihood evaluation and signal extraction of linear Gaussian state space
models, with support for estimating some non-Gaussian and nonlinear models using importance
sampling and Markov chain Monte Carlo (MCMC) methods.

More recently some R packages and functions to fit dynamic linear and generalized linear
models have been developed. The function StructTS written by Bryan Ripley (see Ripley,
2002) fits linear Gaussian state-space models (also called structural models) for univariate time
series by maximum likelihood, by decomposing the series in trend and/or seasonal components.
The dlm package (Petris, 2010), performs maximum likelihood, Kalman filtering and smoothing,
and Bayesian analysis of Gaussian linear dynamic models. It applies Kalman filter to compute
filtered values of the state vectors, together with their variance/covariance matrices. The calcu-
lations are based on the singular value decomposition (SVD) of the relevant matrices. Variance
matrices are returned in terms of their SVD. It also implements a Gibbs sampler for a univariate
DLM having one or more unknown variances in its specification.

The sspir package (Dethlefsen and Lundbye-Christensen, 2006) includes functions for Kalman
filtering and smoothing of dynamic linear and generalized linear models. Estimation of vari-
ance matrices can be performed using the EM algorithm in the Gaussian case, but it requires
that the variance matrices to be estimated are constant. Non-Gaussian state space models are
approximated to a Gaussian state-space model through an iterative procedure based on an iter-
ated extended Kalman filter. This procedure is for the calculation of the conditional mean and
variance of the latent process (not for the hyperparameters). The KFAS package (Helske, 2010),
also provides functions for Kalman filtering and smoothing of univariate exponential family
state space models. It allows diffuse initialization when distributions of some or all elements of
initial state vector are unknown.

These computational tools have significantly contributed to a wider use of dynamic models
in applied settings. However, support remains incomplete in some particular aspects of dynamic
modeling. For example, the above approaches in general allow missing values just in the obser-
vation vector, but not in the covariates. As we leave the Gaussian univariate case, estimation
of hyperparameters and its uncertainty is not as straightforward to obtain. Estimation of more
complex dynamic models as is the case of the spatio-temporal ones is not possible with these
tools. In the next sections we show how the INLA approach can be used to fill these gaps in a
simple and flexible way.
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3 The Integrated Nested Laplace Approximation (INLA) ap-
proach

INLA is a computational approach recently introduced by Rue et al. (2009) to perform Bayesian
inference in the broad class of latent Gaussian models, that is, models of an outcome variable yi

that assume independence conditional on some underlying (unknown) latent field ξ and a vector
of hyperparameters θ. It was proposed as an alternative to the usually time consuming MCMC
methods. Unlike MCMC where posterior inference is sample-based, the INLA computational
approach approximates the posteriors of interest with a closed form expression. Therefore,
problems of convergence and mixing, inherent to MCMC runs, are not an issue. The main aim
of the INLA approach is to approximate the marginal posteriors for the latent variables as well
as for the hyperparameters of the Gaussian latent model, given by

π(ξi | Y ) =
∫

π(ξi | θ, Y )π(θ | Y )dθ (3)

π(θj | Y ) =
∫

π(θ | Y )dθ−j . (4)

This approximation is based on an efficient combination of (analytical Gaussian) Laplace
approximations to the full conditionals π(θ | Y ) and π(ξi | θ,Y ), i = 1, · · · , n, and numerical
integration routines to integrate out the hyperparameters θ.

The INLA approach as proposed in Rue et al. (2009) includes three main approximation
steps to obtain the marginal posteriors in (3) and (4). The first step consists in approximate
the full posterior π(θ | Y ). To achieve this, firstly and approximation to the full conditional
distribution of ξ, π(ξ | Y ,θ) is obtained using a multivariate Gaussian density π̃G(ξ | Y ,θ)
(for details see Rue and Held, 2005) and evaluated at its mode. Then the posterior density of
θ is approximated by using the Laplace approximation

π̃(θ | Y ) ∝ π(ξ, θ,Y )
π̃G(ξ | θ,Y )

∣∣∣∣
ξ=ξ∗(θ)

,

where ξ∗(θ) is the mode of the full conditional of ξ for a given θ. Since no exact closed form is
available for ξ∗(θ), an optimization scheme is necessary. Rue et al. (2009) computes this mode
using the Newton-Raphson algorithm. The posterior π̃(θ | Y ) will be used later to integrate
out the uncertainty with respect to θ when approximating the posterior marginal of ξi.

The second step computes the Laplace approximation of the full conditionals π(ξi | Y , θ) for
selected values of θ. These values will be used as evaluation points in the numerical integration
applied to obtain the posterior marginals of ξi in (3). The density π(ξi | θ, Y ) is approximated
using the Laplace approximation defined by:

π̃LA(ξi | θ, Y ) ∝ π(ξ, θ, Y )
π̃G(ξ−i | ξi, θ,Y )

∣∣∣∣
ξ−i=ξ∗−i(ξi,θ)

, (5)

where ξ−i denotes the vector ξ with the ith component omitted, π̃G(ξ−i | ξi,θ,Y ) is the
Gaussian approximation of π(ξ−i | ξi, θ, Y ), treating ξi as fixed (observed) and ξ∗−i(ξi, θ) is the
mode of π(ξ−i | ξi, θ,Y ).

The approximation of π(ξi | θ, Y ) using (5) can be quite expensive, since π̃G(ξ−i | ξi,θ, Y )
must be recomputed for each value of ξi and θ. Two alternatives are proposed in Rue et al.
(2009) to obtain these full conditionals in a cheapest way. The first one is just the Gaussian
approximation π̃G(ξi | θ, Y ), which provides reasonable results in short computational time.
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However, according to Rue and Martino (2007), its accuracy can be affected by errors in the
location and/or errors due to the lack of skewness. The second alternative uses a simplified
version of the Laplace approximation, π̃SLA(ξi | θ,Y ), defined as the series expansion of π̃LA(ξi |
θ,Y ) around ξi = µi(θ) (for details see Rue et al., 2009).

