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Abstract

In recent years it has been demonstrated that the Normal Inverse Gaus-
sian (NIG) process can be used to model stock returns. The characteristics
of the NIG market model compares favourably with empirical findings in
the financial markets. In the paper it is briefly described how vanilla
options can be priced efficiently, and how the corresponding model op-
tion prices match with actual option surfaces. More importantly, it is
demonstrated how discretely monitored barrier options can be calculated
very fast and accurately under the NIG market model using the numerical
path integration approach. Several numerical examples are presented to
highlight accuracy and efficiency.
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1 Introduction

Due to the many shortfalls of the Black-Scholes model (Black and Scholes,
1973), financial modelers are constantly trying to find more realistic models for
the dynamics of financial instruments. Stochastic volatility and jump-diffusion
models are frequently referenced in the literature, see e.g. McDonald (2002);
Rebonato (2004); Hull (2006); Haug (2007). An alternative approach is to use
different kinds of Lévy processes as a modelling tool. Madan et al. (1998) in-
troduced the three parameter Variance Gamma process, and Barndorff-Nielsen
(1994) introduced the three parameter Normal Inverse Gaussian (NIG) process
applied to derivatives pricing. The present paper will cover option pricing under
the NIG market model. The NIG model allows for both skewness and kurtosis
in the stock return distributions, and since it only has three parameters, the
calibration process is comfortable.

The topic of this paper is pricing of barrier options, which is the most
popular class of exotic options (Haug, 2007). Within the Black and Scholes
framework closed form pricing formulas for barrier options exist (Merton, 1973;
Haug, 2007). In this paper we present a new way of pricing path-dependent
barrier options under the NIG market model. Since no closed form solutions
are available, we do this by using a numerical method based on path integra-
tion. While most texts suggest using numerical integration for pricing vanilla
options, Monte Carlo methods seem to be the method most often suggested for
pricing path dependent options like the barrier options. As standard numerical
integration is used for pricing vanilla options, numerical path integration can
be used for pricing many path dependent options. While Monte Carlo methods
are flexible and easy to implement, they tend to be computationally slow, even
if variance reduction techniques can be used to speed up the calculations. The
motivation for a faster numerical implementation is thus strong. The numerical
path integration approach presented in this paper is very easy to understand
and implement, and it can be used to calculate barrier option prices in about
one second on a regular laptop.

This paper is organized as follows. In Section 2 we describe the NIG process,
while Section 3 discusses the NIG market model. Section 4 describes the data
for selected equity markets used for the calculations. In Section 5 is discussed
the calibration of the NIG models to plain vanilla options, while Section 6 details
the pricing of barrier options by path integration using the calibrated models
from Section 5. The numerical results for the chosen markets are presented in
Section 7. Some concluding remarks are given in Section 8.

2 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) distribution is a three parameter proba-
bility distribution that allows for both skewness and higher kurtosis than the
Normal (Gaussian) distribution. These properties make it a potentially suitable
tool for modelling of stock returns (Barndorff-Nielsen, 1994).

We will use the notation X ~ NIG(«, 3,9) to signify that the random vari-



able X has a NIG distribution with the three parameters «, 8 and §, where
a >0, —a < < a, and 6 > 0. The probability density function of a NIG

variable is given by (Schoutens, 2003):
Ki(avé? + x?)

Frrc(asa, 5.8) = S exp(v/a = P+ pr) UL )

where K (-) denotes the modified Bessel function of the second kind, for details
see e.g. Abramowitz and Stegun (1968). We define the NIG process with
parameters «, 3,  as,

XNIG — {XgVIG’ t> 0} (2)
with Xév IG — 0, and with stationary and independent NIG distributed incre-
ments, with Xé\ftG — XNG  NIG(a, 8, 6t).

The name of the NIG process is due to the fact that we can relate the NIG
process to an Inverse Gaussian time-changed Brownian motion. The density
function for the IG(a, b) distribution is given by (z > 0)

fra(z;a,b) = [ a }1/2 exp (M> ] (3)
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Let I; be an IG process with parameters a=1 and b = §/a? — 32 with a >0,
la] > S and § > 0, and W; be a standard Brownian motion. In (Schoutens,
2003) it is stated that the stochastic process

Xy = B0 + oW, (4)

is a NIG process with parameters o, 3 and §. This representation of a NIG
process makes it easy to simulate. An example of a NIG sample path is shown
in Fig. 1.