Finally, in the third step the full posteriors obtained in the previous two approximation
steps are combined and the marginal posterior densities of ξi and θj are obtained by integrating
out the irrelevant terms. The approximation for the marginal of the latent variables can be
obtained by the expression

π(ξi | Y ) =
∫

π(ξi | Y , θ)π(θ | Y )dθ ≈
∑

k

π̃(ξi | θk,Y )π̃(θk | Y ) Mk, (6)

which is evaluated using numerical integration on a set θk of grid points, with area weights
Mk for k = 1, 2, · · · , K. According to Rue et al. (2009), since the points θk are selected in a
regular grid, it is feasible to take all the area weights Mk to be equal. In a similar way, the
posterior approximation π̃(θ | Y ) is explored by numerical integration routines for evaluation
of the marginal

π(θj | Y ) =
∫

π(θ | Y )dθ−i ≈
∫

π̃(θk | Y )dθ−i.

Since the dimension of θ is assumed small (i.e., ≤ 7), these numerical routines are efficient
in returning a discretized representation of the marginal posteriors.

A good choice of the set θk of evaluation points is crucial to the accuracy of the above
numerical integration steps. In order to do that, Rue et al. (2009) suggest to compute the
negative Hessian matrix S at the mode, θ∗, of π̃(θ | Y ) and to consider its spectral value
decomposition, S−1 = QΛQT . Then a standardized variable z is defined as

z = QT Λ−1/2(θ − θ∗) or θ(z) = θ∗ + QΛ1/2z

and a collection, Z, of z values is found, such that the corresponding θ(z) points are located
around the mode θ = θ∗. Starting from z = 0 (θ = θ∗), each component entry of z is searched
in the positive and negative directions in step sizes of ηz. All z-points satisfying

log π̃(θ(0) | Y )− log π̃(θ(z) | Y ) < ηπ

are taken to be in Z. The set θk of evaluation points is finally based on the values in Z. An
appropriate tuning of the ηz and ηπ values should be performed in order to produce accurate
approximations.

The following two sections show, through a series of examples, how the INLA approach can
be extended to deal with inference in dynamic models in an easy way using the INLA library.

4 Simulated examples

In this section we generate some simulated data sets in order to illustrate the formulation of the
more common types of dynamic models using the INLA library. The steps to perform inference
on these models with INLA using the R programming language (R Development Core Team,
2010) are described in detail using a simple univariate linear dynamic model. The methodology
is then applied on a second order polynomial dynamic model, a seasonal dynamic model and
a Poisson dynamic regression model. Finally two cases of a complex spatio-temporal dynamic
model for Gaussian areal data are considered, showing the capability of INLA to fit realistically
complex dynamic models.
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Example 1: A toy example

We begin with a very simple simulated example of a first order univariate dynamic linear model
in order to gain insight into the specification of dynamic models for use within INLA. For details
of how to simulate observations from this and the other models in this section see the R script
accompanying this report. The model has the following observational and system equations:

yt = Xt + νt, νt ∼ N(0, V ), t = 1, · · · , n (7)
Xt = Xt−1 + ωt, ωt ∼ N(0, W ), t = 2, · · · , n (8)

Since the evolution of states in this simple model follows a first order random walk process, it
could be fitted with the INLA library just using model option “rw1” according to the following
code:

i <- 1:n # indices for x_t
ww <- rep(1,n) # weights for x_t
formula <- y ~ ww + f(i, ww, model="rw1") -1
r <- inla(formula, data = data.frame(i,ww,y))

However, we will use this simple example to illustrate a generic approach to fit dynamic
models in INLA based on an augmented model structure, which will be useful later on with
more complex models. The key to fit this model with the INLA library under this approach
consists in equating to zero the system equation, that is, we re-write (8) as

0 = Xt −Xt−1 + ωt, t = 2, · · · , n

and then we build an augmented model with dimension n + (n− 1) merging these “faked zero
observations” from the system equation with the actual observations from the observational
equation in a unique structure, as shown in Figure 4, where the first n elements correspond to
the n actual observations, yt = {y1, · · · , yn}, while the remaining n−1 elements (corresponding
to the number of state parameters in Eq. 8) are forced to be zero.

y1 NA

...
...

yn NA

NA 0
...

...
NA 0


 n-1 elements

Figure 4. Schematic representation of the data structure for the augmented model.

Inference in this augmented model using the INLA approach is performed considering two
different likelihoods. The first n data points are assumed to follow a Gaussian distribution with
unknown precision V −1, whereas the last n − 1 data points, which are forced to be zero, are
considered as observed with a high and fixed precision. Let y be a n× 1 vector of observations
simulated from the dynamic linear model described above. The following R code fits this model
using the INLA library:

# building the augmented model
m <- n-1
Y <- matrix(NA, n+m, 2)
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Y[1:n, 1] <- y # actual observations
Y[1:m + n, 2] <- 0 # faked observations

# indices for the INLA library
i <- c(1:n, 2:n) # indices for x_t
j <- c(rep(NA,n), 2:n -1) # indices for x_{t-1}
w1 <- c(rep(NA,n), rep(-1,m)) # weights for x_{t-1}
l <- c(rep(NA,n), 1:m) # indices for w_t

# formulating the model
formula <- Y ~ f(i, model="iid", initial=-10, fixed=T) +

f(j, w1, copy="i") +
f(l, model ="iid") -1

# call to fit the model
require(INLA)
r <- inla(formula, data = data.frame(i,j,w1,l),

family = rep("gaussian", 2),
control.data = list(list(), list(initial=10, fixed=T)))

In order to be properly considered by the INLA library, each term on the right side of the
observational and system equations must be indexed, according to its corresponding time index,
in the dataframe to be passed to INLA. For example, the state vector Xt appears in Eq. (7) at
times t = 1, 2, · · · , n as well as in Eq. (8) at times t = 2, 3, · · · , n. Therefore, the index vector
for the Xt term in the augmented dataframe is specified as [1, 2, · · · , n, 2, 3, · · · , n]′. Note that
each column in the dataframe passed to INLA must be a vector of dimension equal to the
number of rows of the augmented structure, which is n + (n− 1) in this example. When a term
is present in just one part of the augmented structure, the remaining elements of the index
vector are filled in with NA’s. This is the case of term Xt−1, which appears just in Eq. (8).
Its index vector then will be given by [NA, · · · , NA, 2, 3, · · · , n]′, where the first n elements are
NA’s.

Note that for the formulation of Xt we just use model=‘‘iid’’ with a fixed low precision.
Figure 1 shows the series of simulated and estimated values for the vectors of observations and
states respectively. Fit was quite good in both cases.

The model was fitted three times with different log-gamma priors for log(V −1) and log(W−1)
specified as follows: an informative prior, with mean equal to the real value and coefficient of
variation equal to 0.5, a vague prior also centered on the true simulated value but with coefficient
of variation equal to 10 and the default INLA log-gamma prior. Precisions of the perturbation
terms in model 1 were also well estimated as can be seen in Figure 2. Credibility intervals in
all cases included the true simulated values:

mean sd 0.025quant 0.975quant
Precision for Gaussian observations 1.231873 0.2738968 0.7782617 1.848884
Precision for w_t 1.844574 0.5945417 0.9352658 3.247046
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Figure 1: Simulated and predicted values (posterior mean and 95% credibility interval) for the observa-
tions (a) and states (b) in the toy example.
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Figure 2: Posterior densities for the hyperparameters in the toy example. Red lines indicate true simu-
lated values.

Example 2: A second order polynomial DLM

The next simulated example corresponds to a second order polynomial dynamic model. In this
case the state vector comprises two elements, Xt = (X1t, X2t), the first representing the current
level and the second representing the current rate of change in the level. The response again is
assumed to be normal. The observational and system equations for this model are given by

yt = X1t + νt, νt ∼ N(0, V ), t = 1, · · · , n (9)
X1t = X1,t−1 + X2,t−1 + ω1t, ω1t ∼ N(0,W1), t = 2, · · · , n (10)
X2t = X2,t−1 + ω2t, ω2t ∼ N(0,W2), t = 2, · · · , n (11)

The augmented model in this case after merge the faked observations from equations (10)
and (11) with the actual observations from equation (9), has dimension n + 2(n− 1) and three
different likelihoods (see Figure 4), being the first n elements Gaussian distributed with unknown
precision V and the remaining 2(n− 1) elements forced to be zero and considered as observed
with a high and fixed precision.
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y1 NA NA

...
...

...
yn NA NA

NA 0 NA

...
...

...
NA 0 NA

NA NA 0
...

...
...

NA NA 0



 n-1 elements

 n-1 elements

Figure 4. Schematic representation of the data structure for the augmented model
in the second order DLM.

Simulated and predicted values for observations and states are presented in Figure 3. The
posterior densities for the three precision parameters are also shown in Figure 4. Simulated
values for V −1 W−1

1 and W−1
2 in this example were 100, 10000 and 10000, respectively.

mean sd 0.025quant 0.5quant 0.975quant
Precision for observations 92.1002 13.8551 67.9370 91.0290 122.3182
Precision for w_1 20455.6903 19013.7524 2080.9327 15023.2395 70370.9427
Precision for w_2 2345.8005 15874.0193 5184.7682 17947.9580 65789.3177
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Figure 3: Simulated and predicted values (posterior mean and 95% credibility interval) for the observa-
tions (a) and for X1t (b) and X2t (c) state vectors in the second order polynomial DLM.
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Figure 4: Posterior densities for the hyperparameters in the second order polynomial DLM. Red lines
indicate true simulated values.

Example 3: A seasonal DLM with harmonics

In this example we simulate a monthly time series with an annual seasonal pattern by using
firstly a cosine form and then a sum of sine and cosine terms with the same frequency. The
response again is assumed to be normal. The DLM formulation for the first case is defined as
follows:

yt = at cos
(

π(t− 1)
6

)
+ νt, νt ∼ N(0, V ), t = 1, · · · , n

at = at−1 + ω1t, ω1t ∼ N(0,W1), t = 2, · · · , n (12)

This model can easily be fitted in INLA just using model option “RW1” as follows:

t <- 1:n
cosw <- cos(pi*(t-1)/6)
i <- 1:n
formula <- y ~ cosw + f(i, cosw, model="rw1") -1
r <- inla(formula, data = data.frame(i,y),

control.predictor=list(compute=TRUE))

The results are shown in Figures 5 and 6:
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Figure 5: Simulated and predicted values (posterior mean and 95% credibility interval) for the observa-
tions (a) and for at state vector (b) in the first seasonal dynamic model.

The posterior densities for the precision parameters were:

mean sd 0.025quant 0.5quant 0.975quant
Precision for observations 1022.7902 229.5974 642.4997 998.8874 1540.3168
Precision for w_1t 428.5013 121.7585 238.3670 411.8994 713.8945
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Figure 6: Posterior densities for the hyperparameters in the first seasonal dynamic model. Red lines
indicate true simulated values.

Now we will simulate a monthly time series with an annual seasonal pattern by using a
sum of sine and cosine terms with the same frequency. This model has a two parameter state
Xt = (at, bt), where at models an arbitrary amplitude (seasonal peak to trough variation) and
bt allows the cycle maximum and minimum to be phase shifted. The DLM formulation for this
model is defined as follows:

Xt =
(

at

bt

)
; Ft =

(
1
0

)
; Gt =

(
cosφ sinφ
− sinφ cosφ

)
; where φ =

π

6
.
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Therefore, the observational and system equations are given by

yt = at + νt, νt ∼ N(0, V ), t = 1, · · · , n

at = cos(φ)at−1 + sin(φ)bt−1 + ω1t, ω1t ∼ N(0, W1), t = 2, · · · , n (13)
bt = − sin(φ)at−1 + cos(φ)bt−1 + ω2t, ω2t ∼ N(0, W2), t = 2, · · · , n (14)

The augmented structure approach is necessary in this example. Equating to zero the system
equations (13) and (14) and merging them with the observational equation yields an augmented
model of dimension n + 2(n− 1), which is fitted considering three different likelihoods. Results
are shown in Figures 7 and 8:
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Figure 7: Simulated and predicted values (posterior mean and 95% credibility interval) for the observa-
tions (a) and for at (b) and bt (c) state vectors in the second seasonal dynamic model.
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Figure 8: Posterior densities for the hyperparameters in the second seasonal dynamic model. Red lines
indicate true simulated values.