The characteristics of the NIG process are summarized in Table 1. It is seen
that it is not easy to directly recognize what effect each of the three parameters
has on the four different statistical moments. The intuitive understanding of
the parameters is that « determines the tail behavior, 8 the skewness and 9 is
the time scaling parameter.

NIG(«, 3, 0)

Mean: 5B/\/ a2 — (32

Variance: | a?§(a? — 3%)73/2
Skewness: 3604_15_1/2(042 — %)~
Kurtosis: | 3(1 + 60‘2+74ﬁ2)

N/

Table 1: NIG distribution characteristics

3 The NIG Market Model

We want to model the log returns of stocks as a NIG-distribution. The model
for the stock is thus given by:

S; = Spexp(X]N1Y), (5)



_U_Ua 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

Time [years]
Figure 1: A NIG sample path. a = 50, 8 =-5, = 1.

where S; is the stock price at time ¢t. This model provides a NIG distribution
for the log-returns of the stock. Although this gives us a much more realistic
behavior of the stock than the geometric Brownian motion case, there are some
drawbacks. For example, it is impossible to perform a continuous delta hedging
strategy since the NIG model does not lead to a continuous asset price.

In the geometric Brownian motion case, moving from the real world to the
risk-neutral world is easy; we just set the drift u equal to the risk free rate r
minus the continuous dividend yield q. However, for our model given in Eq. (5)
there is no unique transformation from the real world to the risk neutral world.
One possible way to achieve this is to use an Esscher transformation (Gerber
and Shiu, 1994). Alternatively, Schoutens (2003) shows how it can be done by
applying a mean-correcting measure change as follows,

e(r_q)t

W eXP(XtNIG)~ (6)

St =So

It is clear that multiplication by the factor e~ 9 /E[exp(N;)] indeed provides a
risk-neutral process. E[exp(X/N)] can be calculated by using the characteristic

function for XV, which is,
Elexp(iuX19)] = exp (= 6t(v/a? = (B+1u)? = Va2 = 52)) . (7)
By putting u = —i, it follows that
Elexp(X"'9)] = exp (= 8t(v/a? — (B+1)? = Va2 - §?)). (8)

Summing up, we may write

Sy = Sp exp (mt+wt+XtNIG) , (9)



where m = 7 — ¢ and w = §(y/a2 — (B+1)% — /a2 — $2). While m = r — ¢
for the risk neutral case, in the real world, m must be estimated from historical
data. It is important to notice that all parameters are changed when moving
from the real world to the risk-neutral world in the NIG market model, unlike
the geometric Brownian motion case, where the volatility stays the same under
the Girsanov measure transformation. Using the NIG pdf from Eq. (1), the pdf
for the log price Z; = In(S¢/Sp) of the NIG market model given in Eq. (9) is
then,

Ki(an/822 + (2 — pt)?)
V022 + (2 — pt)?

where © = m 4+ w. Depending on the use, m, «, 8 and § will be either the
risk-neutral or the real world parameters of the NIG process.

Fet) = 2 esp (51y/aZ — 2 + (= — ) . (10)

4 Data

The whole motivation for working with the more complex NIG process instead of
a geometric Brownian motion is that the NIG process allows for both skewness
and excess kurtosis, and should thus be able to fit historical stock market returns
better. By way of verification, statistical analyses on historical data were carried
out to make sure the NIG distribution provides a good fit for the stock indices
under study.

4.1 Parameter estimation:

The three parameters of the NIG pdf were estimated using the maximum-
likelihood method. In practice this is done numerically using optimization
algorithms, e.g. the Nelder-Mead downhill simplex method, which is imple-
mented in the built-in Matlab function fminsearch. As always with numerical
optimization, one has to be careful when picking starting values for the algo-
rithm. However, there is a nice way for automating the choice of starting values
on a computer. This can be done by using the time series estimates of the dif-
ferent moments of the distribution, and then solve the corresponding equations
in Table 1 numerically to obtain reasonable starting values.