Example 4: A Poisson dynamic multiple regression

Here we simulated data from a multiple Poisson regression model with two regressors, Z1t and
Z2t. Therefore, the linear predictor is given by λt = F txt, where F t = (1, Z1t, Z2t) and the
regression coefficients xt = (β0t, β1t, β2t) follow a simple random walk evolution. The model has
the following observational and system equations:

(yt | µt) ∼ Poisson(µt)
log(µt) = λt = β0t + β1tZ1 + β2tZ2 t = 1, · · · , n

β0t = β0,t−1 + ω0t, ω0t ∼ N(0, W0), t = 2, · · · , n (15)
β1t = β1,t−1 + ω1t, ω1t ∼ N(0, W1), t = 2, · · · , n (16)
β2t = β2,t−1 + ω2t, ω2t ∼ N(0, W2), t = 2, · · · , n (17)

Since all regression coefficients in this model follow a simple random walk evolution, the
augmented structure is not necessary. Instead, we simply use model “RW1” for all regression
coefficients. This is achieved in R with the following code:

id <- id1 <- id2 <- 1:n

formula <- y ~ f(id, model="rw1",param=c(1,0.001),initial=5) +
x1 + f(id1, x1, model="rw1",param=c(1,0.01),initial=5) +
x2 + f(id2, x2, model="rw1",param=c(1,0.001),initial=5)
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require(INLA)
r = inla(formula, family="poisson", data = data.frame(id,id1,id2,y),

control.predictor=list(compute=TRUE))

Results are shown in Figures 9 and 10 :
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Figure 9: Simulated and predicted values (posterior mean and 95% credibility interval) for the obser-
vations (a) and regression coefficients, β0, β1 and β2 (b-d) in the multiple Poisson dynamic
regression example.
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Figure 10: Posterior densities for the hyperparameters in the multiple Poisson dynamic regression exam-
ple. Red lines indicate true simulated values.

Example 5: A first order spatio-temporal dynamic model

In the following two examples, we simulate data from two versions of a non-stationary Gaus-
sian spatio-temporal dynamic model without covariates (Vivar and Ferreira, 2009) in order to
demonstrate how even complex dynamic models can be easily fitted using the INLA library.
We begin with a non-stationary first-order Gaussian spatio-temporal dynamic model, where for
each time t and area s, t = 1, · · · , T ; s = 1, · · · , S, the response yts is specified as:

yt = F ′
txt + ω1t, ω1t ∼ PGMRF

(
0s,W−1

1

)
(18)

xt = Gtxt−1 + ω2t, ω2t ∼ PGMRF
(
0s,W−1

2

)
(19)

where, yt = (yt1, · · · , ytS)′ denote the observed field at time t, F t = Is, Gt = ρIs, 0s is an
S × S null matrix, and Is is the S × S identity matrix. The errors ω1t = (ω1t1, · · · , ω1tS) and
ω2t = (ω2t1, · · · , ω2tS) are independent and modeled as proper Gaussian Markov random fields
(PGMRF). Matrices W−1

1 and W−1
2 describe the spatial covariance structure of ω1t and ω2t

respectively. We modeled precision matrices W j , j = (1, 2), as W j = Dj

(
Is− φj

λmax
C

)
,

with C being a structure matrix defined as
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Ck,l =


ck if k = l,

−hk,l if k ∈ dl,

0 otherwise,

dl is the set of neighbors of area l, hk,l > 0 is a measure of similarity between areas k and l (here
we assume that hk,l = 1) and ck =

∑
l∈dk

hk,l. λmax is the maximum eigenvalue of matrix C;
Dj = τj diag(d1, · · · , dS), τj are scale parameters and 0 ≤ φj < 1 control the degree of spatial
correlation.

We simulated a time series of 30 times for each of the 100 areas of North Carolina’s map
(that is, S = 100 and T = 30). This map is available in R from spdep package (Bivand,
2010). Inference is performed for the state vector xt as well as for the scale and correlation
parameters, τ1, τ2, φ1, φ2, but not for ρ, whose value was fixed in one before analysis, leading
to a non-stationary process.

For the implementation of this model using the INLA library, it is necessary to specify
the precision matrices W 1 and W 2 through a generic model. This can be done using option
model=‘‘generic1’’ in the formula to be called by the INLA library. This option requires that
the structure matrix C be passed as a file containing only the non-zero entries of the matrix.
The file must contain three columns, where the first two ones contain the row and column
indices of the non-zero entries of matrix C, and the third column contain the corresponding
non-zero values of structure matrix C. The code in the appendix shows how this matrix can be
built in R. For further details of how to specify structure matrices in INLA for use in the fitting
of spatio-temporal models see Schrödle and Held (2009).

The comparison between simulated and predicted values of observations and states for some
instant times can be seen in maps of Figures 11 and 12. Figure 13 also shows the series of
simulated and predicted values for the states at area 20 and its neighbors. Predicted values
closely followed the simulated series in all cases. Precision and correlation parameters were also
well estimated even when default INLA values for hyperprior parameters and initial values were
specified (see Figure 14 and Table 2).
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Figure 11: Maps of simulated (left) and predicted values (right) for observations at times 2, 7 and 15.
Gray and white areas represent positive and negative values respectively.
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Figure 12: Maps of simulated (left) and predicted values (right) for X1 state vectors at times 2, 7 and
15. Gray and white areas represent positive and negative values respectively.
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model.

20



26 28 30 32 34 36

0.
00

0.
05

0.
10

0.
15

0.
20

τv

1/V

0.75 0.80 0.85 0.90

0
2

4
6

8
10

φv

φv

35 40 45 50 55

0.
00

0.
02

0.
04

0.
06

τw

1/W

0.6 0.7 0.8 0.9

0
1

2
3

4
5

6

φw

φw

Figure 14: Posterior densities for precision (left) and correlation (right) hyperparameters in the first
order spatio-temporal dynamic model. Red lines indicate true simulated values.

# summary of posterior estimates for hyperparameters (with default priors)
mean sd 0.025quant 0.5quant 0.975quant

\tau_1 29.1136768 1.86428401 25.6859129 29.0508193 32.9132280
\phi_1 0.8413540 0.04269526 0.7447260 0.8467934 0.9099569
\tau_2 46.1026702 4.84260536 37.5116052 45.8080660 55.6872788

\phi_2 0.8601783 0.06016452 0.7297083 0.8666207 0.9539419
# summary of posterior estimates for hyperparameters (with informative priors)

mean sd 0.025quant 0.5quant 0.975quant
\tau_1 28.6717312 1.99469330 25.0406355 28.6215894 32.6838160
\phi_1 0.8248531 0.05570660 0.6948307 0.8342335 0.9086119
\tau_2 47.9191173 6.46777489 37.4767242 47.1194431 62.0289891
\phi_2 0.8752391 0.06834365 0.7287361 0.8849223 0.9741523

# summary of posterior estimates for hyperparameters (with vague priors)
mean sd 0.025quant 0.5quant 0.975quant

\tau_1 29.0759014 1.84111689 25.6902778 29.0130694 32.8368471
\phi_1 0.8406674 0.04269136 0.7442875 0.8461058 0.9092824
\tau_2 45.9520470 4.73169579 37.5168869 45.6788380 55.2713507
\phi_2 0.8593318 0.06006310 0.7293980 0.8656297 0.9531633

Table 2. Summary of the posterior for the hyperparameters. True simulated
values were: τ1 = 30, τ2 = 50, φ1 = 0.8, and φ2 = 0.9.
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Example 6: A second order spatio-temporal dynamic model

Now we will simulate data from a non-stationary second-order Gaussian spatio-temporal dy-
namic model without covariates (Vivar and Ferreira, 2009), which can be specified as:

yt = F ′
txt + ω1t, ω1t ∼ PGMRF

(
0s, W−1

1

)
(20)

xt = Gtxt−1 + ω23t, ω23t ∼ PGMRF
(
0s, W−1

23

)
(21)

where,

xt =
(

x1t

x2t

)
, F t =

(
Is
0s

)
, Gt =

(
ρ1Is ρ1Is
0s ρ2Is

)
, ω23t =

(
ω2t

ω3t

)
and W−1

23 =
(

W−1
2 0s

0s W−1
3

)
,

and the rest of notation follows example 5.

Once again we simulate a time series of 30 times for each of the 100 areas of North Carolina’s
map. Inference is performed for the state vectors x1 and x2 as well as for the scale and
correlation parameters, τj , φj , j = (1, 2, 3), but not for ρ1 and ρ2, whose values were fixed in
one before analysis, leading to a non-stationary process.

Appendix A shows some parts of the R code used to fit this model with INLA considering
n = 100 areas and k = 30 times. Further details can be found in the R script accompanying
this report.

As in example 5, for the implementation of this model in INLA it is necessary to specify
the precision matrices W j , associated to the error vectors ωjt, through a generic model using
option model=‘‘generic1’’ in the formula to be called by the INLA library.

Note that precision parameter for observations in this and the above example is declared as
fixed in the call to fit the model (first element of the list in control.data), because it is also
specified through a generic model in the first line of the formula.

Initial values for the hyperparameters in this case must be carefully chosen, as this model is
highly sensitive to these choices. Figures 15 and 16 show how a small change in one the initial
values can change significantly the posterior densities of the hyperparameters. In this case we
considered two sets of initial values as follows: set1=(τv = 50, τω1 = 100, τω2 = 100, φv = 0.8,
φω1 = 0.9, φω2 = 0.9) and set2=(τv = 100, τω1 = 100, τω2 = 100, φv = 0.8, φω1 = 0.9, φω2 = 0.9),
where the only difference in the two sets is the initial value for the first hyperparameter, which
change from 50 to 100. This small change impact not only that parameter, but also changes
the posterior of the other hyperparameters.

mean sd 0.025quant 0.5quant 0.975quant
\tau_1 28.7823505 2.68308132 23.8774631 28.6585845 34.3797637
\phi_1 0.7789623 0.06329654 0.6416379 0.7842687 0.8864998
\tau_2 37.5158060 7.72405954 24.2701416 36.8375799 54.5635119
\phi_2 0.9434251 0.02341778 0.8854153 0.9483026 0.9751655
\tau_3 44.4007158 6.63377490 34.3423897 43.3199276 60.0260982
\phi_3 0.7850396 0.06270681 0.6524924 0.7887360 0.8942694

Table 1. Summary of the posterior for the hyperparameters. True simulated
values were: τv = 30, τω1 = 50, τω2 = 50, φv = 0.8, φω1 = 0.9 and φω2 = 0.9.

Maps of simulated and predicted values for observations and states in some areas are also
shown in Figures 17 to 19.
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Figure 15: Posterior densities for the precision parameters in the 2nd order spatio-temporal dynamic
model. Solid lines come from informative priors, whilst dotted lines come from vague priors.
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Figure 16: Posterior densities for the correlation parameters in the 2nd order spatio-temporal dynamic
model. Solid lines come from informative priors, whilst dotted lines come from vague priors.
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Figure 17: Maps of simulated (left) and predicted values (right) for observations at times 2, 7 and 15.
Gray and white areas represent positive and negative values respectively.
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Figure 18: Maps of simulated (left) and predicted values (right) for X1 state vectors at times 2, 7 and
15. Gray and white areas represent positive and negative values respectively.
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Figure 19: Maps of simulated (left) and predicted values (right) for X2 state vectors at times 2, 7 and
15. Gray and white areas represent positive and negative values respectively.
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5 Case studies

In this section we use some worked examples from the literature to illustrate how a relevant data
analysis with DLMs can be performed using INLA. The examples include dynamic models with
Gaussian and Poisson observation densities, temporal trend and seasonality components as well
as external covariates. When possible, comparison with results from the literature using other
inference methods is provided. the full code to fit all models in this section is also provided in
the R script accompanying this report.

Example 7: UK Gas consumption

The first worked example to be analyzed corresponds to the quarterly UK gas consumption
from 1960 to 1986, in millions of therms. Details on this dataset can be found in Durbin
and Koopman (2001, p. 233). Following Dethlefsen and Lundbye-Christensen (2006) here we
use the (base 10) logarithm of the UK gas consumption as response, which is assumed to be
normal distributed and we fit a model with a first order polynomial trend (Tt) with time-varying
coefficients and an unstructured seasonal component (St), also varying over time. Therefore,
the observational and system equations are given by

yt = log10(UKgas)t = Tt + St + νt, νt ∼ N(0, V ), t = 1, · · · , n

Tt = Tt−1 + βt−1 + ω1t, ω1t ∼ N(0,W1), t = 2, · · · , n (22)
βt = βt−1 + ω2t, ω2t ∼ N(0,W2), t = 2, · · · , n (23)
St = −(St−1 + St−2 + St−3) + ω3t, ω3t ∼ N(0,W3), t = 4, · · · , n (24)

Approximate inference in this case is performed using a mixed approach where the poly-
nomial trend in system equation (22) is equated to zero and merged with the observational
equation yielding an augmented model of dimension n + (n − 1) and two different likelihoods.
The first n elements (actual observations) of this augmented structure are Gaussian distributed
while the remaining n− 1 elements are forced to be zero an considered as observed with a high
and fixed precision. The slope term in equation (23), which follow a random walk evolution, was
modeled using model option “rw1” from INLA library, whilst for the seasonal term in equation
(24) we used model option “seasonal”. The main parts of the code to formulate and fit this
model with INLA are shown next. The full code to fit this model using the INLA library is
available from the R script accompanying this report.