4.2 Data analysis

The NIG process is calibrated to four well known stock indices. The length of
the time series is different for the different indices, as reported in Table 2. The
daily log returns are used for every trading day in the data set.

The calibration results are given in Table 3.

Although the NIG distribution generally provided a good fit to the data, it
was clear from QQ-Plots of the S&P 500 and the FTSE 100 data that the NIG
model is far from perfect. On both these plots one single data point clearly de-
viated from the straight line fit. This was due to the stock market crash on 19"
October 1987, and is an important observation. Even if the NIG-distribution



Index: Data from: | Data to:
S&P 500 | 03.01.1950 07.01.2008
OMXS30 | 06.07.2004 28.12.2007
FTSE 100 | 02.04.1984 11.02.2008
OSEBX 25.05.2001 11.02.2008

Table 2: Short description of our data sets.

Index: o G ) m

S&P 500 | 96.2420 | -5.3752 | 1.8435 | 0.0857
OMXS30 | 92.2307 | -19.3533 | 2.4249 | 0.1400
FTSE 100 | 105.2935 | -11.0490 | 2.6497 | 0.0808
OSEBX 79.6223 | -17.3478 | 2.9745 | 0.1163

Table 3: NIG calibration results.

may give an overall good fit to stock index returns, it would generally under-
estimate the probability of an extreme event like the stock market crash of
1987.

P-values were calculated for the null-hypothesis that the given data sets
were generated from a NIG distribution with parameters given in Table 3.
This was done using a Pearson statistic. The obtained P-values for the indices
given in Table 2 both for the NIG and the normal distributions, with their
estimated parameter values are presented in Table 4. These values confirm
what was observed graphically, the P-values for the NIG-distribution are very
high and the null-hypothesis is in all cases accepted. The P-values for the
normal distribution are as expected very small (less than 107!° ~ 0), and the
null-hypothesis is rejected for all the indices. To conclude, the NIG-distribution
seems to fit the stock index returns reasonably well, which has already been
observed by Bglviken et al. (2000). The motivation for using the NIG-process
on the indices at hand is thus strong.

Index: NIG P-value: | Normal P-value:
S&P 500 | 0.3889 0
OMXS30 | 0.3151 0
FTSE 100 | 0.2366 0
OSEBX 0.6368 0

Table 4: P-values from the x?-tests.



5 Vanilla option pricing and calibration to market
data

5.1 Pricing of a European call option

There is no closed form analytical solution for the European type option prices
in the NIG market model as within the Black-Scholes framework. However, the
option prices can be easily obtained by numerical integration over the density
function. Although slower than an analytical solution, it is acceptable for any
practical pricing purpose.

The formula for a European call option with strike X and time to maturity
T is given by:

V(X,T) = exp(— / (S — X)pr(S|So)dS (11)
X

Here pp(S]Sy) denotes the transition probability from Sy to S over the time
T. In the NIG market model case, these transition probabilities are found us-
ing equation Eq. (10) from the definition of the NIG process. In practice, we
calculate this integral using Simpson’s method. To ensure that the numeri-
cal implementation is correct, Monte Carlo simulation is used for verification.
When the call prices are calculated, the corresponding put prices are obtained
immediately by using put-call parity.

5.2 Calibration to market data

The NIG market model will now be calibrated to quotes observed in the vanilla
option markets. The input to the calibration are all the market data, and
the output are the corresponding model parameters. These parameters will be
called the implied parameters. By doing this, insight is gained about the mar-
ket’s expectation of volatility, skewness and kurtosis. The implied parameters
can be used to price vanilla options on the same underlying not quoted in the
market (new strike and/or maturity), or, as will be done later, the implied pa-
rameters are used to price barrier options on the same asset. The calibration
procedure can also be used to find mispriced options in the vanilla market.

The way the calibration is done in practice is to decide upon some error
statistic, and then minimizing this error using some numerical optimization al-
gorithm. The parameters that minimize the error statistic are then our implied
parameters. There are several possible error statistics (Schoutens, 2003). The
error statistic chosen for our calibration is a modified average relative percent-
age error given by:

1 |market mid price - model price|
ARPEy ; = -
bid-ask # options £ market price - —_ask-bid__
options market price
B 1 Z |market mid price - model price| (12)
~ # options ask-bid

options



This error statistic reflects the feature that the more liquid the option, the
more information the option price contains, and it should be weighted higher in
the calibration procedure. In general the spread (= ask - bid) is a measure of

an option’s liquidity, and a tighter spread means better liquidity. The relative
spread

market mid price’

The calibration is done by using a numerical optimization algorithm to find

the parameters that minimizes the error statistic. We have used the Nelder-
Mead algorithm in Matlab. When calibrating, one should give some thought
to calibration risk, which is basically the risk of a wrong calibration, resulting
in wrong option prices. One way to examine the calibration risk is to do the
calibration with respect to several different error statistics, and check if the
resulting parameter sets are approximately equal. See (Detlefsen and Hardle,
2007) for more on calibration risk.

The calibration is performed for some option chains found in different mar-
kets. The first data set consist of European call options on the Norwegian OBX
index at closing time on 18th February 2008. The OBX index contains the 25
stocks on the Oslo Stock Exchange with the largest trading volume. The OBX
index was at 356.68 at that time. The calibration gave the results shown in
Table 5.

spread can be measured as

o 60.883
3- 445
0: 1.371
ARPE: 4.90 %

Table 5: OBX calibration results.

As is seen, the average relative percentage error, ARPE, is measured to
be 4.9% under optimal parameters. However, it is easier to understand the
goodness of fit by looking at the fitted NIG option prices graphically, see Fig. 2.

Fig. 2 indicates that the NIG market model fits the option prices quoted in
the market reasonably well, but not perfectly, as some of the NIG prices are
slightly outside the bid-ask range in the market. We will discuss these results
further, but first repeat the calibration process for a different set of options.

A lot of options are traded in the currency (FX) markets. We will now
see how the NIG market model fits the option prices for the EUR/USD rate.
Although equities and FX are two completely different markets, the modelling
and option pricing techniques are very similar, unlike the fixed income market
where the yield curve brings in another dimension. The only difference is that
the dividend yield ¢ is replaced with the risk free rate of the foreign currency,
ry. So for the EUR/USD rate, the Eurozone rate is denoted by 7, and the US
rate by r;. The options in the FX market are in general more liquid than for
most equities. While the OBX option chain contained 60 different options, our
option chain for the EUR/USD rate contains 182 different options.

In the currency markets the shape of the volatility smiles can vary signif-
icantly. Both the curvature and the skewness can vary significantly for dif-
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Figure 2: Fit of the OBX options.

ferent FX rates, while equity smiles in general have negative skewness and
non-negative curvature. The implied volatility smiles for our option data set
are shown in Fig. 3.

The calibration gives the NIG parameters listed in Table 6. The NIG market
model fit looks good from the plot in Fig. 4. It displays very little deviation
from the bid-ask interval. The ARPE at 4.20% is also a good indication of an
accurate fit.

o 28.521
B -8.947
d: 0.236

ARPE: | 4.20 %

Table 6: EUR/USD calibration results.

As we have seen from the two examples above, the NIG market model can
give a very decent fit to market prices. It will fail to exactly fit the observed
market mid prices, but we could never expect this to be achieved with just
three time-invariant parameters to be calibrated. Since, in reality, we have no
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Figure 3: Implied volatility smiles. We see a strong skewness for the short-

est maturity, then more moderate skewness for the longer maturities. The
EUR/USD rate is quoted in (EUR/USD)*100.

exact observed market price, but rather a range between the bid price and the
ask price, it seems like the NIG market model is doing quite well. (Schoutens,
2003) shows how we can get an exact fit for market mid prices, by including a
stochastic volatility process. However, this comes with a serious cost of three
to four extra parameters. This can complicate the calibration process, and
definitely lead to a less intuitive understanding of the calibrated parameter
values for the trader/user. If one can live with some mispricing with respect to
the market mid price, the NIG market model seems to be adequate for option
pricing. If a perfect fit to the market mid prices is desired, a more complicated
model is required.