The decomposition of the time series in trend, slope and seasonal components and its com-
parison with results obtained by Dethlefsen and Lundbye-Christensen (2006) with the sspir R
package, which uses an extended Kalman filtering approach to inference, is shown in Figure 20.
Results with the two approaches were very similar. The amplitude of the seasonal term remains
virtually constant from 1960–1971, then it increases during the period 1971-1979 and finally it
stabilizes again.
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Figure 20: Time-varying trend, slope, and seasonal components in the UK gas consumption series ob-
tained with INLA (blue lines) and with the sspir package (red lines). Dotted lines represent
95% credibility intervals for INLA estimates.

Example 8: Van drivers

This is a classical example of a generalized linear dynamic model. Here the response yt cor-
responds to the monthly numbers of light goods van drivers killed in road accidents in Great
Britain, from January 1969 to December 1984 (192 observations). A seat belt law (intervention)
was introduced on January 31st, 1983. The interest is in quantifying the effect of the seat belt
legislation law on the number of deaths. For further information about the data set see Harvey
and Durbin (1986) and Durbin and Koopman (2000).

This dataset has been previously analised with INLA in a time series setting, assuming that
the squared root of the counts yt follows a Gaussian distribution. For details of this imple-
mentation see Martino and Rue (2010). Here we follow Dethlefsen and Lundbye-Christensen
(2006) and use a generalized linear dynamic model for Poisson data with a 13-dimensional latent
process, consisting of an intervention parameter, seat belt, changing value from zero to one in
February 1983, a constant monthly seasonal term (St), and a temporal trend (Tt) modelled as
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a random walk. The observational and system equations for this model are as follows

yt ∼ Poisson(µt)
log(µt) = λt = Tt + α ∗ seatbelt + St, t = 1, · · · , n (25)

Tt = Tt−1 + ω1t, ω1t ∼ N(0,W ), t = 2, · · · , n (26)
St = −(St−1 + · · ·+ St−11), t = 12, · · · , n (27)

The trend and seasonal terms in the linear predictor in (25) can be directly modeled using
“rw1” and “seasonal” model options from INLA library as shown in the following code:

i <- j <- 1:n # indices for T_t and S_t
ww <- rep(1,n) # weights for T_t

formula <- y ~ belt + ww + f(i, ww, model="rw1", param=c(1,0.0005)) +
f(j, model="seasonal", season.length=12) -1

r <- inla(formula, data = data.frame(belt,ww,i,j,y),
family = "poisson", control.predictor=list(compute=TRUE))

Further coding details can be found in the R script accompanying this report. The estimated
trend and the effect of the seat belt intervention as well as its comparison with results obtained
with the sspir package (Dethlefsen and Lundbye-Christensen, 2006) can be displayed in Figure
21.

The posterior mean for α parameter in Eq. (25), which represents the effect of the seat belt
law on the number of deaths, was −0.283; this corresponds to a reduction in the number of
deaths of 24.63%. It agrees with the corresponding values reported by Durbin and Koopman
(2000) and Dethlefsen and Lundbye-Christensen (2006) for this parameter, which were −0.280
and −0.285, respectively.
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Figure 21: Number of vandrivers killed and estimated trend + intervention. Solid and dotted lines in
blue correspond to the posterior mean and 95% credibility intervals, respectively, obtained
with the INLA library. The line in red corresponds to the estimated trend + intervention
with the sspir package.

Example 9: Mumps

In this worked example the response yt corresponds to the monthly registered cases of mumps in
New York City from January 1928 to June 1972. This data set was previously studied by Hipel
and McLeod (1994). According to Dethlefsen and Lundbye-Christensen (2006), the incidence
of mumps are known to show seasonal behavior and a variation in trend during the study
period. For this data set we use a generalized linear dynamic model for Poisson data. Following
Dethlefsen and Lundbye-Christensen (2006) the mumps incidence was modelled here with a
first order polynomial trend (Tt) with time-varying coefficients and a time-varying harmonic
seasonal component (Ht). The observational and system equations for this model are as follows
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yt ∼ Poisson(µt)
log(µt) = λt = Tt + Ht, t = 1, · · · , n

Tt = Tt−1 + βt−1 + ω1t, ω1t ∼ N(0,W1), t = 2, · · · , n (28)
βt = βt−1 + ω2t, ω2t ∼ N(0,W2), t = 2, · · · , n (29)

Ht = at cos
(

2π

12
t

)
+ bt sin

(
2π

12
t

)
, t = 1, · · · , n (30)

at = at−1 + ω3t, ω3t ∼ N(0,W3), t = 2, · · · , n (31)
bt = bt−1 + ω4t, ω4t ∼ N(0,W4), t = 2, · · · , n (32)

As in example 7, in this case we use a mixed approach where the polynomial trend in
system equation (28) is equated to zero and merged with the observational equation yielding an
augmented model of dimension n + (n− 1) and two different likelihoods. The first n elements
(actual observations) of this augmented structure are Poisson distributed while the remaining
n− 1 elements are forced to be zero an considered as observed with a high and fixed precision.
The slope and seasonal terms in equations (29) to (32), which follow a random walk evolution,
are modelled with model option “rw1”. The main parts of the code to formulate and fit this
model with INLA are shown next. The full code is available from the R script accompanying
this report.

# building the augmented model
# ----------------------------
m <- n-1
Y <- matrix(NA, n+m, 2)
Y[1:n, 1] <- mumps
Y[1:m + n, 2] <- 0

## indices for the INLA library
# ----------------------------
i <- c(1:n, 2:n) # indices for T_t
j <- c(rep(NA,n), 1:m) # indices for T_{t-1}
weight1 <- c(rep(NA,n), rep(-1,m)) # weights for T_{t-1}
l <- c(rep(NA,n), 1:m) # indices for \beta_{t-1}
weight2 <- c(rep(NA,n), rep(-1,m)) # weights for \beta_{t-1}
w1 <- c(rep(NA,n), 2:n) # indices for w_{1,t}
q <- c(1:n, rep(NA,m)) # indices for a_t
cosine <- c(cosw,rep(NA,m)) # weights for a_t
rr <- c(1:n, rep(NA,m)) # indices for b_t
sine <- c(sinw,rep(NA,m)) # weights for b_t