6 Barrier option pricing and the numerical path in-
tegration approach

We will now look at the pricing of several types of barrier options under the
NIG market model. Barrier options are popular path-dependent options in the
OTC markets, and certainly also a popular subject in the financial literature.
Barrier options may be of both American and European type. However, in this
paper only Europeans will be considered. Another important practical issue
is how often the barrier is monitored. That is how often it is checked if the
underlying is over/under the barrier. This monitoring time can be either dis-
crete or continuous. In equities and commodities, it is said to be most common
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Figure 4: NIG prices fitted to the EUR/USD option prices.

with discrete monitoring, while in FX markets continuous monitoring is the
standard. The discrete monitoring value is often set to the official daily closing
price. Unless otherwise specified, all the barrier options will be considered to
have daily monitoring. Also, no cash rebate K is paid out if the barrier option
is knocked out/not knocked in.

Any given knock-out option can be constructed using its corresponding
vanilla and knock-in option. The three option values are linked together by
the in-out-parity: Valueygniiig = Valuegnock—in + Valtuernock—out-

Barrier options are known to be extremely model dependent, since the prob-
ability of hitting the barrier can be very model sensitive. Thus, the model risk
for barrier options is also large. One should use several models when trading
barrier options and their different prices will give some insights in the model
risk. Schoutens et al. (2007) show in detail how model risk is significant for
many exotic options including barrier options. There is no general analytical
solution for the different types of barrier options under the NIG market model.
Monte Carlo simulation can easily be applied, but for many trading purposes
this is too slow. Instead of Monte Carlo simulations, it will be shown how
the option prices can be calculated much more efficiently using numerical path
integration. The method is based on the work in (Skaug and Naess, 2007).



As discussed in the previous section, vanilla call options can be priced nu-
merically by calculating an integral, cf. Eq. (11). When dealing with path
dependent options, numerical solutions become much more complicated. We
propose to use numerical path integration for solving a wide range of such
problems. It will be shown in detail how path integration works, how it may
be implemented, and several numerical examples will be presented to confirm
the accuracy and examine how much we gain in terms of computational time.

As an example, the price for an up-and-out-down-and-out call option will
be calculated. Changing to another kind of barrier option is trivial. When we
have calculated the price for an out barrier option, we can use in-out-parity to
quickly find the price of the corresponding option.

As before, the strike price is denoted by X, the upper barrier by U, the
lower barrier by L, and a constant interest rate r is assumed. Initial stock
price is denoted Sy. The up-and-out-down-and-out option becomes worthless
if the stock price S; is equal to or bigger than the upper barrier U or equal
to or smaller than the lower barrier L at any of the monitoring times. If the
stock price stays within the barrier interval at every monitoring time until
maturity, the call option value is max(0, Sp — X) at the maturity time 7. The
underlying stock is monitored at m different times 7;,j = 1,....,m such that
0<71 <79 < ..<Tpo1 < Tm=71T. For the initial conditions to make any
sense X <U,and L < Sy <U.

To find the price of the barrier option, we need the conditional probability
distribution function for the stock price on the terminal day 7', conditional on
the property that the stock has stayed between the upper and lower barrier
in the whole interval [Tp,T]. In the sequel we shall work with the process
Zy = In(S;/Sp) instead of S;. Denoting this conditional probability density
function expressed in terms of Z; by ¢, (z), it is clear that the up-and-out-
down-and-out barrier call value is given by:

n(U/So)
c=e¢"T / (Soe® — X)gm(z)dz. (13)
In(X/So)
Similarly, the put value is given by:
In(X/So)
p=e T / (X — Spe*)gm(z)dz. (14)
In(L/So)

iiFrom this it follows that the only difference between pricing vanilla options
and barrier options is the need to calculate the function g,(z). From the
definition of ¢, (z), it is clear that it is given by

In(U/So)  In(U/So)

qm(2) = / / pm\m71(2|zm—1)"'p2\l(Z2|Zl)p1|0(zl‘0)le'"dZm—l7

In(L/So) In(L/So) ( )
15



where p;j;_1(2[zi-1) denotes the transition probability density function of Zr,
from 7,1 to 7 given Z; | = z;—1. When this multiple integral has been
calculated, we can also calculate the option prices we need. In the case of an
up-and-out option with a single barrier U, L is replaced with 0 in all of the
above. Similarly, in the case of a down-and-out option with a single barrier L,
U is replaced with oo.

6.1 Implementation

Whenever the transition probability density p;;_1(2[2'), i = 1,...,m is known,
Eq. (15) can be used recursively to obtain ¢,,(z). When the NIG market model
is used, the transition probability density can be derived from the pdf given in
Eq. (10). Assuming equidistant monitoring times, with A7 = 7, — 7,_1, it is
found that:

p10(2|0) = q1(2) = f(2; A7), (16)
and
piji—1(22) = f(z =2 A7), i=2,...,m. (17)
Hence, it follows that, for ¢ = 2, ..., m:
In(U/So)
ai(z) = / o= 25 AT) i () d2' (18)
In(L/So)

All the integrals are computed using numerical techniques. Since the NIG
density function contains the modified Bessel function of the second kind, it
contains a hidden integral, but both Matlab and Excel have this as a built-in
function. Still, calculating the Bessel function is a significant part of the total
computation time, when we apply the numerical path integration method on
the NIG market model.

When the function ¢,,(z) has been calculated for a given set of barrier(s),
finding the option price V(X,T) for any given strike X and maturity 7' = 7,
or any given binary option, or in fact for any given maturity, if the time to
maturity is less than m days, is done just as fast as finding the value of a
vanilla option,

S

V(X,T) e’“TZ(sX) am (m (;0)) ds. (19)

Binary barrier options can also be found at trivial computational cost by cal-

culating
U
Binary = e "TK - /qm <ln (;)) ﬁ, (20)
0 S
L

for any given value of K. For shorter maturities than m days, note that all
gm—i(z), i =1,2,....,m — 1, have been calculated. So it follows that the calcu-
lation of all these barrier options can be done very efficiently using numerical
path integration, if they are options on the same underlying asset.



As all the integration is done numerically, we have to discretize the stock
price axis. Naturally, finer discretization will lead to better accuracy, but also
higher computing time. In our calculations we have mainly used around 500
uniformly spaced grid points. This gives accurate answers and low computing
time. We have experimented with non-uniformly spaced grid points, with finer
discretization around the barriers and Sy, but we didn’t gain much in terms
of accuracy by doing this. We also tried a time-varying grid, but we didn’t
gain anything here either, except making the implementation complicated and
unreadable. We believe it is important that the implementation of a numerical
scheme is straightforward and easy to follow, and have thus chosen a simple uni-
formly spaced grid implementation. Since we will calculate prices for discretely
monitored barrier options, the time axis discretization is automatically given.
If we want to calculate prices for barrier options with continuous monitoring,
we obviously have to pick a smaller time step. It is, however, hard to determine
exactly how small time steps we should take to get an accurate solution. A way
to determine this is to successively cut in half the length of the time step, and
when the resulting changes in the option prices are small enough, we use this
as our time step. A numerical example will be used to demonstrate this.

7 Numerical examples

Since it has been difficult to find any published numerical values for barrier-type
options under the NIG framework, our results will be verified by Monte Carlo
simulations. We will price several types of barrier options. First the accuracy
of our numerical path integration implementation is verified for the down-and-
out-up-and-out call option. The fixed parameters are given in Table 7, and the
values for the upper and lower barrier are varied. Notice that the value for the
first barrier option is almost the same as for the vanilla call.

100

100

0.05

10

-4

1

0.2 (50 trading days)

e i LR PSIfes

Table 7: Fixed input parameters.

As we see in Table 8, the PI solution is very accurate, and takes less than a
second to be calculated on a standard laptop. Of course in practice it doesn’t
make much sense to calculate barrier option prices with the accuracy of three
decimals, since we know the model error will always be larger than 0.005, and
a typical bid-ask spread can be as high as several percent. But because our
purpose here is to verify the accuracy of our numerical implementation we do it
anyway. The computation time for the path integration was around one second



for the results in Table 8, with 400 grid points on the stock price axis. The
Monte Carlo are derived from 6,000,000 simulations. The effect on the results
of different number of grid points on the stock price axis are shown in Table 9.
It is noticed that for N = 400 all results are accurate enough, and fast.

L |U PI MC

50 | 150 6.168 | 6.168
60 | 140 5.852 | 5.853
70 | 130 5.054 | 5.054
80 | 120 3.273 | 3.273
90 | 110 0.735 | 0.735
Vanilla price: 6.383 | 6.383

Table 8: Option prices for double knock-out options. PI denotes numerical path
integration results, MC denotes Monte Carlo simulation results.