# formulating the model
# ---------------------
formula <- Y ~ cosine + f(q, cosine, model="rw1",param=c(1,0.01),initial=4) +

sine + f(rr, sine, model="rw1",param=c(1,0.01),initial=4) +
f(l, weight2, model="rw1",param=c(1,0.2),initial=4) +
f(i, model="iid", initial=-10, fixed=TRUE) +
f(j, weight1, copy="i") +
f(w1, model ="iid") -1
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# call to fit the model
# ---------------------
r <- inla(formula, data = data.frame(cosine,sine,i,j,weight1,l,weight2,q,rr,w1),

family = c("poisson","gaussian"),
control.data = list(list(),list(initial=10, fixed=TRUE)),
control.predictor=list(compute=TRUE))

It is important to note that in the formulation of this model, the seasonal terms, following
an RW1 process, must be declared first in the formula to be passed to the inla function, followed
by the terms in the equations that forms the augmented model. Otherwise the INLA library
can made a wrong interpretation of the indices of these terms, which can lead to misleading
results.

The comparison of the results obtained with the INLA library and the sspir package for
the variation of mumps incidence are shown in Figure 22. Results were very similar for the
two approaches. According to Figure 22, seasonal pattern of incidence changes slowly, as can
be seen in the decreasing behavior of the peak-to-trough ratio and peak location series. The
location of the incidence’s peak also changes from middle/late April in the beginning of the
study period to late May in the last four years.
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Figure 22: Comparison between INLA (red lines) and sspir (blue lines) results for the variation in the
incidence of mumps in New York city from 1927 to 1972. The upper frame shows the observed
number of cases with the de-seasonalized trend superimposed. The middle frame shows the
location of the peak of the seasonal pattern. The lower frame shows the variation in the
peak-to-trough ratio over the period.

Example 10: Market share

In our last worked example we analize percent market share for a consumer product. This
example was fully analized in Pole et al. (1994, Chapter 5). The model for market share utilize
weekly available information for 1990 and 1991 on product price and measures of promotional
activity. The objectives are to determine a model with good predictive power and to assess
the importance of suggested explanatory variables. The response yt is assumed to be Gaussian
distributed. For this data set we use a dynamic regression model with three covariates, price,
prom and cprom, where price is the measured price relative to a number competitor’s average
prices; prom and cprom are producer and competitor promotion indices. Following Pole et
al. (1994), the level is modelled as fixed and the regression coefficients have a random walk
evolution. One point identified as outlier on week 34 of 1990 and excluded from the analysis in
Pole et al. (1994), was also excluded in our analysis. The observational and system equations
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for this model are as follows

yt = αt + β1tpricet + β2tpromt + β3tcpromt + νt, νt ∼ N(0, V ), t = 1, · · · , n

β1t = β1,t−1 + ω1t, ω1t ∼ N(0,W1), t = 2, · · · , n (33)
β2t = β2,t−1 + ω2t, ω2t ∼ N(0,W2), t = 2, · · · , n (34)
β3t = β3,t−1 + ω3t, ω3t ∼ N(0,W3), t = 2, · · · , n (35)

As in example 4, the simple random walk evolution of regression coefficients avoids the
need for an augmented structure. Therefore, the model was formulated considering an “rw1”
model for each regression coefficient. Figure 23 shows the predicted market share values and
the estimated level obtained with the INLA library and that reported in Pole et al. (1994) using
the BATS software.
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Figure 23: Observed and predicted values (posterior mean and 90% credibility interval) for the market
share example using the INLA library (a) and the BATS software (b). Horizontal black lines
in both plots indicate the estimated level with its 90% credibility interval.

Estimated regression coefficients for regressors are displayed in Figure 24. The promotion
coefficient prom varies between 0 and 0.3, being nearly zero for almost the entire two year period.
As pointed out by Pole et al. (1994), this suggests that the company’s promotional activities
have little effect on market share.
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Figure 24: Estimated regression coefficients for the market share example. Solid red and dotted blue
lines indicate posterior mean and 95% credibility interval, respectively.

Results of the week-by-week forecasts for the first five weeks of 1992 under four different
scenarios, as considered in Pole et al. (1994), is shown in Table 1 using INLA and BATS software.
The four scenarios were:

1. prom and cprom indices set to 0,

2. prom set to its first five values of 1990 and cprom set to zero,

3. prom set to zero and cprom set to its first five values of 1990,

4. prom and cprom set to their first five values of 1990.

Relative price was maintained fixed in all cases at 0.206, the final value for 1991.
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Table 1: Forecasts for percent market share for the first four weeks of 1992 with INLA and BATS software

Week INLA BATS
mean 0.05q 0.95q mean 0.05q 0.95q

Scenario1 Scenario1

1992/1 41.40 41.19 41.61 41.40 41.04 41.76
1992/2 41.40 41.18 41.61 41.40 41.04 41.76
1992/3 41.40 41.18 41.61 41.40 41.03 41.77
1992/4 41.40 41.18 41.62 41.40 41.03 41.77
1992/5 41.40 41.18 41.62 41.40 41.03 41.77

Scenario2 Scenario2

1992/1 41.36 41.14 41.59 41.36 41.00 41.73
1992/2 41.32 41.07 41.56 41.31 40.93 41.69
1992/3 41.27 41.00 41.54 41.25 40.86 41.65
1992/4 41.25 40.97 41.53 41.23 40.83 41.63
1992/5 41.22 40.92 41.52 41.19 40.77 41.61

Scenario3 Scenario3

1992/1 41.28 40.91 41.64 41.23 40.84 41.62
1992/2 41.27 40.90 41.66 41.22 40.82 41.62
1992/3 41.27 40.88 41.67 41.22 40.82 41.62
1992/4 41.27 40.87 41.68 41.22 40.81 41.63
1992/5 41.26 40.83 41.71 41.20 40.79 41.62

Scenario4 Scenario4

1992/1 41.24 40.86 41.63 41.19 40.79 41.59
1992/2 41.19 40.77 41.62 41.13 40.71 41.55
1992/3 41.14 40.69 41.62 41.07 40.63 41.51
1992/4 41.12 40.64 41.62 41.05 40.60 41.50
1992/5 41.08 40.55 41.63 41.00 40.53 41.47

6 Concluding remarks

In this report we propose a framework to perform approximate inference in linear and generalized
linear dynamic models using the INLA library. We illustrate our approach through a series of
simulated and worked examples ranging from simple univariate models to realistically complex
space-time dynamic models. Our approach allows an easy specification of complex dynamic
models in R using a formula language as is routinely done with the most common linear and
generalized linear models. The proposed methodology outperforms current approaches in the
literature of dynamic models in several respects:
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• Unknown precision parameters and its credibility intervals are directly estimated with
INLA jointly with the state parameters, unlike other approaches in the literature, which
do not estimate the unknown variance parameters automatically. The sspir package (Deth-
lefsen and Lundbye-Christensen, 2006) for example requires the combination of numerical
maximization algorithms with the output of the iterated extended Kalman smoother, while
the BATS software (Pole et al., 1994) use a discount factor approach to model unknown
variances. The SsfPack package (Koopman et al., 1999) provides punctual estimates of
the hyperparameters of state space models, but it requires further Monte Carlo simulation
in order to get the confidence intervals through some bootstrap procedure as proposed for
example in Franco et al. (2008).