L | U N=100 | N=200 | N=300 | N=400 | N=500 | N=600 | MC
50 | 150 86.308 4.559 5.968 6.164 6.169 6.169 6.168
60 | 140 8.883 5.185 5.836 5.852 5.852 5.852 5.853
70 | 130 3.434 4.987 5.055 5.054 5.054 5.054 5.054
80 | 120 2.843 3.272 3.272 3.273 3.273 3.273 3.273
90 | 110 0.734 0.735 0.735 0.735 0.735 0.735 0.735
Comp. 0.04 s 0.16 s 0.5s 0.8s 1.3 s 2.2s >
time: 5000 s

Table 9: Results and computation times with different number N of discrete
grid points on the stock price axis.

It has now been confirmed that the numerical path integration is both accu-
rate and very fast for solving double barrier options. Another positive aspect is
that the implementation is flexible, so we can easily change the type of barrier
options. It is trivial to change the code from double barrier options to single
barrier options. For the same scenario as in Table 7 we verify the accuracy for
the numerical path integration on an up-and-out call, with different barriers.
The results are listed in Table 8, and again it is seen that the numerical path
integration is very accurate.

We shall also calculate prices of down-and-out options, and since the pre-
vious examples consisted of calls we now price puts. We again use the same
scenario as before, given in Table 7. Results are shown in Table 11, and also
for these options the numerical path integration is accurate.

As discussed earlier, barrier options can have different monitoring frequen-
cies of the barrier, including continuous monitoring. In the numerical path
integration implementation, we adjust for this by varying the time step At.
Since all parameters are annualized, the time is measured in years. Assuming
250 trading days a year, daily time step corresponds to At = ﬁ = 0.004. To



Barrier: | PI MC
105 0.114 | 0.114
110 0.794 | 0.794
115 2.000 | 2.001
120 3.277 | 3.279
125 4.317 | 4.319
130 5.054 | 5.056
135 5.541 | 5.541
140 5.852 | 5.850
145 6.046 | 6.042
150 6.168 | 6.164
155 6.245 | 6.246
Vanilla: | 6.383 | 6.383

Table 10: Up-and-out call prices, with different barrier levels.

Barrier: | PI MC

60 4.871 | 4.872
65 4.524 | 4.525
70 4.017 | 4.018
75 3.321 | 3.320
80 2.442 | 2.442
85 1.461 | 1.461
90 0.583 | 0.583
95 0.087 | 0.087
Vanilla: | 5.388 | 5.388

Table 11: Down-and-out put option prices, with different barrier levels.



approximate continuous monitoring we must choose a shorter time step. Ta-
ble 12 illustrates how the option prices changes with different time steps. As
an example, we do this for the same down-and-out-up-and-out options we dealt
with in Table 8, with the same parameters given in Table 7. Note that smaller
time steps leads to correspondingly longer computing time.

Time step in years:

L U At = | At = | At =| At =| At =
0.004 0.002 0.001 0.0005 0.00033
50 | 150 | 6.168 6.166 6.172 6.150 6.149
60 | 140 | 5.852 5.856 5.843 5.841 5.838
70 | 130 | 5.054 5.035 5.036 5.033 5.029
80 | 120 | 3.273 3.241 3.229 3.218 3.217
90 | 110 | 0.735 0.712 0.698 0.690 0.685

Table 12: Barrier option prices with different monitoring times. We see the
results converge to a given price. The same scenario as in Table 7 is used.

As we have seen through numerical examples, the numerical path integra-
tion approach is suitable for many kinds of barrier options. It has very good
accuracy, and is a lot faster in general than Monte Carlo simulation.

8 Concluding remarks

It has been shown that the Normal Inverse Gaussian process provides a model
that fits the financial data under study quite well. We have shown in detail
how this statistical analysis is done, and how vanilla option pricing and market
calibration can be performed.

It is clear that the numerical path integration approach is a very efficient
method for pricing all sorts of barrier options under the NIG market model.
Minimizing computing time is crucial for trading purposes. Numerical path
integration is also very flexible; the restriction is that the chosen process has
stationary, independent increments.
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