• Our approach is able to deal with spatio-temporal observations in an easy way, as shown
in examples 5 and 6. To the best of our knowledge there are no other computational ap-
proaches in the literature currently available to deal with this kind of data in a framework
of dynamic models.

• Missing values in the covariates are allowed.

Reasonable results were found for most of the examples considered in this report using the
default INLA values for the hyperprior parameters and for the initial values of these parameters.
However, for some models this choice can greatly impact the final results. Therefore, a sensitivity
analysis to the choice of that values is highly recommended.

The extension of the proposed framework to consider multivariate observations is straight-
forward. The approach has also potential to be applied/extended to other classes of models
such as models with errors in covariates. This is subject of current research.
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A R script for fitting the second order dynamic spatio-temporal
model in example 5

## simulating the data set

# Loading North Carolina’s map (it has 100 areas)
require(spdep)
ncfile <- system.file("etc/shapes/sids.shp", package="spdep")[1]
nc <- readShapePoly(ncfile)

# building the structure matrix (C)
nc.nb <- poly2nb(nc)
d <- sapply(nc.nb, length) # vector with number of neighbors
C <- diag(d) - nb2mat(nc.nb, style="B") # structure matrix

n <- length(d)

# simulated values for tau_i and phi_i (i=1,2,3)
tau <- c(30, 50, 50)
phi <- c(0.8, 0.9, 0.9)

# building the precision matrix
lamb.max <- max(eigen(C, only.values=TRUE)$values) # maximum eigenvalue of C matrix
Q1 <- (diag(n)-phi[1]/lamb.max*C)
Q2 <- (diag(n)-phi[2]/lamb.max*C)
Q3 <- (diag(n)-phi[3]/lamb.max*C)

myrmvnorm <- function(n, mu, S)
sweep(matrix(rnorm(n*nrow(S)), n)%*%chol(S), 2, mu)

# defining the length of time series (number of years)
k <- 30

set.seed(1)
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# simulating obsevational and innovation errors
w1 <- t(myrmvnorm(k, rep(0,n), solve(tau[1]*Q1)))
w2 <- t(myrmvnorm(k, rep(0,n), solve(tau[2]*Q2)))
w3 <- t(myrmvnorm(k, rep(0,n), solve(tau[3]*Q3)))

# generating the time series for observations and states
yy <- x1 <- x2 <- matrix(0, n, k)
x1[,1] <- w2[,1]
x2[,1] <- w3[,1]
for (i in 2:k) {
x2[,i] <- x2[,i-1] + w3[,i]
x1[,i] <- x1[,i-1] + x2[,i-1] + w2[,i]

}
yy <- x1 + w1

### defining the Cmatrix to use with model=’generic1’ for w1, w2 and w3
st.cmat <- kronecker(C, diag(k))
c.mat <- list(i=unlist(apply(st.cmat!=0, 1, which)),

j=rep(1:nrow(st.cmat), rowSums(st.cmat!=0)),
Cij=st.cmat[st.cmat!=0])

### building the augmented model
### ----------------------------
nd <- n*k
Y <- matrix(NA, nd*3-2*n, 3)
Y[1:nd , 1] <- as.vector(t(yy))
Y[1:(nd-n) + nd , 2] <- 0
Y[1:(nd-n) + 2*nd-n, 3] <- 0

### indices for the f() function
### ----------------------------
id1 <- (1:nd)[-((1:n)*k)]
id2 <- (1:nd)[-c(1,((1:(n-1))*k)+1)]
ix1 <- c(1:nd, id2, rep(NA,nd-n)) ## indices for x1_t
ix1b <- c(rep(NA,nd), id1, rep(NA,nd-n)) ## indices for x1_{t-1}
wx1b <- c(rep(NA,nd), rep(-1,nd-n), rep(NA,nd-n)) ## weights for x1_{t-1}
ix2 <- c(rep(NA,nd),rep(NA,nd-n), id2) ## indices for x2_t
ix2b <- c(rep(NA,nd), rep(id1, 2)) ## indices for x2_{t-1}
wx2b <- c(rep(NA,nd), rep(-1,2*(nd-n))) ## weights for x2_{t-1}
iw1 <- c(1:nd, rep(NA,2*(nd-n))) ## indices for w1_t
iw2 <- c(rep(NA,nd), id2, rep(NA,nd-n)) ## indices for w2_t
iw3 <- c(rep(NA,nd),rep(NA,nd-n), id2) ## indices for w3_t

## formulating the model
## ---------------------
# with default prior for precision parameters and initial \phi=0.5
formula1 <- Y ~ f(iw1, model="generic1", Cmatrix=c.mat, initial=c(log(50),0.5)) +

f(ix1, model="iid", initial=-10, fixed=T) +
f(ix1b, wx1b, copy="ix1") +
f(ix2, model="iid", initial=-10, fixed=T) +
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f(ix2b, wx2b, copy="ix2") +
f(iw2, model="generic1", Cmatrix=c.mat, initial=c(log(100),0.5)) +
f(iw3, model="generic1", Cmatrix=c.mat, initial=c(log(100),0.5)) -1

## call to fit the model
## ---------------------
require(INLA)
r1 <- inla(formula1, data = data.frame(ix1,ix1b,wx1b,ix2,ix2b,wx2b,iw1,iw2,iw3),

family = rep("gaussian",3),
control.inla = list(h=0.1),
control.data = list(list(initial=10, fixed=T),
list(initial=10, fixed=T), list(initial=10, fixed=T)),
control.predictor=list(compute=TRUE))
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